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Abstract

Deep learning is a type of machine perception method that attempts to model high-
level abstractions in data and encode them into a compact and robust representation.
Such representations have found immense usage in applications related to computer
vision. In this chapter we introduce two such applications, i.e., semantic segmentation
of images and action recognition in videos. These applications are of fundamental
importance for human-centered environment perception.
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1. Introduction

Automation based on artificial intelligence becomes necessary when agents such
as robots are deployed to perform complex tasks. Detailed representation of a scene
makes robots better aware of their surroundings, thereby making it possible to accom-
plish different tasks in a successful and safe manner. Tasks which involve planning of
actions and manipulation of objects require identification and localization of different
surfaces in dynamic environments [1, 2, 3].

The usage of structured light based depth sensing devices has gained much attention
in the past decade. This is because they are low-cost and capture data in the form
of dense depth maps, in addition to color images. Convolutional Neural Networks
(CNNs) provide a robust way to extract useful information from the data acquired
using these devices [4, 5, 6, 7]. In this chapter we will discuss the basic idea behind
standard feed forward CNNs (Section 2) and their application in semantic segmentation
(Section 3) and action recognition (Section 4). Further in depth analysis and state-
of-the-art solutions for these applications can be found in our recent publications [6]
and [7].

2. Convolutional Neural Networks

Convolutional Neural Networks are directed acyclic graphs. Such networks are
capable of learning highly non-linear functions. A neuron is the most basic unit inside
a CNN. Each layer inside a CNN is composed of several neurons. These neurons are
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hooked together so that the output of neurons at layer / becomes the input of neurons
atlayer [+ 1, i.e.,

aV = fwDa) 4 p0)y, (1)

where W) is the weight matrix of layer [, b!) is the bias term and f is the activation
function. The activation for layer [ is denoted by a'!). Training a CNN requires learning
W and b for each layer such that a cost function is minimized. Formally, given a training
set { (x(,y(My, ... (x) y™)} of m training examples, the weights W and bias b need
to be determined that will minimize the cost, i.e., the difference between the desired
output y and the actual output fy,(x). The cost function for one training example is
defined as:

1
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where, h(x) gives the activations of the last layer.

The minimization is done iteratively using a gradient descent approach which in-
volves the computation of partial derivatives of the cost function with respect to the
weights and updating the weights accordingly. One iteration of gradient descent up-
dates the parameters W, b as:

WO =W a2 I(W,b), ©)
b = b0 — a2 T(W,b), )

The backpropagation algorithm is used to compute the partial derivatives of the cost
function.

Fully connected layers have all the hidden units connected to all the input units.
This increases the number of connections tremendously when dealing with high di-
mensional data such as images. If we consider the image size as its dimension then
connecting each input pixel to each neuron becomes computationally expensive. An
image as small as 100 x 100 pixels would need 10* x N connections at the input layer,
where N is the number of neurons at the first layer.

Convolutional layers allow to build sparse connections by sharing parameters across
neurons. Compared to fully connected layers, convolutional layers have fewer param-
eters, so they are easier to train. This comes at the cost of a slight decrease in perfor-
mance [8]. Commonly used CNNs for image recognition consist of several layers of
convolution followed by a few fully connected layers [8, 9]. Such networks are often
termed deep networks.

3. Semantic labeling

Dense semantic labeling of a scene requires assigning a label to each pixel in an
image. The label must represent some semantic class. Such labeling is also referred to
as object class segmentation because it divides the image into smaller segments, where
each segment represents a particular class. Semantic labeling is challenging because



naturally occurring indoor and outdoor scenes are highly unconstrained, leaving little
room for discovering patterns and structures. The semantic classes can be abstract such
as “furniture” or more descriptive such as “table”, “chair” etc. The more descriptive
labeling we aim to achieve, the harder it becomes.

Convolutional Neural Networks provide a robust way to learn semantic classes.
A CNN architecture used for semantic labeling typically consists of convolution and
pooling layers only [6, 5]. The number of channels in the last layer is equal to the
number of object classes that we want to learn. Figure 1 shows a basic example of a
deep network architecture used for semantic segmentation.
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Figure 1: A model architecture for pixelwise semantic labeling. The network consists of 4 convolutional
layers and 2 max pooling layers. The output Layer 4 has the number of channels equal to the number of class
labels that needs to be learned. The filter sizes in each layer have been set to (11 x 11). Finally, the output
feature maps obtained are upsampled to be of the same size as the input image.

A CNN is usually trained to minimize a multiclass cross entropy loss function [4].
Formally given an image X of a scene, the objective is to obtain a label y, € ¢ for each
pixel location x,, € X that corresponds to the object class at the pixel location. The loss
function L can now be written as:

=-Y Y cipln(ép),
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where, ¢;. is the predicted class distribution at location i, and c;. is the respective
ground truth class distribution.

3.1. Related research

Several improvements in the past have been proposed to learn rich features from
color images. One approach is to use image region proposals for training CNNs [10].
Another approach is to explore contextual information between different image seg-
ments [11]. Classification of superpixels at multiple scales has also been investigated
in the past [12]. Another possibility is to train a network end-to-end by attaching a
sequence of deconvolution and unpooling layers [13]. Recently, a joint training of a
decoupled deep network for segmentation and image classification was shown to facil-
itate semantic segmentation results [14].

Different ideas for semantic labeling have been proposed which also utilize the
depth information in RGB-D images. A depth normalization scheme where the furthest
point is assigned a relative depth of one is proposed in [15]. Using height above the
ground plane as an additional feature was investigated in [16, 17]. A bounding hull



heuristic to exploit indoor properties was proposed in [15]. In our recent study [6], we
proposed a novel feature distance-from-wall. This feature was used to highlight objects
that are usually found in close proximity to the walls detected in indoor scenes.

Table 1: Individual classes of NYU v2 (four classes) and overall average.

Accuracy (%)

Method floor struct furniture prop classavg. pixel avg
Couprie et al. [18] 87.3  86.1 453 355 64.5 63.5
Khan et al. [19] 87.1 88.2 54.7 32.6 69.2 65.6
Stiickler et al. [20] 90.7 814 68.1 19.8 70.9 67.0
Miiller and Behnke [21] 949 789 71.1 42.7 72.3 71.9
Wolf et al. [22] 96.8 77.0 70.8 45.7 72.6 74.1
Eigen and Fergus [4] (AlexNet) 939  87.9 79.7 55.1 79.1 80.6
Husain et al. [6] 95.0 819 72.8 67.2 79.2 78.0

Figure 2: Some examples of semantic labeling, (a) color image, (b) ground truth labeling, (c) distance-from-
wall, (d) predicted labels without distance-from-wall and (e) predicted labels with distance-from-wall. White
color in Figs. (b), (d) and (e) represents the unknown label. Figure reproduced from Husain et al. [6].



Commonly used datasets for benchmarking different image segmentation approaches
include the PASCAL Visual Object Classes dataset [23], and for the RGB-D data in-
clude the NYU-v2 dataset [24] and the SUN RGB-D dataset [25]. Table 1 shows some
state-of-the-art results for the NYU-v2 dataset for four semantic classes as defined by
Silberman and Fergus [24]. These classes are defined according to the physical role
they play in the scene, i.e., “floor”, “structures” such as walls, ceilings, and columns;
“furniture” such as tables, dressers, and counters; and “props” which are easily mov-
able objects. Figure 2 shows some examples of semantic labeling results achieved
by Husain et al. [6].

4. Action Recognition

Recognizing human actions from videos is of central importance in understanding
dynamic scenes. Recognition is typically performed by processing a video containing a
particular action and predicting a label as the output. Action recognition is a challeng-
ing task because similar actions can be performed at different speeds, recorded from
different viewpoints, lighting conditions and background.

Convolutional Neural Networks provide a way to recognize actions from videos.
The most basic approach using CNNs involve treating each frame of the video as an
image and predicting the action for each frame followed by averaging over all the
predictions. Figure 3 shows a basic action recognition pipeline using a CNN.

It has been shown in the past that a CNN model trained on one dataset can be
transferred to other visual recognition tasks [26, 27]. We also see this transfer learning
technique being applied successfully for recognizing actions. This is achieved by using
a pretrained image recognition model for the individual frames of videos [7, 28, 29].
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Figure 3: Illustration of a CNN network used for recognizing actions. Features from each frame are extracted
using a CNN and averaged. K is the number of action categories. The final feature vector gives a probability
for each action.

4.1. Related research

Attempts have been made to make action recognition invariant to different kinds
of situations. This includes the usage of optical flow as additional information [28]
or using 3D (spatio-temporal) convolutional kernels [7, 30]. Recurrent Neural Net-
works have also been explored to learn from long term dependencies in different types
actions [31]. Learning actions representation in an unsupervised way has also been
proposed [32]. This involved using Long Short Term Memory (LSTM) networks for
encoding videos and afterwards reconstructing them. Recently, a concept of dynamic



Table 2: Average accuracy on the UCF-101 dataset (3-fold).

Algorithm \ Accuracy
CNN with transfer learning [29] 65.4%
LRCN (RGB) [36] 71.1%
Spatial stream ConvNet [28] 72.6%
LSTM composite model [37] 75.8%
C3D (1 net) [30] 82.3%
Temporal stream ConvNet [28] 83.7%
C3D (3 nets) [30] 85.2%
Combined ordered and improved trajectories [38] 85.4%
Stacking classifiers and CRF smoothing [39] 85.7%
Improved dense trajectories [40] 85.9%
Improved dense trajectories with human detection[41] 86.0%
2D followed by 3D convolutions [7] 86.7%
Spatial and temporal stream fusion [28] 88.0%

image was proposed [33]. The dynamic image encodes the temporal evolution of a
video and is used for the task of action recognition.

In our recent study, we demonstrated how human action recognition can be achieved
using the transfer learning technique coupled with a deep network comprising 3D con-
volutions [7].

Commonly used datasets for benchmarking different approaches include the UCF-
101 dataset [34], the HMDB dataset [35] and the Sports 1M dataset [29]. Table 2
shows some state-of-the-art results for the UCF-101 dataset for 101 action classes.
Figure 4, reproduced from one of our previous studies [7], shows the top-5 predictions
for selected sequences from the UCF-101 dataset. It can be observed that the actions
performed in visually similar environments are often predicted with a high probability.
Consider for example, Fig. 4(c6) vs. Fig. 4(b3). Figure 5 shows the confusion ma-
trix for the action sequences from the HMDB dataset using our approach as described
in [7]. It can be observed that similar actions such as “sword exercise” and “draw
sword” have some degree of confusion.
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Figure 4: Some results for top-5 predicted action labels for the UCF-101 dataset [34]. First row (green color)
shows the ground-truth followed by predictions in decreasing level of confidence. Blue and red show correct
and incorrect predictions, respectively. The figure is taken from Husain et al. [7].
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Figure 5: Confusion matrix for the action sequences in the HMDB dataset [35] using the approach as de-
scribed in one of our previous studies (Husain et al. [7]).

5. Conclusions

We introduced the basic idea behind Convolutional Neural Networks for the task
of semantic labeling. We discussed different ways to further enhance the segmentation
results by extracting different features from the scene such as the distance-from-wall.
The semantic labeling can serve as a useful prior for object discovery methods as shown
in one of our previous studies in [42].

We also explained the basic approach for recognizing actions in videos using Con-
volutional Neural Networks and different ways to bring robustness.
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