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Abstract

This paper proposes an integrated actuator and sensor active fault-tolerant model pre-
dictive control (FTMPC) scheme. In this scheme, fault detection (FD) is implemented by
using a set-valued observer, fault isolation (FI) is done by set manipulations and fault-
tolerant control (FTC) is carried out through the design of a robust model predictive
control (MPC) law. In this paper, a set-valued observer is used to passively complete
the FD task while FI is actively performed by making use of the constraint-handling ca-
pability of robust MPC. The set-valued observer is chosen to implement fault detection
and isolation (FDI) due to its simple mathematical structure that is not affected by the
type of faults such as sensor, actuator and system-structural faults. This means that only
one set-valued observer is needed to monitor all considered actuator and sensor statuses
(health and fault) and to carry out the FDI task instead of using a bank of observers
(each observer matching a health/fault status). Furthermore, in the proposed scheme,
the advantage of robust MPC is that it can effectively deal with system constraints, dis-
turbances and noises and allow to implement an active FI strategy, which can improve
FI sensitivity when compared with the passive FI methods. Finally, a case study based
on the well-known two-tank system is used to illustrate the effectiveness of the proposed
FTMPC scheme.

Keywords: Actuator and Sensor Faults, Fault Detection and Isolation, Fault-tolerant
Control, Model Predictive Control, Set-valued Observer

1 Introduction

For engineering systems, there exist two different ways to implement fault-tolerant control
(FTC) (i.e., passive FTC (PFTC) and active FTC (AFTC)) [2, 27]. PFTC relies on the
controller robustness, which means that the controller is designed to deal with all possible faults
as system uncertainties. In general, the PFTC scheme is relatively easy to be implemented but
only has limited fault-tolerant capability and suboptimal performance. In order to improve
the FTC performance, the other alternative is to turn to the AFTC approach. The difference
between PFTC and AFTC mainly consists in the uses of an extra module named FDI and some
reconfiguration/accomodation strategy. The FDI module can capture the fault information in
real time, which is further used for the FTC system to apply fault-tolerant strategies to cope
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with faults. The approach proposed in this paper involves both AFTC and PFTC by using
the inherent PFTC ability of MPC.

FTC has been implemented with different control strategies such as pole placement, adap-
tive control, fuzzy control, among others [2, 27]. In this paper, the objective is to implement
an FTMPC scheme, which aims to make full use of the advantages of MPC (i.e., constraint
handling, multi-variable control, etc.). It is known that MPC is an optimization-based control
strategy that can effectively deal with system constraints but relies on the accuracy of system
model, while the occurrence of faults implies changes of the system model [4]. Considering the
wide application of MPC in industry, it is necessary to endow MPC with active fault-tolerant
ability by using FDI techniques, which can further facilitate its application [13].

In the literature, there already exist some works dealing with the topics on FTMPC and
set-based FDI. In [18], an integrated actuator and sensor FTC scheme can be found, which
was implemented by using virtual actuators and sensors. However, this paper does not con-
sider system constraints on inputs, states and outputs and is based on a passive FDI method
using invariant sets. In [25], a multi-sensor FTMPC scheme was specially proposed to handle
sensor faults and is based on the same FDI method as in [18]. In [14], the proposed method
uses an active set-based FDI with on-line computation of separating inputs. Comparing with
the passive methods, the method in [14] can effectively reduce the FI conservatism but has to
compute separating inputs on-line able to separate the output sets corresponding to all con-
sidered healthy and faulty statuses. Although the active method has lower FI conservatism, it
requires higher computational resources than the passive method used in [18, 25]. In [21], the
authors previously proposed an FTMPC scheme to handle sensor faults, which uses an active
FI strategy based on interval observers and MPC. The proposed active FI strategy uses the
ultimate sets (i.e., invariant sets) to establish guaranteed FI conditions off-line but implement
FI on-line with off-line computed input sets, which can provide FI guarantees and have lower
FI conservatism than the method in [18, 25] and lower computational complexity than that
in [14]. In [20], an FTMPC scheme using the two-stage Kalman filter to implement FDI was
proposed to deal with partial actuator failures, where the results showed the feasibility to in-
tegrate MPC with FDI but without considering key features such as the feasibility after fault
occurrence of the optimization problem related to the MPC design. Moreover, the scheme
reported in [20] neither provide FI guarantees nor use active FI strategies when compared with
the approach proposed in this paper. In [24, 6], FTMPC strategies were used for wind turbine
and aerospace benchmarks, respectively. In [15], an FDI method based on set-valued observers
was proposed, where instead of identifying a fault status, the proposed method discards can-
didate faulty statuses to assure no occurrence of false alarms. More references can be found in
[3, 5, 22] for set-based FDI and FTC including approaches using set-membership estimation
and interval observers.

The contribution of this paper consists in the following three aspects, which have been
already treated by the authors in a preliminary work [21]:

• use the transient sets induced by status changing to establish guaranteed FI conditions
instead of the ultimate sets, which can reduce FI conservatism.

• isolate faults within a time window, which can be calculated off-line with the transient
sets.

• integrate actuator and sensor FDI and FTMPC into one scheme with a relative simple
structure and lower computational complexity.

In order to reach these objectives, the set-valued observer-based method is used to im-
plement FDI instead of interval observers and invariant sets (see [17, 23]). The main reason
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is that the set-valued observer has a key advantage over the others. That is, the set-valued
observer always has the same mathematical form for both actuator and sensor faults [1, 3]. In
particular, for a set-valued observer, only the state/output equation is changed for modeling
actuator/sensor faults instead of changing the whole internal model of the observer as in tech-
niques based on interval/conventional observers. This means that the FDI structure can be
simplified with the use of a single set-valued observer when both actuator and sensor faults are
considered together into an FTC scheme.

The remainder of the paper is organized as follows. Section II introduces the proposed FTC
scheme. Section III shows the FD principle based on the set-valued observer and proposes FDI
methods to detect and isolate actuators and sensors. In Section IV, the proposed FTMPC
strategy and related issues are presented. In Section V, a case study using the two-tank system
is used to show the effectiveness of the proposed scheme. Section VI draws the conclusions
of the paper. Finally, the definitions of several types of sets used throughout the paper are
given and some important properties of zonotopes used to implement the proposed approach
are summarized in Appendix A.

2 System Description

This section introduces the proposed FTMPC scheme, which includes the plant, control objec-
tive and robust MPC controller.

2.1 Plant Models

In this paper, we consider a group of actuator/sensor faults critical for the system safety/performance.
Under the effect of actuator/sensor faults, the system can be modelled as a piece-wise discrete-
time linear system:

xk+1 = Axk +BFuk + ωk, (1a)

yk = GCxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are time-invariant matrices, xk ∈ Rn, uk ∈ Rp
and yk ∈ Rq are state, input and output vectors at time instant k, respectively, ωk ∈ Rn and
ηk ∈ Rq denote process disturbances and measurement noises, respectively, and F ∈ Rp×p and
G ∈ Rq×q are diagonal matrices model1ing actuator and sensor state (healthy or faulty) and
take values from a finite set, each value corresponding to an actuator/sensor status, respectively.
Note the switching nature of the system in (1) when faults occur and make matrices F and G
vary along the time.

Remark 2.1 The proposed FTMPC scheme can deal with both single and multiple actua-
tor/sensor faults. In order to simplify the exposition, only the case of single fault is taken into
account (i.e., at each time instant, only one actuator/sensor becomes faulty) in the remaining
of the paper. However, in the same way, it is straightforward to extend the proposed scheme
to handle multiple faults by considering that several elements in the matrices F/G are null
simultaneously.

Thus, in this paper, a collection of actuator and sensor faults are considered. Under Re-
mark 2.1, F can take p + 1 values (i.e., F = Fia (ia ∈ Ia = {0, 1, 2, · · · , p}), each one corre-
sponding to one actuator status), where F0 is the identity matrix denoting the healthy actuator
status and Fia (ia 6= 0) modeling the ia-th actuator-fault status is denoted as

Fia = diag(1, · · · , 1, fia , 1, · · · , 1), ia ∈ Ia \ {0}, (2)
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where diag(·) denotes the diagonal matrix and fia , a scalar inside the interval [0, 1), denotes
the actuator-fault magnitude in the ia-th actuator. Similarly, G can take q + 1 values, (i.e.,
G = Gis (is ∈ Is = {0, 1, 2, · · · , q}), each one corresponding to one sensor status), where G0

is the identity matrix denoting the healthy sensor status and Gis (is 6= 0) modeling the is-th
sensor-fault status is represented as

Gis = diag(1, · · · , 1, gis , 1, · · · , 1), is ∈ Is \ {0}, (3)

where a scalar gis inside the interval [0, 1) denotes the sensor-fault magnitude in the is-th
sensor.

The process disturbance and measurement noise vectors ωk and ηk are assumed to be
bounded by known sets W and V , respectively, which are denoted as

W = {ω ∈ Rn : |ω − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn}, (4a)

V = {η ∈ Rq : |η − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq}, (4b)

where ωc, ηc, ω̄ and η̄ are constant and known vectors. Additionally, system states and input
constraints are taken into acount and denoted as

X ={x ∈ Rn : |x− xc| ≤ x̄, xc ∈ Rn, x̄ ∈ Rn}, (5a)

U ={u ∈ Rp : |u− uc| ≤ ū, uc ∈ Rp, ū ∈ Rp}, (5b)

respectively, where the vectors xc, uc, x̄ and ū are assumed to be constant and known.

Assumption 2.1 The pairs (A,BFia) and (A,GisC), for all ia ∈ Ia and is ∈ Is, are stabiliz-
able and detectable, respectively.

2.2 Control Objective

In the proposed FTMPC scheme, the control objective is to regulate the system output to
reach the given output setpoints. That is, in a healthy, actuator-fault or sensor-fault status,
it is always expected to keep the system output close to a given setpoint. However, due to
the potential effect of faults, the system may have to face a degree of performance degradation
during faulty operation. But, practically, if the system can be kept in safe operation, a degree
of performance degradation is acceptable in the faulty statuses. In this FTMPC scheme, for
different statuses, different output setpoints may be defined. When the system is in the ia-th
actuator and is-th sensor system status1, in the absence of disturbances and noises, the control
objective can be described by

lim
k→∞

(yk − y∗ia,is)→ 0, (6)

where y∗ia,is is the given output setpoint corresponding to the ia-th actuator and is-th sensor
status.

Both input and output vectors are p-dimensional and q-dimensional, respectively. Under
Remark 2.1, there are totally p+1 actuator statuses (healthy or faulty) and q+1 sensor statuses
(healthy or faulty) considered. This means that there are (p + 1) × (q + 1) system statuses2.

1In the following, in the ia-th actuator and is-th sensor status means that, in the current system, the
actuators are in the ia-th actuator status and the sensors are in the is-th sensor status.

2The terms actuator status, sensor status and system status have different meanings, where actuator status
only focuses on changes in actuators, sensor status only considers changes in sensors while system status takes
changes in both actuators and sensors into account.
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Thus, (p+ 1)× (q+ 1) output setpoints should be given, each one corresponding to one system
status3. With respect to (1), the plant model in the ia-th actuator and is-th sensor status is
obtained by neglecting ωk and ηk in (1) as

x̄ia,isk+1 = Ax̄ia,isk +BFia ū
ia,is
k , (7a)

ȳia,isk = GisCx̄
ia,is
k , (7b)

where ūia,isk , x̄ia,isk and ȳia,isk denote the nominal input, state and output vectors corresponding
to the ia-th actuator and is-th sensor status, respectively. With (7), a state-input setpoint
pair (x∗ia,is ,u∗ia,is) matching the given output setpoint y∗ia,is can be obtained at steady state by
solving [

A− I BFia
GisC O

] [
x∗ia,is
u∗ia,is

]
=

[
O

y∗ia,is

]
, (8)

which is obtained by considering the behavior of (7) at steady state.

Assumption 2.2 Under the constraints (5), the equation (8) has at least one solution for all
ia ∈ Ia and is ∈ Is.

Remark 2.2 Without loss of generality, this paper only considers the regulation problem. How-
ever, the scheme can be extended to the output-tracking problem as long as extra changes are
made.

2.3 Robust MPC

In the proposed FTMPC scheme, due to the disturbances and noises, robust MPC is used to
implement the control objective. Moreover, an active FI strategy to cope with both actuator
and sensor faults is proposed, which is based on adjusting the input constraint of MPC con-
troller (i.e., by means of the direct input constraint-handling capability of MPC.) Based on
these two considerations, the min-max MPC technique is chosen as the control strategy [4, 8].

According to [4, 8], when the plant is in the ia-th actuator and is-th sensor status, the
corresponding min-max MPC controller is designed from the following open-loop finite-horizon
optimization problem:

Jk = min
u

max
w

N−1∑
j=0

‖(xk+j|k − x∗ia,is)‖2Qia
+ ‖(uk+j|k − u∗ia,is)‖2Ria

+ ‖(xk+N |k − x∗ia,is)‖2Pia

subject to xk+j|k∈ X,
uk+j|k∈ U,
xk+N |k∈ Xia

M ,
xk|k= x̂k,

∀ωk+j|k ∈W, (9)

with an MPC internal model

xk+j+1|k = Axk+j|k +BFiauk+j|k + ωk+j|k, (10)

3Although for each system status, an output setpoint is given (i.e., totally (p+1)× (q+1) output setpoints),
this is just a theoretical result and some of the output setpoints may be the same. Practically, if the output
setpoints can be the same under all the considered system statuses, this will be the best situation in light of
the system performance.
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Figure 1: The proposed FTMPC scheme

where N denotes the prediction horizon, x̂k is the system state estimation, Xia
M is the ter-

minal state-constraint that is the maximal robust control invariant (MRCI) set of the ia-
th dynamics (10) corresponding to the ia-th actuator status under the constraints (5), u =
[uk|k, uk+1|k, · · · , uk+N−1|k], w = [ωk|k, ωk+1|k, · · · , ωk+N−1|k], and Qia , Ria and Pia are the
positive-definite matrices corresponding to the ia-th MPC controller (see Appendix for the
definition of robust control invariant (RCI) and MRCI sets). For the sake of understanding,
the proposed FTMPC scheme is shown in Figure 1.

Remark 2.3 In this scheme, a bank of MPC controllers are used, each corresponding to one
actuator status. Thus, if the actuator status changes (i.e., the MPC internal model changes),
another MPC controller should be activated. But, if the sensor status changes, only the state-
input setpoint pair of the MPC controller matching a new sensor status needs to be used provided
that this new sensor status uses a different output setpoint. That is, it is switched among a
bank of robust MPC controllers for actuator-fault tolerance or a collection of state-input setpoint
pairs for sensor-fault tolerance.

3 Fault Detection and Isolation

This section introduces the set-valued observer and the corresponding FD and FI strategies
used in the proposed FTMPC scheme, respectively.

3.1 Set-valued Observer

In order to introduce the set-valued observer, the healthy system status is taken as an example
(i.e., the model (1) with both F and G as identity matrices).

Definition 3.1 Given the system (1) in the healthy status and a measured output yk, the
measurement-consistent set at time instant k is defined as Xyk = {xk ∈ Rn : Cxk−yk ∈ −V }.

Definition 3.2 Given the system (1) in the healthy status, the exact state estimation set at
time instant k is obtained as Xk = (AXk−1 ⊕ {Buk} ⊕W ) ∩Xyk (k ≥ 1), which is the state
set consistent with the output yk and the initial state set X0 satisfying x0 ∈ X0.

Generally, it is difficult to obtain the exact state estimation set because of the complex geo-
metric structure of sets. In order to reduce computational complexity, an outer approximation
with a simple geometric structure (zonotopes) is used to bound the exact state estimation set.
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Assume that a zonotopic outer-approximation X̂k−1 of the exact set Xk−1 and the output
measurement yk are available. According to [1], the set-membership estimation algorithm to
obtain a zonotope outer-approximation X̂k can be divided into three steps:

• prediction step: a zonotope X̄k = AX̂k−1⊕{Buk}⊕W is obtained to bound all possible
values of the states at time instant k.

• measurement step: the output yk is obtained and the current measurement-consistent
set Xyk is computed.

• correction step: the measurement-consistent set Xyk is used to correct the predicted set
X̄k and an intersection Xek = X̄k ∩ Xyk can be obtained. Furthermore, a zonotopic

outer-approximation X̂k to bound Xek is built and used for the next-step prediction.

Properties A.1, A.2 and A.3 in Appendix are used to implement the set-valued observer.
Specially note that, as k increases, the order of the estimated state zonotopes also increases.
In order to control the order of the estimated state zonotopes, Property A.3 is used in the
implementation of the set-valued observer. Furthermore, in [9], an algorithm to compute a
zonotopic outer-approximation of the intersection of a zonotope and a polytope is presented in
Property A.4.

3.2 Fault Detection

In order to implement FDI, a set-valued observer is designed to monitor the system. When
the system is in the ia-th actuator and is-th sensor status, the set-valued observer should use
the model

xia,isk+1 =Axia,isk +BFiauk + ωk, (11a)

yia,isk =GisCx
ia,is
k + ηk. (11b)

At time instant k, a predicted state set X̄ia,is
k can be obtained by propagating (11a):

X̄ia,is
k = AX̂ia,is

k−1 ⊕ {BFiauk−1} ⊕W.

Furthermore, a predicted output set corresponding to X̄ia,is
k can be computed by

Ȳ ia,isk = GisCX̄
ia,is
k ⊕ V. (12)

Remark 3.1 When the system is in the ia-th actuator and is-th sensor status, if the state xk∗

is contained in the set X̂ia,is
k∗ (i.e., xk∗ ∈ X̂ia,is

k∗ ), xk ∈ Xe
ia,is
k , xk ∈ X̄ia,is

k , xk ∈ X̂ia,is
k and

yk ∈ Ȳ ia,isk will hold for all k > k∗. Note that, in this paper, it is assumed that the initial state
of the plant is bounded by the initial set of the set-valued observer.

It can be seen that the set-valued observer introduced in this subsection, which predicts the
output set Ȳ ia,isk , is a little different from that in Section 3.1. Particularly, for estimating state

sets, it is better to compute Xe
ia,is
k that has a smaller size than X̄ia,is

k , while for FD, X̄ia,is
k

and Ȳ ia,isk are more interesting. In this paper, the set-valued observer is used for both FD and
state estimation. Thus, both output and state sets can be computed and both forms of the
set-valued observer are used. According to [15], the FD task can be performed by checking
whether or not Xe

ia,is
k is empty. Moreover, according to previous results, Proposition 3.1 is

stated.
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Proposition 3.1 When the system is in the ia-th actuator and is-th sensor status, FD based
on the set-valued observer consists in testing whether or not Xe

ia,is
k is empty or yk ∈ Ȳ ia,isk is

violated. Moreover, these two FD criteria are equivalent.

Proof : The FD principle is to test the consistency between predictions and measurements.
At time instant k, if Xe

ia,is
k is empty or yk ∈ Ȳ ia,isk is violated, it implies that the consistency

is lost, which indicates fault occurrence. Particularly, first, at time instant k, Xia,is
yk

contains

all possible values of states, which can explain the measured output yk. X̄ia,is
k includes all

possible values of states from prediction based on the state estimation set at the previous step.
Thus, if Xe

ia,is
k is empty, it implies inconsistency between the measurements and predictions.

Second, Ȳ ia,isk contains all possible values of outputs from prediction, yk 6∈ Ȳ ia,isk also means

inconsistency. Thus, if Xe
ia,is
k is empty, it implies that no values inside X̄ia,is

k can explain yk
(i.e., yk 6∈ Ȳ ia,isk ). Similarly, if yk 6∈ Ȳ ia,isk , it means that Xia,is

yk
cannot intersect with X̄ia,is

k

(i.e., Xe
ia,is
k is empty). Thus, these two FD criteria are equivalent and can be used to detect

a fault occurrence. �

3.3 Fault Isolation

3.3.1 Actuator Faults.

It is assumed that the system is in the ia-th actuator and is-th sensor status and the ia-th
MPC controller with the is-th sensor state-input setpoint pair is used to control the system.
If no faults occur, it implies that uk ∈ U always holds (as long as the corresponding MPC
controller activated is always feasible). Moreover, the dynamics (1a) can be rewritten as

xk+1 = Axk +
[
BFia I

] [uk
ωk

]
. (13)

If uk is treated as disturbances, by taking uk ∈ U and ωk ∈ W into account, a robust
positively invariant (RPI) set (denoted as Xia

s ) can be constructed for (13) (see [7] for the
notion and computation of RPI sets). According to the definition of RPI sets, in the ia-th
actuator status, the system states keep staying inside Xia

s if the previous states are inside Xia
s .

Thus, for each actuator status, an RPI set can always be constructed. Note that, in order to
assure the existence of RPI sets, Assumption 3.1 is made as follows:

Assumption 3.1 The matrix A in (1) is a Schur matrix.

For explaining actuator FI, it is assumed that an actuator status switching4 is detected at
time instant kd while the system always keeps the same sensor status (i.e., the is-th sensor
status). This implies that the actuator status of the system changes from the ia-th one to
another one. In this case, the system operation can be divided into three phases:

• for k < kd, xk ∈ X̄ia,is
k may hold and yk ∈ Ȳ ia,isk must hold.

• for k = kd, xkd 6∈ X̄
ia,is
kd

and ykd 6∈ Ȳ
ia,is
kd

must hold.

• for k > kd, it is not known whether xk 6∈ X̄ia,is
k or yk 6∈ Ȳ ia,isk can always hold.

4A status switching is from the health status to a fault status, from a fault status to another fault status or
from a fault status to the health status.
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Proposition 3.2 In the ia-th actuator and is-th sensor status, when an actuator fault is de-
tected at time instant kd, if no outer-approximations are introduced into the computational
implementation of set-valued observer, the estimated state set sequence X̂k should converge to
and stay inside the minimal robust positively invariant (mRPI) set of the dynamics (13) for
k < kd.

Proof : As long as the activated MPC controller is feasible, uk ∈ U should always hold.
The construction of the corresponding RPI sets is based on the set-based dynamics Xia,is

k+1 =

AXia,is
k ⊕BFiaU⊕W and the iteration of this set-based dynamics should converge to the mRPI

set (denoted as Xia
m ) of (13). For the set-valued observer, the prediction set X̄ia,is

k is computed

by X̄ia,is
k = AX̂ia,is

k−1 ⊕ BFiauk−1 ⊕W . According to the principle of set-valued observer, the

estimated state set Xe
ia,is
k is over-bounded by X̂ia,is

k based on zonotopes. If no zonotopic
outer-approximation is used in the implementation of set-valued observer (i.e., directly using
accurate polytopic sets), X̂ia,is

k = Xe
ia,is
k should hold. Thus, as k increases (sufficiently large),

X̂ia,is
k and Xe

ia,is
k will converge to the mRPI set. �

However, the situation presented in Property 3.2 is ideal. Practically, in order to re-
duce the computational complexity of set-valued observer implementation, zonotopic outer-
approximations are introduced into the set-valued observer as aforementioned. Thus, by using
Proposition A.4 to implement the set-valued observer, the obtained sets are more conservative
than the corresponding accurate sets due to errors. Thus, X̂ia,is

k may not converge to the

mRPI set Xia
m . But, it is guaranteed that X̂ia,is

k will converge to an RPI set

Xia
s = αXia

m (14)

for a value α ≥ 1 due to the fact that the scaling of an RPI set is also RPI for the linear
discrete time-invariant dynamics, which can be used as the bounding set of X̂ia,is

k as k increases
sufficiently.

For the proposed actuator FI strategy, the key is to describe the system behaviors one step
before FD (i.e., k = kd − 1). Thus, the aforementioned FD criterion yields

ykd−1 =GisCxkd−1 + ηkd−1 ∈ Ȳ
ia,is
kd−1, (15a)

ykd =GisCxkd + ηkd 6∈ Ȳ
ia,is
kd

. (15b)

By considering (15a), at time instant kd − 1, the following results can be further obtained:

GisCxkd−1 ∈ Ȳ
ia,is
kd−1 ⊕ {−ηkd−1} ⊆ GisCX̄

ia,is
kd−1 ⊕ V ⊕ (−V ). (16)

In steady-state operation, X̄ia,is
kd−1 should be inside the RPI set Xia

s (note that, by choosing

α, one can always find a set Xia
s that satisfies this condition). By using (16), the following

results can be obtained:

GisCxkd−1 ∈ GisCXia
s ⊕ V ⊕ (−V ). (17)

By using (17), a fixed set (free from the effect of actuator status switching) can be con-
structed by means of Proposition A.4 to contain xkd−1

one step before FD, which is denoted

as X̂ia,is
kd−1

, i.e.,

xkd−1 ∈ X̂
ia,is
kd−1. (18)

Although, at time instant kd − 1, it is not known which status the system is in, (18) can
always hold. This is the key of the proposed actuator FI approach. Based on X̂ia,is

kd−1
at the FD
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time kd − 1, one step later, p possible sets can be constructed where xkd may enter, each of
which corresponds to one possible actuator status. For example, due to ukd−1 ∈ U , if the la-th
(la ∈ I \ {ia}) actuator status occurs, a set containing xkd is

X̂ la,is
kd

= AX̂ia,is
kd−1 ⊕BFlaU ⊕W. (19)

In this FTMPC scheme, FD is passive based on the set-valued observer, while FI is active
by changing the input constraint of the corresponding MPC controller at the FD time kd on-
line. According to (13), it can be observed that the size and center of RPI sets of (13) can be
manipulated by adjusting the input set. Thus, according to the idea of the proposed actuator
FI method, the input-constraint set of the corresponding MPC controller should be switched
from U to Uf,ia,iskd+1 for the time instant kd (Uf,ia,iskd+1 is specially designed for FI, but for ukd ,
it is still generated based on U). Moreover, as long as the MPC controller is feasible at time
instant kd, ukd ∈ U can be obtained and a set containing xkd+1 can further be constructed as

X̂ la,is
kd+1 = AX̂ la,is

kd
⊕BFlaU ⊕W. (20)

Furthermore, by using X̂ la,is
kd+1, the p possible output sets to contain ykd+1 can be obtained

as

Ŷ la,iskd+1 =GisCX̂
la,is
kd+1 ⊕ V. (21)

As a result, for the la-th actuator status, the state and output sets after FD can be computed
by

X̂ la,is
k+1 =AX̂ la,is

k ⊕BFlaU
f,ia,is
k ⊕W, (22)

Ŷ la,isk+1 =GisCX̂
la,is
k+1 ⊕ V, k ≥ kd + 1 and la ∈ Ia \ {ia}, (23)

where X̂ la,is
k+1 and Ŷ la,isk+1 are the estimated state and output sets at time instant k + 1 and

Uf,ia,isk is the input set specially designed for active FI at time instant k.

3.3.2 Sensor Faults

It is assumed that the system is in the ia-th actuator and is-th sensor status and that the
actuator status always keeps being in the ia-th one while the sensor status changes due to
sensor faults. It is assumed that a sensor status switching is detected at time instant kd. Then,
the whole system operation can be divided into three phases. When a sensor-status switching
is detected at time instant kd, ls (ls ∈ Is \ {is}) is used to denote this new sensor status.
Totally, there are q sensor-candidate statuses and q output candidate sets are constructed at
time instant kd + 1, each one corresponding to one sensor-candidate status. It can be known
that, at time instant kd + 1, the outputs will enter into at least one of these q output sets.

Assumption 3.2 Before FD, the MPC controller is feasible (i.e., uk ∈ U holds for k ≤ kd).

Remark 3.2 Since before FD, it is not known whether the sensor status has changed, the
system structure keeps the same. In order to guarantee the nominal (healthy) operation, As-
sumption 3.2 is stated.

Under Assumption 3.2, for the ls-th sensor status, the system state should always be inside
the RPI set Xis

s for k ≤ kd. Similar with actuator FI, at the FD time instant kd, the input-

constraint set of the MPC controller is adjusted from U to another input set Uf,ia,iskd
. If the
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MPC controller is feasible at time instant kd, ukd+1 ∈ Uf,ia,iskd+1 for time instant kd+1 and xkd+1

will enter into a set

X̂ia,ls
kd+1 = AXis

s ⊕BFiaU ⊕W, (24)

Thus, the output set can be computed as

Ŷ ia,lskd+1 = GlsCX̂
ia,ls
kd+1 ⊕ V. (25)

Similarly, for the ls-th sensor status, the state and output sets after FD can be computed
by

X̂ia,ls
k+1 =AX̂ia,ls

k ⊕BFiaU
f,ia,is
k ⊕W, (26)

Ŷ ia,lsk+1 =GisCX̂
ia,ls
k+1 ⊕ V, k ≥ kd + 1 and ls ∈ Is \ {is}, (27)

where X̂ia,ls
k+1 and Ŷ ia,lsk+1 are the estimated state and output sets corresponding to the ls-th

sensor status at time instant k + 1.

Remark 3.3 In Sections 3.3.1 and 3.3.2, the system behaviors before FD and after FD have
been described. This implies that, for each candidate actuator/sensor status, one output set
should be constructed at a time instant. Thus, for k ≥ kd + 1, output sets for all considered
candidate statuses are constructed at each time instant. This means that at a time instant,
p output sets for actuator statuses and q output sets for sensor statuses should be considered.
Note that at any time instant after FD and before FI, it is guaranteed that the system outputs
will enter into one out of the p+ q output sets corresponding to this time instant, considering
the single fault assumption. Thus, when actuator and sensor faults are considered together,
there always exist p+ q candidate system statuses (p actuator and q sensor statuses) after fault
occurrence.

3.3.3 Integrated Actuator and Sensor Fault Isolation.

Since both actuator and sensor faults have different features and their effects on the system
are also different, the observer-based methods generally use a bank of observers. This paper
proposes an integrated actuator and sensor FI approach.

Under the framework of set-based FI, the objectives of the proposed integrated actuator
and sensor FI method are to reduce the difference of the effect of actuator and sensor faults
and lower the conservatism of FI conditions as much as possible. The former objective can
be reached by using the set-valued observer. In this case, the same observer structure can be
used to deal with the two types of faults, while the latter objective will be achieved by using
MPC-based active FI, which is the goal of this subsection.

In order to explain the proposed FI strategy, it is assumed that the system is in the ia-th
actuator and is-th sensor status and a status changing is detected at time instant kd. Thus,
p after-fault output sets can be constructed for p actuator-candidate statuses and q after-
fault output sets for q sensor-candidate statuses at any time instant k ≥ kd + 1 (i.e., Ŷ la,isk

(la ∈ Ia \ {ia}) and Ŷ ia,lsk (ls ∈ Is \ {is})). Moreover, with the results in Sections 3.3.1 and
3.3.2, it is known that the sizes and positions of those p+ q output sets can be adjusted by the
specially designed input sets Uf,ia,isk (k ≥ kd + 1). This feature is the basic principle of the
proposed active FI method, which achieves FI by designing a sequence of input sets and using
them as the input-constraint sets of MPC controller during the whole FI phase. Comparing
with methods able to isolate faults in one step after FD, in this paper, the conservatism of FI
conditions is reduced by properly augmenting the FI time.

11
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Figure 2: An example for FI

According to the results in Section 3.3.2, it is known that all estimated output sets Ŷ la,isk

and Ŷ ia,lsk can be constructed off-line. This implies that guaranteed FI conditions off-line based
on those output sets can be established. Since there always exist p+ q candidate statuses after
FD, they should be able to be distinguished from each other for the sake of FI. In order to
reduce the conservatism of FI conditions, it is not required to separate all p+q sets at one time
instant. Instead, it is considered to distinguish faulty statuses among them during a given time
slot. For the sake of simplicity, an example used to show the procedure on how to separate
all candidate statuses is shown in Figure 2. In this example, it is assumed that the system
is healthy at the beginning and two actuator and two sensor faults are considered. Thus, the
estimated output sets after FD are Ŷ 1,0

k , Ŷ 2,0
k , Ŷ 0,1

k and Ŷ 0,2
k and the procedure is shown as

follows:

• at k = kd+1, it is observed that all the four sets intersect at least with another set, which
means that it cannot be guaranteed to distinguish the four candidate faulty statuses at
this time instant.

• at k = kd+ δ1 +1, it is observed that, although it cannot be guaranteed to distinguish all
the four statuses or several statuses out of the four, it can be guaranteed to differentiate
the actuator-fault statuses 1 and 2 from the sensor-fault statuses 1 and 2 by using δ1
extra time instants.

• at k = kd + δ1 + δ2 + 1, furthermore, it is shown that it can be guaranteed to distinguish
the actuator-fault status 1 from 2 with another δ2 time instants.

• at k = kd + δ1 + δ2 + δ3 + 1, it can be guaranteed to distinguish the remaining two
sensor-fault statuses 1 and 2 with another δ3 time instants. It does not matter that Ŷ 1,0

k
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and Ŷ 2,0
k intersect again at this time instant, because these two statuses have already

been distinguished at k = kd + δ1 + δ2 + 1.

Remark 3.4 Here, δi ∈ N+, for i = 1, 2, 3, which denotes the time needed to distinguish the
corresponding candidate statuses, respectively. Theoretically, the smaller δ1, δ2 and δ3 are, the
better it is for FI and FTC. In practice, their values are decided by the system dynamics, faults
and designed input sets at each time instant. Additionally, note that sets and intersections in
Figure 2 are elements of a scheme used to illustrate the proposed FI idea.

The example in Figure 2 is used to illustrate the way of implementing FI. From the ex-
ample, it can be seen that the requirement for the designed input sets is that they should
be able to separate all candidate output sets in a time period. Since all estimated output
sets can be computed off-line, the input set sequence can be designed off-line as well. In this
example, the output sets at time instant kd + 1 are decided by U at time instant k = kd.
An input set Uf,ia,iskd+1 is designed to separate the output sets at time instant kd + 2. But, be-

cause Uf,ia,iskd+1 cannot distinguish all the statuses at time instant kd + 2, an input set sequence

{Uf,ia,iskd+2 , Uf,ia,iskd+3 , . . . , Uf,ia,iskd+δ1
} can be further designed, which can distinguish the actuator-fault

statuses 1 and 2 from the sensor-fault statuses 1 and 2. Furthermore, input sequences

{Ufkd+δ1+1, U
f
kd+δ1+2, . . . , U

f
kd+δ1+δ2

}

and
{Ufkd+δ1+δ2+1, U

f
kd+δ1+δ2+2, . . . , U

f
kd+δ1+δ2+δ3

}
are designed to distinguish the two actuator-fault and two sensor-fault statuses, respectively.
As observed, the design of the input set sequence in this example is divided into four phases.
Thus, the whole input set sequence for the isolation of the four faulty status is denoted as

Uf,ia,is ={Uf,ia,iskd+1 , Uf,ia,iskd+2 , . . . , Uf,ia,iskd+δ1
, Uf,ia,iskd+δ1+1,

. . . , Uf,ia,iskd+δ1+δ2
, Uf,ia,iskd+δ1+δ2+1, . . . , U

f
kd+δ1+δ2+δ3

}. (28)

Remark 3.5 Although the designed input set sequence includes four parts, they together rep-
resent the whole design procedure, which finally obtains the complete input set sequence Uf,ia,is
able to isolate all actuator and sensor faults. The most important point is that, because all
output sets can be constructed off-line, designing and verifying a proper input set sequence can
be completely done off-line. Furthermore, notice that the input sets should be designed one by
one, because the estimated output sets at later time instants are decided by the estimated output
sets and designed input sets at the previous time instants (i.e., first designing Uf,ia,iskd+1 , then

checking whether the estimated output sets are separated to further design Uf,ia,iskd+2 , Uf,ia,iskd+3 , . . . ,
step by step). Actually, it does not matter whether an input set can separate several estimated
output sets at the next step. Instead, the whole input set sequence composed of all input sets
must be able to isolate all faults during the whole time span covered by the input set sequence
(see Figure 2).

Note that, since system constraints are taken into account in the proposed scheme, the
designed input sets must always satisfy the input constraints:

Uf,ia,isk ⊆ U, for k ≥ kd + 1. (29)

If the designed input set sequence spans a time length of N steps, it actually forms a tube
Uf,ia,is along the time axis. Moreover, when another tube U with the same time length is
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considered, which is composed of the input-constraint set U at each time instant, it can be
observed that

Uf,ia,is ⊆ U. (30)

Remark 3.6 Based on the above discussion, the design of the input set sequence for FI can be
formulated as the problem of finding a subtube that can completely differentiate all considered
statuses inside the input-constraint tube U during the time span of the subtube.

The existence of such an input-set sequence is determined by the considered faults and
the features of the system such as constraints, dynamics, etc. In the current paper, the input
sequence is designed by trial and error since all relevant sets can be computed and the whole
design procedure can be performed off-line. However, for theoretical integrity, the following
assumption is made.

Assumption 3.3 For all considered statuses, there exists an input set sequence of length N
that can both satisfy (30) and differentiate all considered statuses described by the estimated
output sets from (23) and (27).

Remark 3.7 Under Assumption 3.3, an input set sequence for on-line FI can be designed. In
this paper, such an input set sequence is designed by performing a large number of simulations to
implement the proposed active FI strategy. It should be emphasized that computing an optimal
input set sequence to achieve guaranteed FI and control performance during the transition is still
an open issue. However, methods proposed in [10, 16] to compute inputs separating different
modes are already reported in the literature.

In the system operation, once a faulty situation is detected at time instant kd, it is started
to apply the designed input-set sequence during the FI phase and the FI strategy is to test
whether the following conditions are satisfied or not:

yk ∈ Ŷ la,isk , k ≥ kd + 1, for all la ∈ Ia \ {ia}, (31a)

yk ∈ Ŷ ia,lsk , k ≥ kd + 1, for all ls ∈ Is \ {is}, (31b)

where the output sets are computed off-line in advance and used on-line for FI.
Note that, if an estimated output set does not contain yk, it implies that the status corre-

sponding to this output set should be excluded from the set of candidate statuses. Moreover,
in the next time instants, the estimated output sets corresponding to this status will not be
tested again for saving computational resources. Finally, till a time instant when there exists
one and only one output set that can contain the current outputs, it means that the FI task is
completed at this time instant.

Remark 3.8 The FI conditions in Assumption 3.3 are sufficient but unnecessary. This means
that if Assumption 3.3 holds, it is guaranteed that an input set sequence can be designed to
isolate all considered statuses. However, even though Assumption 3.3 cannot be satisfied, it
is still possible to isolate those considered statuses by making some extra efforts. Besides, the
length of the input set sequence just says that within the time length, all the considered statuses
can be distinguished. But in real time, a status can perhaps be isolated in a shorter time than
the time length of the input sequence that corresponds to the worst case.
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4 Fault-tolerant Control

In this paper, the control strategy should satisfy several conditions:

• it should be able to control the system to reach its expected performance,

• it should be robust to process disturbances and measurement noises,

• it should be able to assist the FDI module to actively achieve FI,

• it should be able to deal with constraints.

Considering these conditions, robust MPC is chosen as the control strategy in this section.

4.1 Constraint Satisfaction

In Section 2.3, min-max MPC is briefly introduced. The details of the min-max MPC technique
can be found in [8]. For each MPC controller, the plant model corresponding to an actuator
status is used as its internal model. In order to deal with all actuator statuses, this paper
proposes to switch among a bank of pre-designed MPC controllers, each corresponding to one
actuator status, while for dealing with sensor statuses, only the state-input setpoint pair of the
corresponding MPC controller is adjusted instead of switching the MPC controller. This means
that an MPC controller is used for an actuator status and all sensor statuses corresponding
to this actuator status. For example, in the ia-th actuator and is-th sensor status, the ia-th
MPC controller is the activated controller and the state dynamics of the ia-th actuator status
is used as the internal model of this MPC controller. Moreover, corresponding to the is-th
sensor status, the state-input setpoint pair (x∗ia,is , u

∗
ia,is

) is used in the ia-th MPC controller
as in (9) to achieve the expected performance.

Generally, if no process disturbances and measurement noises are considered and the states
are directly measurable, the MPC controller can directly be updated with accurate states
and the system constraints can be satisfied by generated control actions. However, since
process disturbances and measurement noises are taken into account, it is impossible to have
the real states. Instead, only state estimations can be used to update the MPC controller
to generate control actions (see (9)). Due to state estimation errors, the MPC controller
cannot always guarantee constraint satisfaction. However, as long as the MPC controller is
feasible, the generated control actions should always satisfy the input constraints. Thus, if
the feasibility of the MPC controller can be guaranteed, the remaining main problem consists
in how to guarantee state-constraint satisfaction with the generated control actions based on
state estimations. In order to overcome this problem, the notion of RPI sets is used and
Assumption 4.1 is stated.

Assumption 4.1 The mRPI set Xia
m of the dynamics (13) in the ia-th actuator status corre-

sponding to uk ∈ U and ωk ∈W is contained inside X, i.e., Xia
m ⊆ X for ia ∈ Ia.

Remark 4.1 Considering that the scaling sets of an RPI set of the linear time-invariant dy-
namics are also the RPI sets of the dynamics, under Assumption 4.1, in the ia-th actuator
status, there always exists a scalar β ≥ 1 such that the RPI set Xia

s = βXia
m satisfies Xia

s ⊆ X.
Furthermore, the RPI set contained inside X should also be included inside the MRCI set Xia

M

based on the notions of the MRCI and RPI sets (i.e., Xia
s ⊆ X

ia
M ).

Based on the state dynamics, Assumption 4.1 is only involved in actuator statuses and does
not have any requirements on sensor statuses. Thus, if all considered actuator statuses satisfy
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Assumption 4.1, the state and input constraints can be guaranteed by Assumption 4.1 and the
feasibility of MPC open-loop optimization problem, respectively. Moreover, even though the
state estimation errors exist, as long as the MPC controller is feasible, the generated control
actions will always satisfy uk ∈ U . Moreover, the states will always remain inside its RPI set
(i.e., in the state-constraint set X) as long as the initial state belongs to the RPI set or the
initial state does not belong to the RPI set but the RPI set is attractive for the state trajectory.

4.2 State Estimation

As observed in Figure 1, there is a module named State Estimator. Although the set-valued
observer can estimate the sets of states at each time instant, specific state-estimation values has
to be obtained for the MPC controller to update control actions since states are not measurable
in the proposed FTMPC scheme. Thus, for a state estimator, it should have at least two
conditions. First, the estimator should generate as good state estimations as possible for the
MPC controller. Second, the state estimator should be able to generate state estimations that
can guarantee the feasibility of MPC open-loop optimization problem. Thus, in this scheme,
without loss of generality, Assumption 4.2 is made.

Assumption 4.2 The system is healthy after initialization and the initial state belongs to the
RPI set of the dynamics corresponding to the healthy status.

Additionally, a fault occurrence always implies a status changing (i.e., the system changes
from one status to another). The transition of a status changing can be described by the
settling time of the plant dynamics. In this paper, the settling time is chosen to guarantee
that, after it, the states have entered into the RPI set corresponding to a new system status.
That is, if the actuator status does not change, the states finally return back to the same RPI
set, while if the actuator status changes, the states enter into the RPI set corresponding to
the new actuator status. Since a collection of system statuses are considered, without loss of
generality, only one transient time is defined to describe all transitions for simplicity of analysis.
Moreover, this transient time should also be able to describe the transition of the set-valued
observer, which is also based on the settling time.

Definition 4.1 The transient time T is defined as the maximal settling time of the dynamics
of all considered system statuses and the set-valued observer such that the system has entered
into the steady state of a new system status after a period of T elapses.

Definition 4.2 The steady-state operation of a system status is defined as its dynamic behav-
iors after the system operates in the status for at least one period of T .

Assumption 4.3 The persistent time of each status is at least longer than the transient time
T .

Under Assumptions 4.1 and 4.2 , system constraints should always be satisfied at steady
state of the corresponding system status as long as no status changing occurs. Furthermore, it
is assumed that the system is in the ia-th actuator and is-th sensor status. Correspondingly,
the current internal model used in the set-valued observer is

xia,isk =Axia,isk−1 +BFiauk−1 + ωk−1, (32a)

yk =GisCxk + ηk. (32b)
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Thus, at time instant k, a state estimation set Xia,is
ek from the set-valued observer can be

obtained and, according to the principle of the set-valued observer,

xk ∈ Xia,is
ek (33)

should hold. Moreover, due to the MPC controller and Assumption 4.1, at steady state, xk
should also belong to the terminal state-constraint set Xia

M :

xk ∈ Xia
M . (34)

Since xk should be confined by both Xia,is
ek and Xia

M , a refined state set is further obtained

by using both Xia,is
ek and Xia

M , that is

xk ∈ Xia,is
ek ∩Xia

M .

In the proposed scheme, considering that the concrete state-estimation values are needed
for updating the MPC controller at each time instant, a pragmatic state estimation is proposed,
i.e.,

x̂k = center(Xia,is
ek ∩Xia

M ), (35)

where x̂k denotes the state estimation used to update the corresponding MPC controller and
center(·) denotes the center of a set. In this paper, the involved sets are convex, which means
that the set intersection in (35) is also convex. Thus, if Xia,is

ek ∩Xia
M is not a centered set, x̂k

in (35) denotes the center of the smallest box of the intersection Xia,is
ek ∩Xia

M .

Remark 4.2 In the proposed scheme, (35) is used as the state estimation by considering that
the center of an estimated set is the most representative point of the set. Actually, any points
inside the set Xia,is

ek ∩ Xia
M cannot be as state estimations of MPC controller in the proposed

scheme.

Notice that only when the system is at the steady state of the corresponding system status,
it can be guaranteed that the real states are always inside the intersection Xia,is

ek ∩ Xia
M .

Thus, the proposed state estimation (35) is only used during the steady-state operation of the
proposed scheme.

4.3 Stability and Feasibility

Before FD, the scheme uses the RPI sets to describe system behaviors in different actuator
statuses. In order to construct the RPI sets, a precondition that the plant dynamics should
be stable is required (see Assumption 2.1). Thus, as long as the input vector is bounded,
the system can always keep BIBO (bounded-input, bounded-output) stability. Note that the
details about how to design an MPC controller able to stabilize the system are out of the scope
of this paper. The readers are referred to [4, 8].

As aforementioned, the feasibility of MPC open-loop optimization problem is fundamental
not only for the MPC controller but also system constraint satisfaction under the relevant
assumptions. In this paper, the feasibility is considered in two different phases, respectively:

• the feasibility of MPC open-loop optimization problem during the steady-state operation,

• the feasibility of MPC open-loop optimization problem during the transient-state opera-
tion.
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According to [4], if the terminal state-constraint set of MPC controller is an RCI set, as long
as the state estimation is always inside the RCI set, the feasibility can be guaranteed by using
the state estimation. As seen in (9), the MRCI set Xia

M is used as the terminal state-constraint
set, which is mainly used to guarantee the feasibility of MPC open-loop optimization problem.
Thus, during the steady-state operation, based on (35), the feasibility of the corresponding
MPC open-loop optimization problem can always be guaranteed. However, (35) can only
guarantee the feasibility during the steady-state operation.

If the system is during the transition induced by faults, (33) or (34) may not hold, which
will result in that (35) may not accurately or cannot be obtained. This means that (35) cannot
be used as the state estimation during the whole operation including the steady-state and
transient-state phases. Instead, a new state estimation strategy should be further proposed
specially for the transient-state operation.

Definition 4.3 The transient-state phase is defined as the time period from the steady-state
phase of a health/fault status to that of another status (fault/health).

According to Definition 4.3, without loss of generality, the transient-state operation is
mainly divided into two phases. The first phase covers from the fault occurrence to FD while
the second phase goes from FD to FI. Note that the transition after FI is omitted here, but it
will be discussed in the following subsection. Since before FD, it is not known whether or not
a fault has appeared and no measures can be taken to deal with the fault during this period,
the following assumption has to be made.

Assumption 4.4 During the first phase of the transition, the system constraints are satisfied
and the MPC feasibility is preserved.

Thus, in this paper, only the second phase of the transition is considered. It is assumed that
the system is in the ia-th actuator and is-th sensor status and the system becomes faulty at time
instant kd. According to the proposed FI strategy, the input-constraint set of the corresponding
MPC controller should be adjusted from U to Uf,ia,isk at the FD time to implement FI for
k ≥ kd + 1. The procedure of adjusting the input-constraint set of the corresponding MPC
controller set is that, at time instant kd, the input-constraint set is adjusted from U to Uf,ia,iskd+1

and it is tested whether the fault can be isolated at time instant kd + 1 or not. If the fault
can be isolated at time instant kd + 1, it means that the FI task has been completed at this
time instant and the whole system will be reconfigured at time instant kd + 1. Otherwise, the
adjustment continues from Uf,ia,iskd+1 to Uf,ia,iskd+2 at time instant kd + 1 to test if the fault can be
isolated at time instant kd + 2. For k ≥ kd, this procedure will be repeated till the fault is
isolated and the system is reconfigured. Note that, according to the proposed FI strategy, the
FI time will not be longer than the time span of the designed input set sequence.

By adjusting the input-constraint set of the corresponding MPC controller from U to the
input set sequence Uf,ia,isk (k ≥ kd + 1), it can be guaranteed that a status can be isolated in a
finite period. However, except for FI, in this scheme, the feasibility and constraint satisfaction
should also be guaranteed during the FI phase. In this paper, the idea to guarantee the feasi-
bility is to simultaneously adjust the terminal state-constraint set of MPC controller together
with the adjustment of input-constraint sets. Thus, for the ia-th actuator status, corresponding
to the input set sequence Uf,ia,isk (k ≥ kd + 1) and the state-constraint set X, an MRCI set

sequence Xia
M,k (k ≥ kd+1) can be constructed. Considering that the MPC controller is always

based on the ia-th model of the plant before FI/reconfiguration/accommodation, in order to

guarantee the feasibility, the pair (Uf,ia,iskd+1 , Xia
M,k) is used as the input-constraint and terminal

state-constraint sets of the corresponding MPC controller, respectively, for k ≥ kd + 1.
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Moreover, during the FI phase, a point inside each terminal state-constraint set Xia
M,k for

k ≥ kd + 1 is chosen as the state estimation. As a result, corresponding to the designed
input set sequence, a state-estimation sequence with the same time length can be obtained,
which is used to update the MPC controller and guarantee the feasibility during the FI phase.
Additionally, except for feasibility guarantee, the state estimation sequence should also be able
to guarantee constraint satisfaction during the transition. For the sake of clarity in presentation,
the following notation is used to express state estimations:

x̂k = p(Xia
M,k), k ≥ kd + 1, (36)

where p(·) denotes a selected point inside Xia
M,k such that at time instant k, the feasibility can

be guaranteed and the state constraints can be satisfied.
Note that, the constraint satisfaction during the transition should be considered in case

of sensor-status and actuator-status changing. Actually, as long as the MPC controller keeps
feasible during the transition, the generated control actions should always satisfy uk ∈ U . This
means that, if a sensor-status changing occurs, because the state dynamics do not change, the
system states should still stay inside the corresponding RPI set and the state constraints will
not be violated. In this case, the chosen state estimation sequence only needs to guarantee
the feasibility. But, if an actuator-status changing occurs, the state dynamics are changed.
However, under Assumption 4.1, the RPI sets corresponding to all actuator statuses should
be inside the state-constraint set. Thus, the state estimation sequence can be designed to
guarantee the state-constraint satisfaction during the transition.

Remark 4.3 In this paper, the state estimations x̂k used to update the corresponding MPC
controller during the transition are chosen by off-line simulations.

Thus, by using the proposed state estimations during both transient-state and steady-state
operation, respectively, the scheme can be feasible, the system constraints can be satisfied and
the faults can be isolated.

4.4 Fault-tolerant Control

It is assumed that a fault is isolated at time instant ki, the proposed scheme will take measures
to accommodate/reconfigure the system to tolerate the effect of the fault. In this paper, FTC
is implemented by choosing the state-input setpoint pair or/and the MPC controller, and the
dynamical model corresponding to the current actuator/sensor status are used to adjust/switch
the MPC controller to match the current actuator/sensor status and to update the internal
model of the set-valued observer, respectively.

In order to explain the FTC procedure, it is assumed that the system first operates in
the ia-th actuator and is-th sensor status and then the ja-th actuator status has occurred
and been isolated. At the FI time, according to the proposed FTC strategy, the ia-th MPC
controller should be switched to the ja-th MPC controller and the input-state setpoint pair
(x∗ja,is , u

∗
ja,is

) is used for this new MPC controller. Furthermore, the ja-th model of the plant
should be used to update the internal model of the set-valued observer and the state, input
and terminal constraint sets of the ja-th MPC controller should be X, U and Xja

M again,
respectively. However, due to the switching of MPC controller, the states at the FI time may not
be inside the terminal state-constraint set Xja

M . In this case, it cannot be guaranteed that the
current MPC controller is always feasible and the system constraints are always satisfied after
accommodation/reconfiguration. After accommodation/reconfiguration, an approach similar
to(36) is used (i.e., choose a point inside Xja

M to guarantee the feasibility of MPC open-loop
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optimization problem and system constraint satisfaction at each time instant during the period
before the system enters into steady-state operation in the new status)

x̂k = p(Xja
M ), k ≥ ki. (37)

Remark 4.4 Although each MPC in the bank controllers is designed to be stable, the stability
on switching among them is not guaranteed. The design of a bank of switched min-max MPC
controllers preserving stability is a complex topic not yet solved in the literature. There exists
some very recent results addressing this issue in the case of tube-based MPC [26], that can be
useful for addressing the stability during switching.

Remark 4.5 The expression presented in (37) is only used as the state estimation before
entering the steady state of a new system status after accommodation/reconfiguration, where
the time length of its use is given by T .

Thus, after the time period T elapses, it implies that the states have entered into the RPI
set corresponding to a new system status. In this case, the state estimation (35) is used again
and then the system can operate in this new system status. For illustrative purposes, in the
ja-th actuator status, (35) should be rewritten as

x̂k = center(Xja,is
ek ∩Xja

M ). (38)

Note that, in order to summarize the proposed FTMPC scheme, it is assumed that the
system is in the ia-th actuator and is sensor status and Algorithm 1 is made for clarity of
understanding.

5 Case Study

In this paper, the two-tank system presented in [19] is revisited as a case study, which is shown
in Figure 3 (taken from [12]). The control objective is to regulate both tank levels towards
a given setpoint. Figure 3 shows the two manipulated variables u1 and u2 corresponding to
a pump and a valve, respectively. The equilibrium levels of the two tanks are denoted as x̄1
and x̄2 and x1 and x2 are used to denote the incremental water levels in the two tanks relative
to their equilibrium values. With the water levels of the two tanks as states and outputs and
under the condition x̄1 < lv < x̄2, where lv is the height of the valve, the linearized model of
the two-tank system around x̄1 and x̄2 can be written as

xk+1 =

[
−0.25 0
0.25 −0.25

]
xk +

[
1 −0.5
0 0.5

]
Fiauk + ωk, (39a)

yk =Gis

[
1 0
0 1

]
xk + ηk, (39b)

where Fia and Gis are used to model the actuator and sensor statuses (healthy or faulty), re-

spectively. Additionally, it is considered that |ω| ≤
[
0.0001 0.0001

]T
and |η| ≤

[
0.0001 0.0001

]T
.

In this example, the performance loss of the pump and valve and the performance degra-
dation of the two water-level sensors are considered and the healthy and faulty statuses are as
follows:

F0 =

[
1 0
0 1

]
, F1 =

[
0.7 0
0 1

]
, F2 =

[
1 0
0 0.7

]
, G0 =

[
1 0
0 1

]
, G1 =

[
0.8 0
0 1

]
, G2 =

[
1 0
0 0.7

]
,
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Algorithm 1: FTMPC algorithm

Initialization (the ia-th actuator and is-th sensor status, controller, set-valued observer,
etc.);
At time instant k: FD ← FALSE, FI ← FALSE, yk ∈ Ȳ ia,isk , x̂k ← center(Xia,is

ek ∩Xia
M );

(Fault detection)
while FD 6= TRUE do
k ← k + 1;
Obtain yk and Ȳ ia,isk ;

if yk 6∈ Ȳ ia,isk then
FD ← TRUE;

end if
end while
(Fault isolation)
At time instant k = kd:
Adjust U and Xia

M to Uf,ia,iskd+1 and Xia
M,kd+1;

x̂kd+1 ← p(Xia
M,kd+1);

while FI 6=TRUE do
k ← k + 1;
Obtain yk;
Test (31) for actuator/sensor FI;
if a fault is isolated by (31) then

FI ← TRUE;
else

Use Uf,ia,isk and Xia
M,k as MPC constraints for kd + 2 ≤ k ≤ ki;

x̂k ← p(Xia
M,k) for kd + 2 ≤ k ≤ ki;

end if
end while
(Fault-tolerant control)
At time instant ki:
1. Reconfigure/accommodate the closed-loop system as explained in Subsection 4.4;
2. Adjust MPC constraints to U and Xja

M/X
ia
M for the ja-th actuator/js-th sensor status;

3. Select a new state-input setpoint pair as explained in Subsection 4.4;
4. Update the internal model of the set-valued observer as explained in Subsection 4.4;
for ki < k ≤ ki + T do

Use x̂k ← p(Xia
M,k);

end for
Use (37) as the state estimation;
The system will operate in steady state of the new status;
return
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Figure 3: Two-tank system

where F0 and G0 mean that all the actuators (pump, valve) and sensors are healthy, F1 and G1

mean the performance degradation of the pump and the water-level sensor for the first tank,
respectively, and F2 and G2 mean the performance degradation of the valve and the water-level
sensor for the second tank, respectively.

Moreover, it is considered that the system inputs and states are constrained in sets

U =

{
u :

[
0.15

0

]
≤ u ≤

[
0.3
0.2

]}
,

X =

{
x :

[
0
0

]
≤ x ≤

[
1.5
1.5

]}
.

A set-valued observer with the models of the corresponding considered system statuses as
its internal models is designed to monitor the plant, whose parameter is designed as

Λ =

[
1 0
0 1

]
,

where Λ can be arbitrarily chosen as long as the set-valued observer can work well (see [9]).
For obtaining the RPI sets that can contain the estimated state sets, α = 1 in (14) is chosen

by means of a set of simulations. Furthermore, three MPC controllers are designed to control
the plant under the corresponding statuses. The prediction horizon is given as N = 2 and the
other parameters of the MPC controllers are designed as

Q0 =

[
1 0
0 1

]
, R0 =

[
0.1 0
0 0.1

]
, P0 =

[
1 0
0 1

]
,

Q1 =

[
1 0
0 1

]
, R1 =

[
0.1 0
0 0.1

]
, P1 =

[
1 0
0 1

]
,

Q2 =

[
1 0
0 1

]
, R2 =

[
0.1 0
0 0.1

]
, P2 =

[
1 0
0 1

]
.

Without loss of generality, this example only considers the process from healthy to faulty.
Thus, totally four scenarios are considered:

• Scenario 1: from time instant k = 1 to k = 50, the system is healthy, while from time
instant k = 50 to k = 100, a fault in the first actuator occurs,
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Figure 4: Estimated output sets

• Scenario 2: from time instant k = 1 to k = 50, the system is healthy, while from time
instant k = 50 to k = 100, a fault in the second actuator occurs,

• Scenario 3: from time instant k = 1 to k = 50, the system is healthy, while from time
instant k = 50 to k = 100, a fault in the first sensor occurs,

• Scenario 4: from time instant k = 1 to k = 50, the system is healthy, while from time
instant k = 50 to k = 100, a fault in the second sensor occurs.

Furthermore, the set-points for the outputs are defined as y∗0,0 = y∗0,1 = y∗0,2 = y∗1,0 = y∗2,0 =[
0.4 0.6

]T
. Thus, under the considered statuses, the corresponding state and input setpoints

can be computed as

x∗0,0 =

[
0.4
0.6

]
, x∗0,1 =

[
0.5
0.6

]
, x∗0,2 =

[
0.4

0.8571

]
, x∗1,0 =

[
0.4
0.6

]
, x∗2,0 =

[
0.4
0.6

]
,

u∗0,0 =

[
0.15
0.1

]
, u∗0,1 =

[
0.15
0.05

]
, u∗0,2 =

[
0.2143
0.2286

]
, u∗1,0 =

[
0.2146

0.1

]
, u∗2,0 =

[
0.15

0.1429

]
.
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Figure 5: Scenario 1
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Figure 6: Scenario 2
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Figure 7: Scenario 3
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Figure 8: Scenario 4
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Remark 5.1 From the setpoint pairs of states and inputs above, it can be seen that all the
state and input setpoints can satisfy their constraints except u∗0,2. This means that a degree
of performance has to be sacrificed when the fault G2 occurs. However, for the rest of faulty
statuses, the expected performance can be achieved.

Moreover, in order to differentiate the four considered faulty statuses, an input set sequence
should be carefully designed. In this example, according to the proposed method, it is verified
that at most ten steps of input sets are needed to guarantee to separate all estimated output sets
of the corresponding faulty statuses, which are shown in Figure 4 and the input set sequence
is presented as

Uf,0,0kd+1 =

{
u :

[
0.250
0.150

]
≤ u ≤

[
0.3
0.2

]}
, Uf,0,0kd+2 =

{
x :

[
0.255
0.155

]
≤ x ≤

[
0.3
0.2

]}
,

Uf,0,0kd+3 =

{
u :

[
0.260
0.160

]
≤ u ≤

[
0.3
0.2

]}
, Uf,0,0kd+4 =

{
x :

[
0.265
0.165

]
≤ x ≤

[
0.3
0.2

]}
,

Uf,0,0kd+5 =

{
u :

[
0.270
0.170

]
≤ u ≤

[
0.3
0.2

]}
, Uf,0,0kd+6 =

{
x :

[
0.275
0.175

]
≤ x ≤

[
0.3
0.2

]}
,

Uf,0,0kd+7 =

{
u :

[
0.290
0.190

]
≤ u ≤

[
0.3
0.2

]}
, Uf,0,0kd+8 =

{
x :

[
0.290
0.190

]
≤ x ≤

[
0.3
0.2

]}
,

Uf,0,0kd+9 =

{
u :

[
0.295
0.195

]
≤ u ≤

[
0.3
0.2

]}
, Uf,0,0kd+10 =

{
u :

[
0.295
0.195

]
≤ u ≤

[
0.3
0.2

]}
.

With the input set sequence above, all the corresponding estimated output sets from k =
kd + 1 to k = kd + 10 can be plotted. However, due to the space limit, only the figures at time
instants k = kd + 1, k = kd + 4, k = kd + 7 and k = kd + 10 are shown in Figure 4. It can
be seen that the four faulty statuses can be distinguished in at most ten steps after FD with
the designed input sequence. However, this does not mean that ten steps are always needed to
complete the FI task. In particular, for this case study, ten steps only represent the maximal
number of steps guaranteeing isolation of the four statuses, which is verified by the proposed
method by off-line computation. However, in real time, it is possible to isolate faults during a
period shorter than 10 steps.

For Scenario 1, the FDI and FTC results are shown in Figure 5, where a fault in the first
actuator is detected at time instant kd = 53 and then the fault is isolated at time instant
k = 57. Figure 5 shows that the first actuator fault can be well tolerated with the framework
of the proposed FTC scheme.

For Scenario 2, a fault is detected at time instant kd = 53 and isolated at time instant
ki = 63, see Figure 6. It shows that in Scenario 2, the second actuator becomes faulty. From
the first two plots of Figure 6, it can be seen that the second actuator fault can also be well
tolerated and the expected outputs can be well kept after the fault.

For Scenario 3, a fault is detected at time instant kd = 52 and isolated at time instant
ki = 61, see Figure 7. It shows that in Scenario 3, the first sensor becomes faulty. The first
two plots of Figure 6 can show that the first sensor fault can also be well tolerated and the
expected outputs can be well reached after fault tolerance as well.

For Scenario 4, a fault is detected at time instant kd = 52 and isolated at time instant
ki = 54, which are presented in Figure 7. It is shown that, in Scenario 4, the second sensor
becomes faulty. Different from Scenarios 1, 2 and 3, the first two plots of Figure 7 shows
that a degree of performance has to be sacrificed since the expected input setpoint u∗0,2 does
not satisfy the input constraint. However, from the figure, it can be seen that, in spite of
degradation, the output performance is still acceptable.
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According to the results from the given scenarios, it can be concluded that the proposed
scheme can effectively detect, isolate and tolerate faults in actuators and sensors, which can
sufficiently show the effectiveness of this proposed FTMPC approach.

6 Conclusions

This paper has proposed an integrated actuator and sensor active fault-tolerant model predic-
tive control (FTMPC) scheme. In this scheme, a set-valued observer-based method is chosen
as the robust FDI strategy in the proposed scheme. One important advantage of this FTMPC
scheme is that it has integrated the advantages of actuator and sensor fault diagnosis and fault-
tolerant control, robustness, efficient/fact fault isolation (FI) and system constraint-handling
ability into one scheme. Moreover, a novel manner to implement active FI is also proposed,
whose objective is to reduce FI conservatism as much as possible by making full use of the
transient-state sets after faults. So far, input sets for active FI were designed based on the
ultimate sets (i.e., RPI sets), which could obtain FI guarantees but it did not fully use the
transient-state information to reduce FI conservatism. As a result, obtained results were more
conservative when compared with other active FI methods such as computing separating in-
puts on-line. However, on-line design methods of separating inputs are not able to obtain FI
guarantees in advance, showing also higher computational complexity, which were disadvan-
tages over the off-line methods computing inputs (or input sets). The feature of the proposed
active FI method is able to obtain a balance of the on-line and off-line methods, which consists
in a trade-off of computational complexity and FI conservatism, since the proposed active FI
method constructs off-line input set sequences with considering the transition and uses them
on-line for FI. As a future research, a methodology for systematically design the input for active
FI will be developed considering the preliminary results presented in [14]. Moreover, the design
of a bank of min-max MPC controllers to preserve stability will be investigated following the
ideas suggested in [26].

A Appendix

Definition A.1 A set X ⊆ X is an RCI set of the dynamics xk+1 = Axk + Buk + ωk if for
any xk ∈ X , there always exists uk ∈ U for all ωk ∈W such that xk+1 ∈ X holds for all k ≥ 0
[4].

Definition A.2 A set XM ⊆ X is said to be the MRCI set of the dynamics xk+1 = Axk +
Buk + ωk, if it is RCI and contains all RCI sets inside X [4].

Definition A.3 A set X is an RPI set of the dynamics xk+1 = Axk +Eωk if for xk ∈ X and
ωk ∈ W , xk+1 ∈ AX + EW ⊆ λX (0 < λ ≤ 1) always holds, where 0 < λ < 1 implies that X
is also attractive to the state trajectory [7, 11].

Definition A.4 The mRPI set of the dynamics xk+1 = Axk + Eωk is an RPI set contained
in any closed RPI set and the mRPI set is unique and compact [7, 11].

Definition A.5 An r-order zonotope Z is defined as Z = g ⊕ HBr, where g and H are the
center and segment (or generator) matrix of this zonotope, Br is a box composed of r unitary
intervals and the symbol ⊕ denotes the Minkowski sum [1].

Property A.1 Given X1 = g1 ⊕H1Br1 ⊂ Rn and X2 = g2 ⊕H2Br2 ⊂ Rn, their Minkowski
sum is X1 ⊕X2 = {g1 + g2} ⊕ [H1 H2]Br1+r2 .
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Property A.2 Given X = g ⊕HBr ⊂ Rn and a suitable matrix K, KX = Kg ⊕KHBr.

Property A.3 Given a zonotope X = g⊕HBr ⊂ Rn and an integer s (with n < s < r), denote
by Ĥ the matrix resulting from the reordering of the columns of the matrix H in decreasing
Euclidean norm. X ⊆ g ⊕ [ĤT Q]Bs where ĤT is obtained from the first s − n columns of
matrix Ĥ and Q ∈ Rn×n is a diagonal matrix whose elements are Qii =

∑r
j=s−n+1 | Ĥij |, i =

1, . . . , n[1]).

Property A.4 Given a matrix Λ ∈ Rn×m, a zonotope Z = g ⊕ HBr, and an H-polytope
P = {x ∈ Rn : |Cx − d| ≤ [φ1, φ2, ..., φm]T }, with C ∈ Rm×n, d ∈ Rm, φi ∈ R+ (i =
1, 2, ...,m), define a vector ĝ(Λ) = g + Λ(d − Cg) and a matrix Ĥ(Λ) = [(I − ΛC)H ΛΦ],
with a diagonal matrix Φ = diag(φ1, φ2, ..., φm). Then a family of zonotopes (parameterized by
the matrix Λ) that contains the intersection of the zonotope Z and the polytope P is obtained
as Z ∩ P ⊆ Ẑ(Λ) = ĝ ⊕ ĤBr+m [9].
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