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Abstract—Polymer Electrolyte Membrane Fuel Cells (PEMFC)
are efficient devices that convert the chemical energy of the
reactants in electricity. In this type of fuel cells, the performance
of the air supply system is fundamental to improve their
efficiency. An accurate mathematical model representing the air
filling dynamics for a wide range of operating points is then
necessary for control design and analysis. In this paper, a new
Wiener model identification method based on Support Vector
(SV) Regression and orthonormal bases is introduced and used to
estimate a nonlinear dynamical model for the air supply system
of a laboratory PEMFC from experimental data. The method
is experimentally validated using a PEMFC system based on
a ZBT R© 8-cell stack with Nafion 115 R© membrane electrode
assemblies.

I. INTRODUCTION

Polymer Electrolyte Membrane Fuel Cells (PEMFC) are
one of the most advanced fuel cell systems, which allow
an efficient transformation of the chemical energy stored in
hydrogen into electric power. The efficiency of the whole
system is strongly influenced by the air supply subsystem
due to the compressor power consumption. One of the most
important challenges in PEMFC control is then to guarantee
that sufficient amount of oxygen is fed to the cathode with the
objective of optimizing the net output power. Control of the
air supply results critical because the oxygen reacts very fast
as current is drawn, whereas the oxygen supply is limited by
the dynamics of the inlet manifold and the air compressor [1].
Mathematical models can be used to describe the funda-

mental phenomena that take place in the system, to predict its
behavior under different operating conditions, and to design
and optimize the control of the system. Nevertheless, in spite
of having available many PEMFC models in stationary state,
few dynamic models have been developed. Dynamic models
for PEMFC that are suitable for control studies have been
introduced in [2] and [3]. These models capture the transient
behavior of the air compressor, the gasses filling dynamics, and
the effect of the membrane humidity. These variables affect the
cell voltage and, therefore, the efficiency and the output power
of the system. However, the models in [2] and [3] are difficult
to parameterized and too complex to be used in model-based
control strategies. In fact, most of the control schemes for
PEMFC available in the literature (including the ones proposed

in [2] and [3]) are based on linearized models of the fuel cells,
and therefore they are of limited utility.
In recent years, some advanced computational techniques

have been exploited to optimize the parameters of fuel cell
models. In [4] the parameters of the fuel cell model are
determined and optimized through a hybrid genetic algorithm
(HGA) by using stack output-voltage and current, and anode
and cathode pressure as input-output data. In [5] a Particle
Swarm Optimization (PSO)-based identification technique is
applied to estimate the parameters of fuel cells in terms of
the voltage-current characteristics. In [6] an effective informed
adaptive PSO (EIA-PSO) algorithm with better equilibrium
characteristic between global and local search is proposed. An
innovative global Harmony Search algorithm for parameter
estimation of PEMFC models has been introduced in [7],
and compared to other state-of-the-art optimization algorithms,
showing better and more robust results.
In [8], a reduced third-order model for the air supply

subsystem of a PEM fuel cell is presented and experimentally
validated. In [9], a model for simulation and control purposes
is presented, which uses both electrical-circuit components
and functional blocks to reproduce both static and dynamic
behaviors of the oxygen excess ratio. In [10], a simplified
mathematical model for calculating the oxygen excess ratio of
a PEM fuel cell is obtained by using the mutual information
(MI) approach. In [11], a first principles model is derived
and validated against experimental data. The model is then
linearized and used for real-time control of the air flow in
a model predictive control scheme. A different approach is
considered in [12], where a gain-scheduled scheme for the
control of the oxygen stoichiometry in a PEM fuel cell system
is implemented using a piecewise affine Linear Parameter
Varying (LPV) model of the system.
Most of these modeling approaches need a prior knowledge

of the model structure (usually, a first principles model)
whose parameters need to be estimated. By contrast, system
identification techniques allow to build mathematical models
of a dynamic system based on measured data using parametric
models with generic structures. In [13], a dynamic fuel cell
stack model based on system identification is obtained by
using a so-called Uryson-Model. A different identification
approach is considered in [14], where a simple PEM fuel cell



black-box model is proposed, which is capable of reproducing
both the static and dynamic behaviors of the fuel cell. The
model comprises a reduced number of passive components,
and the identification technique is based on measurements of
the transient response of the fuel cell.
The idea in this paper is to derive accurate PEMFC mod-

els from experimental data, suitable for model-based control
approaches. Since PEMFC have a highly nonlinear dynamic
behavior, it is more reasonable to estimate nonlinear models,
which are able to describe the global behavior of the system
over the whole operating range, rather than linear ones that are
only able to approximate the system around a given operating
point.
One of the most frequently studied classes of nonlinear

models are the so-called block oriented models, which consist
of the interconnection of Linear Time Invariant (LTI) sys-
tems and static (memoryless) nonlinearities. Within this class,
Wiener models, which consist of the cascade connection of an
LTI block followed by a static nonlinearity, and Hammerstein
models, where the order of the linear and nonlinear blocks
in the cascade connection is reversed, have been successfully
used to represent dynamical systems in different application
areas such as chemical processes [15], biological processes,
signal processing, and control. Several methods have been
proposed in the literature for the identification of Wiener
models from input-output data. See for instance [15], for
techniques based on over-parametrization and least squares
estimation, and [16], for subspace methods.
In recent years, Support Vector Machines (SVM) regression

techniques [17] have been proposed for the identification
of nonlinear models represented by expansions in terms of
nonlinear mappings of the model inputs. The estimates are
obtained as the solution of a (convex) Quadratic Programming
(QP) problem (see the recent tutorial paper [18]). Several
techniques based on Least Squares SVM have been proposed
for the identification of Hammerstein models [19], and Wiener-
Hammerstein models [20]. In particular, in the area of PEMFC
modeling, a Least Squares SVM estimation technique based
on [15], is presented in [21], and applied to identify a
Hammerstein model of a PEMFC.
In this work, a new method, based on SVM regression

and orthonormal bases, for the identification of Multi-Input
Single-Output (MISO) Wiener models is presented and then
applied to obtain a simplified model for the air supply system
in a PEMFC, from experimental data. The obtained nonlinear
model is thought to be used as internal model to predict the
future process response in a Model Predictive Control (MPC)
strategy, which has many advantages for PEMFC control [22].
The rest of the paper is organized as follows. In Section II,

a parameterized model of the Wiener system is derived using
Rational Orthonormal Bases. The SVM-based identification
method is presented in Section III. The description of the
PEMFC system is presented in Section IV. In Section V,
the proposed identification method is applied to estimate a
Wiener model of the air supply system in a PEMFC from
measured data, and its performance is analyzed by quantifying

its predictive capabilities on validation measured data. Finally,
some concluding remarks are included in Section VI.

II. PROBLEM FORMULATION

In this paper, a Multi-Input Single-Output (MISO) Wiener
model is considered. The model is schematically depicted in
Fig. 1, where u ∈ R

m is the vector input signal, y ∈ R is the
scalar measured output signal, w ∈ R is additive output noise,
v ∈ R

m is the intermediate variable (output of the LTI block),
ỹ is the output of the nonlinear block, N (·) is the nonlinear
mapping representing the static nonlinearity, and G(q−1) is
the (m×m) transfer function matrix of the LTI block.

G(q−1) N (·)
u y

w

+ +v

ỹ

Fig. 1. Wiener Model.

The model can be described as follows:

v(n) = G(q−1)u(n), (1)

ỹ(n) = N (v(n)), (2)

y(n) = ỹ(n) + w(n). (3)

It is assumed that the LTI block is represented using rational
orthonormal bases as follows

G(q−1) =

p∑
�=1

b�B�(q
−1), (4)

where b� ∈ R
m×m are unknown (matrix) parameters, and{

B�(q
−1)

}
∞

�=1
are rational orthonormal bases1 on H2(T), the

space of square integrable functions on the unit circle T, which
are analytic outside the unit disk.
In this paper, the rational Orthonormal Bases with Fixed

Poles (OBFP) studied in [23], are considered. The bases are
defined as

B�(q) =

⎛
⎝

√
1− |ξ�|

2

q − ξ�

⎞
⎠ �−1∏

i=1

(
1− ξiq

q − ξi

)
, � ≥ 2

B1(q) =

√
1− |ξ1|

2

q − ξ1

,

and they allow prior knowledge about an arbitrary number of
system modes to be incorporated in the identification process.
With this parametrization for the LTI block, the Wiener

model can be represented as in Fig. 2, for the case of having
m = 2 inputs.
Defining now

x � [x1

1
, x2

1
, · · · , xm

1
, · · · , x1

p, x
2

p, · · · , x
m
p ]T , (5)

b � [b1,b2, · · · ,bp], (6)

v � [v1, v2, · · · , vm]T , (7)

1The bases are orthonormal in the sense that 〈B�,Bk〉 = δ�k , where δ�k

is the Kronecker delta, and 〈·, ·〉 is the standard inner product in L2(T).
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Fig. 2. Parameterized Wiener Model.

then v = bx, and eq. (2) can be written as

ỹ(n) = N (v(n)) = N (bx(n)) = Ñ (x(n)). (8)

Note the reader that the internal variable x(n) can be
computed by filtering the inputs with the (known) rational
orthonormal bases

{
B�(q

−1)
}p

�=1
used to represent the linear

block in the Wiener model.
The nonlinear block Ñ (x(n)) in Fig. 2 can also be param-

eterized using basis functions in the form

Ñ (x(n)) =

r∑
i=1

aigi(x(n)), (9)

where ai ∈ R, i = 1, 2, · · · , r, are unknown parameters,
and gi(·) : R

mp �→ R, i = 1, 2, · · · , r, are nonlinear basis
functions.
With these parameterizations for the linear and the nonlinear

blocks in the Wiener model, the output equation (3) can be
written as

y(n) = aT g(x(n)) + w(n), (10)

where the following definitions have been done

a � [a1, a2, · · · , ar]
T ,

g(x(n)) � [g1(x(n)), g2(x(n)), · · · , gr(x(n))]T .

In the next section, SVM methods will be used to identify
the static nonlinear mapping Ñ (·) in terms of the nonlinear
basis functions g(x(n)). Note the reader that the nonlinear
functions g(x(n)) need not be explicitly known, but instead
they can be implicitly defined in terms of an associated kernel
function (the so-called kernel trick in the machine learning
literature), [24], [17].

III. SVM-BASED IDENTIFICATION

Equation (10) is the starting point for the formulation of the
estimation problem within the framework of Support Vector
regression [20]. The estimation problem, in the so-called
primal weight space, can be formulated as follows: Given a
data set of measured inputs and outputs {u(n), y(n)}N

n=1
, the

goal is to estimate a model of the form

y(n) = aT g̃(x(n)) + c + ν(n), (11)

where c is a bias term, and {ν(n)} is an i.i.d. random process
with zero mean and finite variance. The unknowns in the
model are a ∈ R

r, c ∈ R, and the order r.
It is well known that the unknowns a and c can be

determined by solving the following constrained optimization
problem [17]

min
a,c,ν

1

2
aT a + γ

N∑
n=1

Lε(ν(n)) (12)

subject to y(n)− aT g̃(x(n))− c− ν(n) = 0,

n = 1, · · · , N

where γ > 0 is a regularization constant providing a tradeoff
between model complexity (penalized by the first term in (12))
and fitting accuracy to the experimental data (penalized by the
second term in (12)), and Lε(ν(n)) is Vapnik’s ε-insensitivity
loss function, defined as

Lε(ν(n)) =

{
|ν(n)| − ε if |ν(n)| ≥ ε

0 otherwise
(13)

The optimization problem (12) can be solved more easily
in its dual formulation using Lagrange multipliers, [25]. Intro-
ducing the positive definite kernels [17]

K(x(n),x(k)) � g̃T (x(n))g̃(x(k)) (14)

associated with the functions g̃(x(n)), the dual problem in
the Lagrange multipliers (αn and α∗n) can be formulated as
follows:

max
αn,α∗

n

−
1

2

N∑
n,k=1

(αn − α∗n)(αk − α∗k)K(x(n),x(k))

−ε

N∑
n=1

(αn + α∗n) +

N∑
n=1

y(n)(αn − α∗n)

subject to
N∑

n=1

(αn − α∗n) = 0

αn, α∗n ∈ [0, γ], n = 1, · · · , N

which is a quadratic programming (QP) problem with box
constraints, [18]. The dual model representation is then given
by

y(n) =

N∑
k=1

(αk − α∗k)K(x(n),x(k)) + c (15)

Although the number of terms in the representation (15)
equals the number of data points N , only a reduced number



of terms, corresponding to a small number of vectors x(k),
will have non vanishing coefficients (αk −α∗k). These vectors
are the so-called support vectors. The number of support
vectors will depend on the chosen values for ε and γ, and
on the chosen kernel function. Commonly used kernels are
Gaussian Radial Basis Functions (RBF), polynomial kernels,
and MultiLayer Perceptrons (MLP).

IV. PEM FUEL CELL SYSTEM

The air supply in PEMFC results critical in the system
performance because the oxygen reacts instantly as current
is drawn, whereas the oxygen supply is limited by the dynam-
ics of the inlet manifold and the air compressor. The time
constants of the electrochemical reactions are in the order
of magnitude of 10−19 s. Thus, for control purposes, these
time constants can be assumed as negligible in comparison
to the ones associated with the other (much slower) processes
involved, such as temperature evolution (102 s), and dynamics
of volume filling (10−1 s).
The air flow excess is reflected by the oxygen excess ratio,

which is the ratio of oxygen supplied to oxygen used in
the cathode. Control of the oxygen excess ratio is usually
approached through the manipulation of the compressor motor
voltage, while the current being drawn can be considered as
a disturbance [3], [26], [27].
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Fig. 3. Simplified schematic diagram of the fuel cell test station.

A simplified schematic diagram of the laboratory PEMFC
used in this paper is depicted in Fig. 3, where the main compo-
nents of the fuel cell test station can be observed. The principal
elements are a fuel cell stack, an air compressor, hydrogen
storage tanks, gases manifolds, humidifiers, line heaters and
valves. The fuel cell stack is a ZBT R© 8-cell stack with Nafion
115 R© membrane electrode assemblies (MEAs), 50 cm2 of
active area and 150 W power. The membrane exchange
humidifiers used to maintain proper humidity conditions inside
the cells are Cellkraft R©. The air compressor consists in a
12 V DC oil-free diaphragm vacuum pump. The line heaters
and stack temperatures are controlled using decentralized PID
controllers, allowing independent gas conditions (humidity and
temperature) inside the stack [28]. Fig. 4 shows a picture of
the fuel cell test station studied in this paper.
The data acquisition and control system is composed by a

Host computer and a RTOS (Real Time Operating System)
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Fig. 4. Fuel cell test station. 1: Fuel cell stack; 2: humidifiers; 3: electronic
load; 4: real-time computer; 5: back-pressure regulators; 6: valves; 7: acquisi-
tion and control cartridges; 8: pressure sensors; 9: cathode outlet proportional
valve; 10: air compressor.

computer running in real time. The RTOS computer commu-
nicates with the input/output (I/O) modules, made by National
Instrument R©, throughout an FPGA (Field Programmable Gate
Array) target and a PCI bus. The two computers are connected
via ethernet. The Host computer also allows monitoring the
evolution of the variables and commanding the system through
a graphical interface developed in LabVIEW R©. An extensive
amount of variables are measured and recorded every 100 ms.

V. IDENTIFICATION RESULTS

The SVM-based identification method introduced in Section
III is used here to estimate a Wiener model for the air
supply system of the PEMFC described in Section IV. The
compressor motor voltage and the current being drawn from
the PEMFC (denoted hereafter as u1 and u2, respectively), are
considered as the inputs to the system, while the oxygen excess
ratio (denoted hereafter as y) is considered as the output.
For the purposes of identification, multilevel random signals

were applied to the inputs u1 and u2, and 2500 samples of the
inputs and the output were collected with a sampling period
Ts = 0.1 s. The input-output data are shown in Fig. 5. The
first 2000 samples were used for the estimation, while the
remaining 500 samples were used for validation purposes.
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Time [s]
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Fig. 5. Input-Output Estimation and Validation Measured Data.

For the identification experiments, the design parameters of
the SVM method were set to ε = 0.05, γ = 2000, and σ2 = 2.
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Fig. 6. Measured Output (black solid line), SVM-based estimated output (grey
solid line), BLA-based estimated output (red dash-dotted line), Wiener model
estimated output (grey dashed line), and nlhw-based estimated output (black
dashed line).

The rational orthonormal bases with fixed poles described in
Section II are used to represent the linear block in the Wiener
model, with poles located at ξ = 0.1 (i.e., Laguerre bases),
and model order equal to 4.
The measured output (black solid line) and the output

predicted by the SVM-based model (red dashed line) are
shown in Fig. 6, where a good agreement between them can
be observed. The Best Fit2 between the measured and the
predicted outputs is 74.8970 %. The number of support vectors
resulted 1545.
The same estimation/validation data are used to estimate

the Best Linear Approximation (BLA) of the system resorting
to the CVA subspace algorithm as implemented in the n4sid
function of the System Identification Toolbox for use with
Matlab. The function computes the best model order, which
resulted n = 3. The output predicted by the BLA model, for
the validation input, is depicted in red dash-dotted line in Fig.
6. The Best Fit between the measured and the predicted output
is 48.4976 %. This result clearly indicates that a linear model
is not capable to accurately represent the PEMFC when large
deviations from the operating point are considered.
For the purposes of comparison, the same estima-

tion/validation data are used to estimate a Wiener model as
in Fig.1, where the 2-Inputs 1-Output, 3rd order, BLA model
is assigned to the estimated linear block, and the nonlinear
SISO block is given a representation of the form:

N (v(n)) =
r∑

i=1

aigi(v(n)), (16)

where now, polynomials are considered for the scalar nonlinear
functions gi(v(n)). The unknown coefficients ai are then
computed by least squares fitting to the estimation data. A 9-th
order odd polynomial was estimated. The output predicted by
this Wiener model is depicted in grey dashed line in Fig. 6.
The Best Fit between the measured and the predicted output
is 54.7914 %. It can be observed that there are improvements

2The Best FIT is defined as BestF IT =
(
1 − ‖Y−Yv‖

‖Yv−ymean‖

)
× 100,

where Y is a vector with the output of the model when excited with the
validation input data, Yv is a vector with the validation output data, and
ymean is the mean value of the validation output.

in the prediction accuracy with respect to the BLA model, but
this model is not able to outperform the prediction accuracy
of the SVM-based estimated model. Also for the purposes of
comparison, the same data are used to estimate a Wiener model
resorting to the nlhw function in the System Identification Tool-
box. The estimated Wiener model consists of a 7th order linear
block in cascade with a 9-th order polynomial nonlinear block.
The output predicted by this Wiener model is depicted in black
dashed line in Fig. 6. The Best Fit between the measured and
the predicted output is 69.6265 %. As it can be observed,
there are improvements in the estimation accuracy but still
this model is not able to outperform the prediction accuracy
of the SVM-based estimated model. Table I, summarizes the
results of the estimation accuracy for the four identification
techniques considered in this section.

TABLE I
ESTIMATION ACCURACY FOR THE FOUR IDENTIFICATION TECHNIQUES.

Model SVM Wiener BLA nlhw
BestFIT [%] 74.8970 54.7914 48.4976 69.6265

To investigate how does the size of the ε-tube affect the esti-
mation accuracy and the resulting model complexity (number
of support vectors), identification experiments with different
values of ε in the range [0.005, 0.3], were carried out. The
results are shown in Fig. 7, where the Best FIT as a function of
ε (top plot), and the number of Support Vectors as a function of
ε (bottom plot) are displayed. As expected, both the estimation
accuracy and the model complexity decrease as ε increases.
For these experiments, the remaining parameters of the SVM-
based identification method were set to γ = 2000 and σ2 = 2
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Fig. 7. Top plot: Best FIT vs. ε. Bottom plot: Number of SV vs. ε.

To evaluate the influence that the location of the poles of
the basis functions has on the prediction accuracy of the esti-
mated model and the resulting model complexity, identification
experiments with different values of the Laguerre parameter
(i.e., the pole location ξ of the Laguerre bases) within the
range [0.05, 0.75] were carried out. The results are shown
in Fig. 8 where the Best FIT as a function of the Laguerre
parameter (top plot) and the number of support vectors as a
function of the Laguerre parameter (bottom plot) are displayed.
As it can be observed from the top plot, the optimal value
of the Laguerre parameter, regarding estimation accuracy, is



0.05, and the accuracy decreases as the Laguerre parameter
increases. On the other hand, as the Laguerre parameter
increases above the optimal value, the resulting number of
support vectors decreases (see bottom plot).
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Fig. 8. Top plot: Best FIT vs. Laguerre parameter ξ . Bottom plot: Number
of SV vs. Laguerre parameter ξ .

VI. CONCLUSIONS

In this paper, a new MISO Wiener model identification
method based on Support Vector Regression and orthonormal
bases is introduced and applied to estimate a simplified model
for the air supply system of a PEMFC from measured data. It
is shown that the estimated model has good predictive capa-
bilities even when large deviations from the PEMFC operating
point are considered. This is not the case for the BLA of the
system, which results with poor predictive capabilities.
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