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1 Introduction

As problems in robotics involve complicated mechanisms and real world interactions, a significant
amount of constraints have to be considered when addressing them. Such constraints may be,
for instance, kinematic (i.e., related to the pose of the robot, the mechanical chains defining
it, the joint limits, or the contacts with the environment), dynamic (taking into account the
forces acting on the robot and the motor effort limits), of collision-avoidance (guaranteeing the
safety of the robot itself and of the objects and human operators in the environment), energetic
(bounding the energy to be consumed by the robot), or of time (limiting the time to complete
a given task). Thus, it comes at no surprise that many tasks in robotics can be modeled as
Constraint Satisfaction Problems (CSPs), which are NP-complete problems [1]. Actually, CSPs
appear in other domains, including operational research or artificial intelligence. In such fields,
the variables in the CSPs are typically discrete modeling problems in transportation, timetable
scheduling, map colouring, sudoku, n-queens, propositional satisfiability, or cryptography. Thus,
due to its prevalence in many fields, discrete CSPs have been widely studied, but in robotics
the variables are typically continuous and, thus, the focus is on numerical CSPs (NCSP) rather
than on discrete ones.

In numerical CSPs, the constraints are typically given in the form of equations. Thus, to
find a solution fulfilling all the constraints, a system of equations has to be solved. The equation
are typically complex and non-linear, e.g. combinations of trigonometric functions, integrals,
differential equations etc., and often the number of variables in the problem is considerable.
Several methods exist to solve arbitrary systems of equations. Algebraic methods [5] reduce
the system to a resultant (e.g., an equation in a single variable), which is solved using standard
methods. Continuations approaches [16] trace the solutions from a system with trivial solutions
to the desired system of equations. An alternative which has been shown to be competitive
with algebraic and continuation approaches is to rely on branch-and-prune [9, 10, 11]. In this
approach, the search space is represented as an hyper-box (i.e., a box in the Cartesian space
defined by the variables in the problem) that is recursively reduced and split until the solution set
is bounded with the desired accuracy (Fig. 1). For large problems, though, it takes a significant
amount of time to explore the search space and to isolate the solution set.

One promising approach to alleviate this issue is to exploit symmetries [13, 14], since they
are present in many CSPs. For instance, in the problem represented in Fig. 1 there is a clear
symmetry about the line x = y. By common definition, symmetry is the property of remaining
invariant under particular modifications. Various examples under different changes are often
observed in distinct branches of science, e.g. reflection symmetry in organisms in biology, rota-
tional symmetry in molecules in chemistry, stability of physical laws describing the motion under
translation of objects. In mathematics, the best known are symmetries of graphs of different
functions with respect to the origin or some line, e.g. coordinate axis. The given definition of
symmetry itself suggests that it is important to identify what the symmetry acts on, i.e. what
is changed, and what is left invariant. To speed up branch-and-prune methods it is possible to
take advantage of symmetries that permute variables and constraints and keep solutions invari-
ant, i.e. always maps solutions to solutions and, consequently, non-solutions to non-solutions.
In the presence of such symmetries, it is only necessary to explore a non-symmetric portion
of the search space. Thus, only a subset of all solutions is found. If needed, other solutions
can be generated as images of already known solutions by symmetries. For example, if we
consider the equation x + y + z = 3, where variables x, y and z have the same domain [0, 3],
it is possible to consider one of the solutions (0, 1, 2) and generate its symmetrical solutions
(0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0) only if needed. In the case of Fig. 1, only the solution
points with y ≥ x need to be isolated since if (x, y) is a solution, (y, x) is also a solution.

However, in order to exploit the symmetries, they must be identified at first. Relying on
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Figure 1: A branch-and-prune procedure progressively isolates the solution set of a system of
equations representing the search space with an hyperbox that is reduced, split, and recursively
processed until the solution set is isolated at the desired accuracy. In this case, the process
converges to the one-dimensional space of valid configurations of a 7R robot.

human insight may lead to finding only a small part of symmetries, as not all of them are
obvious or the problem might be too large to comprehend. There has been some attempts to
identify symmetries automatically in CSPs with discrete domains. Surprisingly, the literature
on symmetry detection on numerical CSPs is scarce. The few existing methods are based on
symbolic manipulation and they are prone to missing symmetries. One of the reasons why both
automatic symbolic methods and human insight may fail is the complicated expressions that
may appear in the equations defining the numerical CSPs constraints. For example, symmetries
might be not identified if one of the symmetric constraints is given as an integral of a function
that is hard to integrate symbolically. Consequently, we want to design a method that detects
all constraint symmetries due to permutations of variables and constraints in numerical CSPs.
In this work we present a study of the detection of such symmetries and an implementation of
methods that identifies them.

The rest of this paper goes as follows. In section 2 we define principal structures regarding
CSPs and symmetries. Previous work on symmetry detection in NCSPs is discussed in section
3. Further, in section 4 we present three methods to identify variable constraint symmetries,
and review results of our testing in section 5. Conclusions are proposed in section 6. Lastly, we
supply appendix on Group Theory.

2 Problem Formalization

First of all, we give basic definitions.

Definition 1. CSP is a tuple < X,D,C >, where

• X = {x1, x2, . . . , xn} is a set of variables,

• D = {d1, d2, . . . , dn} is a set of domains where di specifies possible values for variable
xi ∈ X,
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• C = {c1, c2, . . . , cm} is a set of constraints. Each constraint can be regarded as a predicate
of function on a subset of X.

We call CSP discrete if all domains di ∈ D are discrete. CSP is numerical (NCSP) if its
variables are continuous, i.e. domains di ∈ D are subsets of R, usually compact intervals. For
NCSPs we will denote D as a box x defined as the Cartesian product of the variable domains.

A set {〈xi1 , vi1〉, 〈xi2 , vi2〉, . . . , 〈xir , vir〉}, where r < n, {xi1 , xi2 , . . . , xir} ⊆ X, and vij ∈
dij ∈ D, is called a partial assignment. By convention, the variables not included in the partial
assignment can take any value in its corresponding domain. If r = n, the assignment is complete.
Thus, solution to CSP (both discrete and numerical) is a complete assignment such that all
the constraints ci ∈ C are satisfied. We will denote the solution to NCSP as a point x =
(x1, x2, . . . , xn) := (v1, v2, . . . , vn) ∈ x.

Constraints might be expressed by allowed partial assignments, i.e. extensionally (for discrete
CSP), or by a relation between variables, i.e. intensionally. For instance, consider a CSP
with variables X = {x1, x2, x3} and domains d1 = {1, 2}, d2 = {2, 3}, d3 = {1, 4}. The set
C = {{〈x1, 2〉, 〈x2, 2〉}, {〈x2, 2〉, 〈x3, 4〉}, {〈x2, 3〉, 〈x3, 4〉}} is the extensional representation of
some constraints, while the corresponding intensional representation is C = {x1 = x2, x2 < x3}.

A solution symmetry of CSP and NCSP is a bijection s which maps solutions to solutions, i.e.
if x is a solution, then s(x) is also a solution. The symmetries that also preserve constraints, i.e.
maps C to itself, are identified as constraint symmetries. Moreover, part of solution symmetries
can be classified either as variable or value symmetries if they act only on the problem variables
or values, respectively. In the case of discrete CSP, s usually acts on variables and values
preserving the set of literals, i.e. variable-value pairs denoted as (xi = vi), where xi ∈ X and
vi ∈ di.

In this work we are interested in variable symmetries which are also constraint symmetries.
We assume that every ci ∈ C is of the form fi(x) = 0 and we have a constraint set F =
{f1(x), f2(x), . . . , fm(x)}. The set of variable constraint symmetries is defined as G := {p ∈
Σn|Fp = F} ⊆ Sigman, where p =

(
1 2 ··· n
1p 2p ··· np

)
, Fp = {f1(xp), f2(xp), . . . , fm(xp)}, xp =

(x1p , x2p , . . . , xnp). Thus, we consider permutation p ∈ Σn as a symmetry if and only if there
exist a permutation σ ∈ Σm such that fi(x

p) = fiσ(x) ∀i ∈ Nm, where Nm = {1, 2, . . . ,m}. For
simpler notation fi(x

p) is further denoted as fip.

We show that the set G under composition of permutations forms a subgroup of Σn.

Proof. Let p1, p2 ∈ G. Then F (p1p2) = (Fp1)p2 = Fp2 = F , so p1p2 ∈ G.

Let p ∈ G. Then Fp−1 = (Fp)p−1 = F (pp−1) = F , so p−1 ∈ G.

Thus, G ≤ Σn.

3 Related Work

There are some studies on the automatic symmetry detection in discrete CSPs. However, due
to some significant differences and drawbacks most of the ideas cannot be directly applied to
NCSPs.

The first point where transition from discrete CSPs to NCSPs fails is the definition of sym-
metry. Cohen et al. [3] gives a survey of different symmetry definitions in earlier literature and
proposes instead using only two: solution symmetry and constraint symmetry. Solution symme-
try is defined generaly as a bijection on the set of literals which preserves the set of solutions to
the CSP. Microstructure and its complement are introduced to define constraint symmetry. In
a binary case microstructure is a graph with set of literals as the set of vertices and the edges of
this graph join every pair of vertices which is allowed by a constraint. In case some constraint
includes more than two variables, microstructure is defined as a hypergraph with the same set
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of vertices and hyperedges connecting combinations of vertices allowed by constraints. Since it
is often easier to work with disallowed assignments, authors introduce the complement of mi-
crostructure. It is defined as either graph or hypergraph with a set of vertices that is equal to the
one of microstructure. The edges or hyperedges of the complement of microstructure connect
the vertices which are either disallowed by some constraint or are different assignments for the
same variable. Authors define constraint symmetry as an automorphism of a microstructure of
the CSP or its complement. Recall that graph automorphism is a permutation of the set of its
vertices which preserves its edges, i.e. property of remaining invariant under particular changes
holds.

Puget [12] also uses literals in his work on symmetry detection. He defines a variable sym-
metry as a bijection s that acts on the literal and only permutes the variable, i.e. (xi = v)s =
(xis = v). By analogy, value symmetry is a bijection s that acts on the literal and only permutes
the value, i.e. (xi = v)s = (x = vs). The symmetry detection method presented in [12] is based
on constructing coloured graphs, whose automorphisms correspond to CSP symmetries. In this
work, a coloured graph is defined as a triple (V,E, c), where V is a set of vertices, E is the set
of edges, and c is a mapping from V to integers that represent colours. Then its automorphism
also preserves colour of each vertex. This way it is possible to classify vertices and restrict the
graph symmetries. Puget suggests constructing the graph as follows. First, a vertex for every
variable is created. These vertices are grouped by assigning them the same colour. Also, there
is a vertex for every constraint. Constraints are classified to a few classes according to their
type. Every class of constraints is assigned a unique colour. The rest of the graph construction
differs if the constraints are represented extensionally or intensionally.

If the constraints are represented extensionally there is a vertex for every possible value
vi ∈ di for every variable xi ∈ X. Colouring these vertices differ if we want to detect variable
symmetries (this way all value vertices have the same colour) or value symmetries (every class
of values for different variable has a different colour). Also, assignment vertices are created for
each allowed assignment by every constraint and have the same colour. Edges connect pairs of
variables and its possible values, constraints and its allowed assignments, and every assignment
and values in that assignment. This way we can detect variable, value and some variable-value
symmetries. However, this approach and the one by Cohen [3] rely on literal and it is obvious
that literals are of no use for NCSPs as it is impossible to create a literal for every possible value
of the variable in continuous domain.

If the constraints are represented intensionally, though, the method by Puget can be applied
to NCSPs. In this case, the graph has less vertices than in the extensional case. There are only
the variable and constraints vertices as defined above and sometimes a dummy vertex may be
required to break a symmetry that only occurs in graph but not in the constraints of CSP. Edges
link pairs of variable and constraint vertices. Any automorphism of this graph corresponds to
a variable symmetry of CSP. Thus, this method is based on syntactical representation of the
problem. As Puget himself states, because of this reason it is prone to missing part of the
symmetries and the proposed workaround only copes with a part of this drawback. This is
due to the fact that the same constraint can be expressed in different ways and the syntactical
equivalence has to be captured encoding the corresponding identities. Not only there can be
a list of these rules that is too long to be encoded, but some of the rules may be not even
known. For example, a symmetric function f(x, y) = sin2(x)sin2(y) with a simple shift sin(y) =

cos(y − π

2
) or Pythagorean identity sin2(y) = 1 − cos2(y) can be transformed to functions

f(x, y) = sin2(x)cos2(y − π

2
) and f(x, y) = sin2(x)(1 − cos2(y)) that do not look symmetric

from the first sight. Taking into account the number of possible identities, it seems highly
possible that symmetries would fail to be identified. Also, in Puget’s approach, some variable
symmetries due to associativity of the operator may be lost. In order to avoid such failure it
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is suggested to expand the expressions and use n-ary version of the operator. However, such
approach is impractical in robotics as the expressions are typically too complex.

In conclusion, all the methods to detect variable constraint symmetries in NCSP in the
literature use graphs in which the operands are connected directly to the corresponding operator
node. The symmetries detected by these graph methods are the automorphisms of the graph,
which are simply the transformations of the graph that permute the order of the operators.
Thus, the composition of permutation of symmetric operands (and, possibly, associativity when
preprocessing the expression) are the only symmetries detected by these approaches.

4 Symmetry Detection with Symmetric Relation Test

In the following sections, three methods to detect variable constraint symmetries for NCSPs not
based on the graph of the structure of the symbolic expression of the constraints are presented.
They essentially rely on the test of particular symmetric relations between the constraints. Thus,
they are able to find a much larger number of symmetry types than graph based approaches
discussed in Section 3. The required tests on the symmetric relations can be done symbolically
or numerically. Here, we focus only on numerical tests.

The methods are presented with increasing sophistication and decreasing expected compu-
tational cost.

4.1 Global Relation Testing

We consider a numerical brute force approach in order to find the set of variable constraint
symmetries, G. First, a random point x is generated and fi(x) is computed for every con-
straint fi ∈ F . Then, we compute values of all the constraints at a point xp for some p ∈
Σn. Further, it is checked if the list (f1(x), f2(x), . . . , fm(x)) is a permutation of the list
(f1(x

p), f2(x
p), . . . , fm(xp)), up to a numerical threshold. If so, permutation p passes the test.

Otherwise, p is dismissed. Note that assuming two function evaluations are the same up to a
given numerical threshold may result in false positives, but it works well in practice.

When implementing the method, the presence of numerical errors has to be considered. To
say that the list (f1(x), f2(x), . . . , fm(x)) is a permutation of the list (f1(x

p), f2(x
p), . . . , fm(xp)),

vectors of computed values at the points x and xp are sorted and it is required that absolute
difference between corresponding values is smaller than computational error provided by the user.
Introduction of such threshold may result in false positives or false negatives. For some functions
false negatives might be dismissed with more sophisticated approaches [15, 6]. Moreover, in our
implementation the domains for generating x are limited as large input may cause numerical
errors which also result in false positives or false negatives.

We perform such check for every permutation p ∈ Σn. That is, n! tests and for each test we
sort a vector of m elements (cost (m · log(m))) and we compare the vector (cost m). Thus, the
overall computational cost of this method is n!(m · log(m) +m).

4.2 Dividing Problem into Subproblems

Let’s consider a function space Y := {h|h : Rn → R}. We define an equivalence relation on Y :
f ∼ h ⇔ ∃p ∈ Σn : fp = h. This relation divides Y into equivalence classes CL(f) := {h ∈
Y | ∃p ∈ Σn : fp = h}. Notice that the set of constraints F is a subset of Y . Consequently,
the same relation divides F into equivalence subclasses cl(f) := {h ∈ F | ∃p ∈ Σn : fp = h} ⊆
CL(f). With the previous notation cl(fi) = {h ∈ F |∃p ∈ Σn ∧ σ ∈ Σm : fip = fiσ = h}.
As equivalence classes either are disjoint or coincide, if g ∈ G then the permutation σ ∈ Σm,
such that fig = fiσ ∀i ∈ Nm, only permutes elements of the set F within their equivalence
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subclasses. Thus, we can divide the problem of finding constraint symmetries into subproblems
and search for p ∈ Σn such that cl(fi)p = cl(fi) for every cl(fi). Every subproblem preserves
structure of the original problem, but possibly has less constraints within its scope. In this way,
the computational cost of finding the symmetries is reduced.

If there are k different equivalence subclasses, we can organize the constraints in a way
that the first k constraints are not pairwise equivalent. This way we have different equivalence

subclasses cl(f1), cl(f2), . . . , cl(fk), k ≤ m, and cl(fi) = {fi1 , fi2 , . . . , fili}, m =
k∑
i=1

li. Then

for every subproblem we are searching for a set of permutations which act on every element of
the equivalence subclass and map it to an element of the same subclass, i.e. set Gi = {p ∈
Σn|∃σ ∈ Σli : fijp = fijσ ∀j ∈ Nli} is a solution to the subproblem. Gi under composition of
permutations is also a subgroup of Σn.

Constraint symmetries of the original problem lie in intersection of solutions to the subprob-

lems, i.e. G =
k⋂
i=1

Gi.

Proof. p ∈ G ⇔ Fp = F ⇔ ∃σ ∈ Σm : fjp = fjσ ∀j ∈ Nm ⇔ p ∈ Gi ∀i ∈ Nk ⇔ p ∈
k⋂
i=1

Gi.

Next, we describe methods to determine the classes and a method to exploit this information
when determining the symmetries of a given problem.

4.2.1 Obtaining Class Information

When dividing constraints into equivalence subclasses we exploit a necessary, but not sufficient
condition. Consider a point c = (c1, c1, . . . , c1), c ∈ Rn. Notice that cp = c with every p ∈ Σn.
If there exists σ ∈ Σm such that fi(x

p) = fiσ(x), p ∈ Σn, then fi(c
p) = fi(c) = fiσ(c). Based on

this observation we can divide constraints into possibly smaller sets of functions which have the
same value at point c, up to a numerical threshold. These sets are either equivalence subclasses
or unions of equivalence subclasses.

The latter case is demonstrated in following example. Functions f1(x1, x2) = x21 − x22 + 1
and f2(x1, x2) = x31 − x32 + 1 belong to different subclasses. However, f1(c) = c21 − c21 + 1 = 1
and f2(c) = c31 − c31 + 1 = 1. Thus, f1 and f2 are assigned to the same equivalence subclass.

In the further implementation of symmetry detection methods it is important to be aware of
possibility of having merged equivalence subclasses. Nevertheless, these unions may be separated
by applying stronger filter afterwards.

4.2.2 Global Relation Testing with Class Information

We consider a brute force numerical method to find G when constrains are divided into equiva-
lence subclasses cl(fi) or unions of these sets as well. Assume we have only equivalence subclasses
and no unions of them. First, we search for constraint symmetries of the first set cl(f1), i.e.
G1, as described in section 4.1. Then we proceed with search for G1 ∩ G2. This is achieved
by performing the test in 4.1 with constraints in cl(f2) only for permutations p ∈ G1. With
this test permutations which are in G1, but not in G2 are dismissed. In the same manner sets

(G1 ∩ G2) ∩ G3, ..., (G1 ∩ G2 ∩ · · · ∩ Gk−1) ∩ Gk =
k⋂
i=1

Gi = G are found. The number of

comparisons depends on the number of equivalence subclasses, and cardinalities of every cl(fi)
and Gi.
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In case we also have unions of equivalence subclasses
⋃
j
cl(fj), the same symmetries are

found. Notice, cl(fi) ∩ cl(fj) = ∅ for any pair of different i, j. Consider p ∈
⋂
j
Gj . It is true if

and only if p ∈ Gj ∀j. Thus, cl(fj)p = cl(fj) ∀j. Therefore, (
⋃
j
cl(fj))p =

⋃
j

(cl(fj)p) =
⋃
j
cl(fj)

and p passes the test. If p /∈
⋂
j
Gj , then p /∈ Gj for some j and cl(fj)p 6= cl(fj) for the same j.

Hence, (
⋃
j
cl(fj))p =

⋃
j

(cl(fj)p) 6=
⋃
j
cl(fj) and p is dismissed.

The cost of the method is n!(l · log(l) + l) + m · log(m) + m, where l = max
i∈{1,2,...,k}

{li} and

where m · log(m) +m is the cost of determining the class information. In the worst case if there
is only one equivalence subclass, l = m and the cost is (n! + 1)(m · log(m) +m). Since in many
cases l < m, this method typically reduces the computational cost of finding the symmetries.

4.3 Local Relation Testing Approach

Methods described in 4.1 and 4.2.2 might be impractical for larger problems due to the n! part of
the computational cost. In order to overcome this obstacle we also present a numerical method
based on testing relations between pairs of functions. These relations provide all the information
needed to find variable constraint symmetries. We exploit the fact that constraints in different
equivalence subclasses are not related. Moreover, it is not necessary to test relations for every
pair of constraints in the subclass: it is enough to find relations between one representative and
every other constraint in the subclass. With these relations constraints can be represented as sets
of permutations. Hence, problem might be encoded in a sparse graph which automorphisms are
variable constraint symmetries G. Notice, that this graph-based method bypasses the obstacles
arising in the graph-based methods relying on the syntactical representation of the constraints
discussed in section 3.

Structures of group theory are introduced in pursuit of the relations1. Assume the problem
is divided into k subproblems. For each subproblem we find a stabilizer of fi, i ∈ Nk, i.e.
Afi := {p ∈ Σn|fip = fi}. Stabilizer stores all the symmetric relations between representative of
a subclass fi with itself. It is known that Afi ≤ Σn. We also find a subset of right cosets of Afi
in Σn: Afiti1, Afiti2, . . . , Afitili , where tij ∈ Σn : fitij = fij , fij ∈ cl(fi). We choose ti1 = id,
hence Afi = Afiti1. Every other coset Afitij contains permutations that map fi to fij , i.e.
symmetric relations between functions fi and fij . We construct subset of right transversal of Afi
in Σn: RT (Afi) := {ti1, ti2, . . . , tili} and sets of cosets of Afi : Ui := {Afitij |tij ∈ RT (Afi), fitij =
fij}. Every Ui represents relations between constraints in equivalence subclass cl(fi).

4.3.1 Generating Relations with Vector Representation

When searching for the stabilizers and their cosets, we introduce another necessary, but not
sufficient condition. Due to it, significant number of permutations might be dismissed instantly
when searching for relations p ∈ Σn : fp = g and the whole Σn may not have to be checked. To
test the permutations, we define a function which captures the constraint value when only one
variable is changed and allows to find possible relations between distinct variables: F(f, j)(x) :=
f(x1, x2, . . . , xj + δ, . . . , xn). Then F(f, j)(xp) = f(x1p , x2p , . . . , xjp + δ, . . . , xnp), p ∈ Σn.

The relation test is performed for functions f and g which are assigned to the same equiva-
lence subclass as described in Section 4.2.1. Thus, we say that there exists a permutation p ∈ Σn

such that fp = g. Therefore F(f, j)(xp) = F(g, jp)(x) for every j ∈ Nn. Again, consider the
point c = (c1, c1, . . . , c1), c ∈ Rn. Then not only f(c) = g(c) but also F(f, j)(cp) = F(f, j)(c) =
F(g, jp)(c) ∀j ∈ Nn. To exploit this condition we define vectors whose elements represent values

1The basic elements of group theory are described in Appendix A.
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of constraints when one variable is changed: u := (F(f, 1)(c),F(f, 2)(c), . . . ,F(f, n)(c)) and
v := (F(g, 1)(c),F(g, 2)(c), . . . ,F(g, n)(c)). Thus, for every p ∈ Σn such that fp = g it is true
that u = vp (u and v coincide when searching for auto-symmetries).

Assume there does not exist such p ∈ Σn that the condition u = vp is met. Thus, there is
also no p ∈ Σn : fp = g and functions f and g are in different equivalence subclasses. This way
we easily know that testing with c as described in 4.2.1 failed and some equivalence subclasses
were merged.

To construct permutations p satisfying the condition u = vp, we define sets Ai := {j|uj =
α, where α is the i-th different value of u in ascending order} and Ci := {j|vj = α, where α
is the i-th different value of v in ascending order}. Assume that u is a permutation of v. Then

the required condition u = vp is met with permutations p ∈ Σn : Aip = Ci ∀i. We find one
such permutation t ∈ Σn that Ait = Ci ∀i. We also define sets of auto-symmetries of the
sets Ai: Pi := {p ∈ Σn|Aip = Ai}. Thus, condition u = vp is satisfied with permutations
P = {p ∈ Σn|Aip = Ci ∀i} = (

⋃
i
Pi)t.

As condition u = vp is necessary, but not sufficient, we have to filter permutations in P
with a stronger filter. We adapt the relation test in 4.1 for two functions and only test the
permutations in P.

4.3.2 Representing Constraints with Permutations

It is important to notice that for every subproblem both sets Ui and cl(fi) have the same amount
of elements and if all the constraints are different, so are the cosets.

Proof. Assume two cosets are the same: Afitia = Afitib. Then tiat
−1
ib ∈ Afi ⇒ fi = fi(tiat

−1
ib ) =

(fitia)t
−1
ib = fiat

−1
ib ⇒ fitib = fia ⇒ fib = fia .

Thus, there exist a bijection between the equivalence subclass cl(fi) and set of cosets Ui: fij ↔
Afitij . That is, every constraint fij is represented by a set of permutations. Recall that when
solving the subproblem we are searching for permutations of variables which keep the subclass
of constraints cl(fi) invariant, i.e. map the constraints from cl(fi) to constraints in the same
subclass cl(fi). When constraints are represented with sets of permutations, the solution to
the subproblem is a set of permutations which map sets representing constraints to the sets
representing constraints in the same equivalence subclass: Gi = {t ∈ Σn|Uit = Ui}.

Proof. Let p ∈ Σn. Then

Uip = Ui ⇔ ∃σ ∈ Σli : (Afitij)p = Afi(tijp) = Afitijσ ∀j ∈ Nli
⇔ tijp ∈ Afitijσ ∀j ∈ Nli
⇔ tijpt

−1
ijσ ∈ Afi ∀j ∈ Nli

⇔ fi(tijpt
−1
ijσ) = fi ∀j ∈ Nli

⇔ fi(tijp) = fitijσ ∀j ∈ Nli
⇔ (fitij)p = fitijσ ∀j ∈ Nli
⇔ ∃σ ∈ Σli : fijp = fijσ ∀j ∈ Nli
⇔ p ∈ Gi.

Thus, we are searching for permutations which preserve the cosets in every Ui, i.e. G =
k⋂
i=1

Gi = {p ∈ Σn|Uip = Ui ∀i ∈ Nk}.
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Notice that in case some equivalence subclass cl(fi) has only one element, that is fi itself,
and its stabilizer Afi contains only id element, i.e. Ui = {Afi} = {{id}}, the solution to the
original problem is G = {id}.

4.3.3 Coloured Graph Construction

We approach the search for G as follows. If |Afi | = qi and there are li elements in cl(fi), then

all the constraints in F are represented by q =
k∑
i=1

qili permutations. The multiset of all these

permutations: P = {p111 , p112 , . . . , p11q1 , p
12
1 , . . . , p

1l1
q1 , p

21
1 , . . . , p

klk
qk−1, p

klk
qk
}, where pija ∈ Afitij , a ∈

Nqi .
We construct a q × n matrix D with each row representing a permutation from P :

D =


p111
p112
...

pklkqk

 =


1p

11
1 2p

11
1 · · · np

11
1

1p
11
2 2p

11
2 · · · np

11
2

...
...

. . .
...

1p
klk
qk 2p

klk
qk · · · np

klk
qk


When it is irrelevant to which coset the permutation belongs, we will denote pabr as pd, where

d is the number of the row representing pabr in the matrix D.
Then we construct a coloured graph G = (W,E, c), where W is a set of nodes, E - set of

edges and c is a function which assigns colour to every node w ∈ W . G is constructed in a way
that automorphisms of G correspond to constraint symmetries of our problem. To this intent a
node is created for:

• every possible value of the matrix D elements, i.e. every element of the set Nn (value
nodes zi, i ∈ Nn),

• every element of the matrix D (matrix nodes mij , i ∈ Nq, j ∈ Nn. When it is convenient
we will make more explicit the subproblem, coset, number of permutation within the coset
and component of the permutation that corresponds to mij by denoting it pabr (j)),

• every coset Afitij of the problem, element of Uj for every j ∈ {1, 2, . . . , k} (coset nodes
bij , i ∈ Nk, j ∈ Nlk).

Is convenient to group the nodes with the same color. We denote as Z the set of value nodes,
M the set of matrix nodes, and Bi the set of coset nodes corresponding to the cosets involved
in a subproblem Ui, {bij}j∈Nli .

For further graph construction, we create edges for every pair of:

• matrix nodes mij and mij+1, i ∈ Nq, j ∈ Nn−1,

• matrix node mij and value node zjpi ,

• matrix node mi1 = padr (1) and coset node bad, for any r ∈ Nqa .

Finally, a different and unique colour is assigned to each of the subsets Z, M and Bi’s. That
is:

• matrix nodes have the same unique colour,

• value nodes have the same unique colour,

• coset nodes in Bi have the same unique colour.
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z1 z2 z3 zn

m11 m12 m13 m1n

m21 m22 m23 m2n

m31 m32 m33 m3n

mq1 mq2 mq3 mqn

b11

b12

bklk

Figure 2: Coloured graph scheme.

We define a function φ : M ∪ Z → Nn, where φ(zi) = i and, for mij = prla (j), φ(mij) =

φ(prla (j)) = jpi = jp
rl
a . Note that matrix node mij is linked by en edge to value node zr if and

only if φ(mij) = φ(zr).

Moreover, the following proposition shows that there is a bijection between the automor-
phisms of G and the group of constraint symmetries of the problem and, therefore, G can be
obtained by computing the automorphisms of G.

Proposition 1. There exist a bijection from the group of automorphisms of the graph G to the
group of symmetries of the problem given by:

Aut(G) −→ G (1)

π −→ t(π) =
( 1 2 ··· n
φ(π(z1)) φ(π(z2)) ··· φ(π(zn))

)
(2)

Proof. t(π) is a permutation of Nn
Let π be an arbitrary automorphism of G. In the following, we abbreviate the function t(π)

for this fixed π as t. First, we check that t is indeed a permutation. All nodes in Z have the same
colour, different of the colours of other nodes. Therefore, the restriction of the automorphism π
to Z is a permutation of Z. Thus, the mapping t(i) = t(φ(zi)) = φ(π(zi)) is a permutation of
Nn.

t ∈ G
First, note that for pl = pijr ,

pl = (φ(ml1), φ(ml2), . . . , φ(mln)) (3)

and

pijr = (φ(pijr (1)), φ(pijr (2)), . . . , φ(φ(pijr (n))) (4)

Then, we analize what pit means in the terms of the graph automorphism:

pit =
( 1 2 ··· n
φ(mi1) φ(mi2) ··· φ(min)

)( 1 2 ··· n
φ(π(z1)) φ(π(z2)) ··· φ(π(zn))

)
=

=
( 1 2 ··· n
φ(π(zφ(mi1))) φ(π(zφ(mi2))) ··· φ(π(zφ(min)))

)
. (5)
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We know that (mij , zr) ∈ E ⇔ φ(mij) = φ(zr) = r ⇔ φ(mij) = φ(zφ(mij)). As π is an
automorphism, if (mij , zr) ∈ E ⇒ (π(mij), π(zr)) ∈ E. Then φ(π(mij)) = φ(π(zr)) and also
φ(π(mij)) = φ(π(zφ(mij))).

Thus, we can conclude:

pit =
( 1 2 ··· n
φ(π(mi1)) φ(π(mi2)) ··· φ(π(min))

)
. (6)

The same result using the extended notation for pi and for the matrix nodes mij is

pijr t =
( 1 2 ··· n
φ(π(pijr (1))) φ(π(pijr (2))) ··· φ(π(pijr (n))))

)
. (7)

Now we show that application of π to M produces a permutation of the rows of M .
Remember that nodes M can only map to M nodes and, therefore, π(M) is a permutation

of M . Hence, to prove that π(M) is a permutation of the rows of M we have only to show that
π maps a row of M to a row of M . Take the first node of an arbitrary row i of M , matrix node
mi1 = prlz (1) is linked to coset node brl. π(brl) must be a coset node belonging to Br. Then
assume π(mi1) = mja and a 6= 1. Thus, (brl,mi1) ∈ E, but (π(brl), π(mi1)) /∈ E as a coset node
can only be linked to the first element of a row of M . Then π is not an automorphism and there
is a contradiction.

Thus, π(mi1) = mj1. Assume π(mi2) 6= mj2. Then (mi1,mi2) ∈ E, but (π(mi1), π(mi2)) /∈
E. Contradiction.

It is obvious that the same holds for allmir, r ∈ {3, 4, . . . , n}. Thus, (π(mi1), π(mi2), . . . , π(min)) =
(mj1,mj2, . . . ,mjn) and π permutes the rows of M . Or, in other words,

∃ γ ∈ Σq, (π(mi1), π(mi2), . . . , π(min)) = (miγ1,miγ2, . . . ,miγn).

To belong to G, t must permute the cosets of every Ui, i.e., Uit = Ui ∀i ∈ Nk must hold or,
what is the same, ∃ σi ∈ Σli , Afitij t = Afitijσi t ∀ i ∈ Nk, j ∈ Nli . Still in more detail, t must
satisfy

∃ σi, {pija }a∈Nqi t = {pijσia }a∈Nqi ∀ i ∈ Nk, j ∈ Nli ⇔ ∃ σi, νij , p
ij
a t = pij

σi

aνij
∀ a, i, j.

To this aim, first remember that because of color restrictions, π is a permutation of each Bi.
This implies that for every i, a permutation σi ∈ Σli exists such that π(bij) = bijσi∀ j. Then,

note that for the first node of an arbitrary row of M , pijz (1) = pij
σi

d (1) for some d because, if not,

(pijz (1), bij) ∈ E and (π(pijz (1)), π(bij)) /∈ E, contradicting π is an automorphism. Therefore, the

set π({pija (1)}a∈Nqi ) must be included in {pij
σi

a (1)}a∈Nqi . But, since π is a bijection, a restriction
of π to any subset must be also a bijection and its image under π must have the same cardinality.
Thus π is a bijection of {pija (1)}a∈Nqi on {pij

σi

a (1)}a∈Nqi , which means that for the given i, j there

exists νij such that π(pija (1)) = pij
σi

aνij
(1) ∀ a, i, j. Moreover, since π maps rows of M to rows of

M , what applies to the first element of each row applies also to the complete rows:

∃ σi, νij , (π(pija (1)), . . . , π(pija (n))) = (pij
σi

aνij
(1), . . . , pij

σi

aνij
(n)) ∀ a, i, j. (8)

Applying φ to all the elements of the tuple,

∃ σi, νij , (φ(π(pija (1))) . . . , φ(π(pija (n)))) = (φ(pij
σi

aνij
(1)), . . . , φ(pij

σi

aνij
(n))) ∀ a, i, j,

and using (7),

∃ σi, νij , (φ(π(pija (1))), . . . , φ(π(pija (n)))) = (φ(pij
σi

aνij
(1)), . . . , φ(pij

σi

aνij
(n))) ∀ a, i, j.
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Finally, applying (7) to the left hand of the equality and (4) to right hand we get the desired
result, ∃ σi, νij , pija t = pij

σi

aνij
∀ a, i, j.

φ is a bijective function
It is clear that t(π) is a unique permutation and, therefore, φ is a function. Let’s prove that

φ is injective, i.e., that π1 6= π2 ⇒ t(π1) 6= t(π2).
If π1 6= π2 then either a value node or a matrix or a coset node is mapped differently by π1

and π2. If a value node is mapped differently, then obviously( 1 2 ··· n
φ(π1(z1)) φ(π1(z2)) ··· φ(π1(zn))

)
6=
( 1 2 ··· n
φ(π2(z1)) φ(π2(z2)) ··· φ(π2(zn))

)
,

and the proof is finished. Now assume that a matrix node pija (r) is not mapped to the
same node by π1 and π2. Remember that a row is always mapped to a row as a block by an
automorphism (i.e., a node and its image are always in the same row). This means that the
complete row pija (1), . . . , pija (n) is mapped to different rows by π1 and π2:

(π1(p
ij
a (1)), . . . , π1(p

ij
a (n)) = (pivl (1), . . . , pivl (n))

and
(π2(p

ij
a (1)), . . . , π2(p

ij
a (n)) = (pibd (1), . . . , pibd (n))

for some v, l, a, d, where v 6= b or l 6= d.
If, contradicting the hypothesis, t(π1) = t(π2) then on the one hand we have

(φ(π1(p
ij
a (1))), . . . , φ(π1(p

ij
a (n))) = pija t(π1) = pija t(π2) = (φ(π2(p

ij
a (1))), . . . , φ(π2(p

ij
a (n))).

We know that pivl 6= pibd because in the case v 6= b then pivl and pibd are two permutations
pertaining to two different cosets of Afi , which have not intersection. If v = b, then l 6= d for
sure, which implies that pivl and pibd are two different permutations of the same coset. Thus, on
the other hand we have

(φ(π1(p
ij
a (1))), . . . , φ(π1(p

ij
a (n))) = (φ(pivl (1)), . . . , φ(pivl (n))) = pivl 6=

6= pibd = (φ(pibd (1)), . . . , φ(pibd (n))) = (φ(π2(p
ij
a (1))), . . . , φ(π2(p

ij
a (n))).

This is a contradiction which. Thus, if a matrix node is mapped differently by π1 and π2
then t(π1) 6= t(π2).

Let’s analyse now the case of π1 and π2 mapping a coset node bij differently. As each coset
node is linked to a different set of M nodes, the set of M nodes linked to bij must be mapped
by π1 and π2 to different sets of M nodes. Therefore, this case implies the previous one (a M
node mapped differently by π1 and π2) for which, also in this case if π1 6= π2 ⇒ t(π1) 6= t(π2)
and we can conclude that φ is injective.

Finally we show that φ is also surjective by proving

s ∈ G⇒ ∃ π ∈ Aut(G), t(π) = s

The automorphism π satisfying the condition is: π(zi) = zis , π(pija (r)) = pij
σi

aνij
(r) and π(bij) =

bijσ1 , where σi and νij are the permutations satisfying (8). First, we check that t(π) = s. As
φ(zis) = is, we have

t(π) =
( 1 2 ··· n
φ(π(z1)) φ(π(z2)) ··· φ(π(zn))

)
=
(

1 2 ··· n
1s 2s ··· ns

)
= s

Second, we prove that π ∈ Aut(G). By the definition of π, it is evident that color constraints
hold (a node of Z is mapped to a node of Z, a node of M to a node of M and a node of Bi is
mapped to a node of Bi). It only remains to verify that edge constraints are also satisfied, case
by case:
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• Edges (pija (r), (pija (r+1)), r ∈ Nn−1. We have (π(pija (r)), π(pija (r+1))) = (pij
σi

aνij
(r), pij

σi

aνij
(r+

1)) ∈ E.

• Edges (pija (r), z
rp
ij
a

) ∀ i, j, a, r. Remember that, sin a M node is linked to a Z node if and

only if they are mapped to the same value by φ, this set is also (pija (r), z
φ(pija (r))

) ∀ i, j, a, r.

On the one hand we have

pija s = pij
σi

aνij
= (φ(pij

σi

aνij
(1), . . . , φ(pij

σi

aνij
(n))) = (φ(π(pija (1))), . . . , φ(π(pija (n))).

On the other hand, pija s = pija t(π), which is the same expression as (5):

pija s = (φ(π(z
φ(pija (1))

)), . . . , φ(π(z
φ(pija (n))

))).

Thus, φ(π(pija (r))) = φ(π(z
φ(pija (r))

)), which implies that (π(pija (r)), π(z
φ(pija (r)

)) ∈ E.

• Edges (pija (1), bij). We have (π(pija (1)), π(bij)) = (bijσ1 , p
ijσi

aνij
(r)) which is also an edge

because the subscripts of the coset node coincide with the superscripts of the matrix node.



14 Detection of Permutation Symmetries in NCSP

5 Results

Methods Global Relation Testing (Global) presented in section 4.1, Global Relation Testing
with Class Information (G classes) in 4.2.2 and Local Relation Testing (Local) in 4.3 were
implemented with Matlab. In the Local approach Nauty [7] is used to search for automorphisms
of G. In case stopping condition (there is an equivalence class with only one element and only
id as its stabilizer) is met, Local returns answer immediately and does not call Nauty. Note,
Local returns generators of the symmetry group while Global and G classes find full groups.

Methods were tested with 40 problems chosen from [2, 4, 8]. We selected 20 problems
with trivial symmetry group (non-symmetric problems) and 20 problems with symmetry group
containing not only id element (symmetric problems). Number of variables ranges from 2 to
10 and there is one problem with 20 variables. In the latter case, the problem could only be
tested with Local approach as generating full permutation group of order 20! for Global and
G classes requires excessive amount of memory and time. When testing the relations, domains
for random point x are restricted to intersection of the suggested domain and [−10, 10]n. The
chosen allowed computational error is 10−6. Given set of parameters produces no false negatives
or false positives for tested problems.

Tables with characteristics of the problems and time needed to find constraint symmetry
groups with the methods are provided. The time for Local approach includes only time required
for principal operations, i.e. searching for relations, and graph automorphisms (Nauty cpu
time). In the tables n denotes number of variables in the problem, |G| - size of the group of
constraint symmetries, Subclasses - number of equivalence subclasses, and Relations is a sum
of permutations representing constraints, i.e. number q defined in section 4.3.3. Note that
|G|=1 for non-symmetric problems, thus it is excluded. Solving times are rounded to the fourth
decimal place. There are separate tables for symmetric (Table 1) and non-symmetric (Table
2) problems. We also present scatter plots concerning solving time and number of variables
(Fig. 3), and solving time and number of relations (Fig. 4). In the plots, Graph approach is
represented with principal operations time as well, since other parts of the approach heavily on
the implementation.

We also provide tables (Table 3 for symmetric and Table 4 for non-symmetric problems)
with running time of different parts of Local implementation. Column Relations represents time
needed to find stabilizers and cosets, Input - generating input file for Nauty, Automorphisms -
Nauty cpu time, Output - parsing Nauty’s output file, and all these times are summed in Total.

Notice that for symmetric problems with small number of variables (n < 6) and relations
Local approach takes longer than Global or Global (classes). Although Global might show the
best time when tackling these small problems, it is the worst method for all the others. Problems
with larger number of variables and medium (from 120 to 75600) number of relations are fastest
solved with Local. However, G classes shows the best time for Cyclic, which is problem with
largest number of variables and relations. Due to the size of the graph Nauty itself takes more
time to find its automorphisms than full execution of Global and G classes.

For non-symmetric cases with small number of variables (n < 4) Global and G classes
perform better than Local approach as well. Again, Global is competitive only for small problems
(n < 4). For all the rest problems, Local approach performs best of all the methods. Time differs
significantly for the largest problems. Notice that due to stopping condition even problems with
large number of variables or relations (More20 and Eco9 respectively) are solved in less than 0.1
seconds.
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Problem n |G| Subclasses Relations Time
Global G classes Local

Boon 6 4 3 120 0.141 3 0.081 2 0.013 5
Bronstein 3 2 3 10 0.001 1 0.001 8 0.009 2
Brown 8 5040 2 75600 7.002 1 6.557 1 2.943 0
Caprasse 4 2 2 4 0.003 3 0.003 4 0.015 8
Cbms2 3 3 1 3 0.001 1 0.001 5 0.010 8
Comp.soft1 2 2 1 2 0.000 5 0.001 0 0.010 2
Conform1 3 6 1 6 0.001 1 0.001 4 0.010 0
Cyclic 9 18 9 1088748 71.242 0 55.599 0 93.849 5
Cyclo 3 6 1 6 0.001 2 0.001 7 0.010 7
Extended
Freudenstein

8 24 2 5760 6.982 2 4.297 3 0.177 1

Extended
Powel

8 384 2 11520 6.972 6 4.346 9 0.516 5

Extended
Wood

8 2 4 3360 6.968 1 2.986 6 0.069 7

Lorentz 4 4 1 4 0.003 3 0.003 8 0.012 7
Noon 5 120 1 120 0.015 8 0.016 3 0.017 6
Rabmo 9 4 9 1052 70.711 9 18.728 1 0.046 0
Reimer 5 12 5 60 0.016 4 0.010 7 0.015 6
Sparse 5 120 1 120 0.016 0 0.020 7 0.028 2
Virasoro 8 8 3 128 7.136 5 6.997 1 0.463 8
Vrahatis 9 9 1 45360 68.748 2 67.759 2 2.217 2
Wright 5 120 1 120 0.015 9 0.016 5 0.013 6

Table 1: Symmetric problems. 1 - full name: comp.soft-sys.math.maple-14706.

Problem n Subclasses Relations Time
Global G classes Local

Apollonius 8 8 21660 8.338 2 3.144 2 0.432 8
Branin System 3 3 4 0.001 2 0.001 9 0.023 9a

Chemistry 5 5 8 0.016 0 0.008 2 0.006 3a

Combustion
Chemistry

4 3 6 0.003 3 0.003 4 0.006 9a

Countercurrent
Reactors

8 6 576 6.957 4 2.062 3 0.084 4

Eco9 8 8 40513 7.037 9 2.239 7 0.020 1a

Eiger-Sikorski-
Stenger

8 2 6480 6.984 1 2.368 6 0.123 2

Eqlin 3 3 4 0.002 0 0.005 7 0.070 5a

Geneig 6 6 125 0.103 2 0.045 8 0.014 5a

Himmelblau 2 2 2 0.000 6 0.000 8 0.002 7a

I5 10 10 7200 795.204 9 187.960 0 5.586 7
Katsura6 7 7 1452 0.800 9 0.260 2 0.011 3a

Kin1 Modified 6 6 30 0.106 6 0.040 6 0.019 2
Kincox 4 3 12 0.003 3 0.002 9 0.008 0
Kinema 9 8 3804 69.562 7 28.197 6 0.086 9
More20 20 20 20 ∗ ∗ 0.080 1a

Nauheim 8 8 1812 6.946 8 2.096 5 0.037 4
Robot Kine-
matics

8 5 6540 6.925 9 2.055 8 0.092 1

Stenger 2 2 2 0.000 6 0.000 8 0.001 9a

Yamamura1 6 6 720 0.104 7 0.046 9 0.019 8

Table 2: Non-symmetric problems. a - stopping condition was met, ∗ - could not be solved.
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Problem Relations Input Automorphisms Output Total

Boon 0.009 0 0.020 7 0.004 5 0.507 0 0.541 2
Bronstein 0.004 6 0.001 9 0.004 7 0.004 6 0.015 7
Brown 0.379 2 15.422 8 2.563 7 1 394.696 9 1 413.062 7
Caprasse 0.011 0 0.002 0 0.004 8 0.003 7 0.021 6
Cbms2 0.006 2 0.001 6 0.004 7 0.004 8 0.017 3
Comp.soft1 0.005 4 0.001 2 0.004 8 0.002 0 0.013 4
Conform1 0.005 2 0.001 9 0.004 8 0.006 2 0.018 1
Cyclic 19.226 2 253.383 3 74.623 3 * *
Cyclo 0.005 7 0.002 2 0.005 0 0.007 8 0.020 7
Extended
Freudenstein

0.065 7 1.285 6 0.111 3 13.107 8 14.570 4

Extended
Powel

0.102 7 2.638 3 0.413 8 92.415 1 95.569 8

Extended
Wood

0.032 8 0.733 5 0.036 9 14.866 9 15.670 0

Lorentz 0.007 7 0.001 8 0.005 0 0.006 1 0.020 6
Noon 0.011 7 0.017 7 0.005 9 0.225 2 0.260 5
Rabmo 0.029 0 0.257 3 0.017 0 4.141 6 4.444 9
Reimer 0.010 5 0.009 4 0.005 0 0.087 0 0.112 0
Sparse 0.022 6 0.022 4 0.005 7 0.237 3 0.287 9
Virasoro 0.457 5 0.034 6 0.006 3 0.413 1 0.911 5
Vrahatis 0.236 6 11.398 7 1.980 6 129.923 0 143.538 9
Wright 0.007 8 0.021 7 0.005 8 0.413 8 0.449 1

Table 3: Time needed for different parts of Local implementation for symmetric problems. 1 -
full name: comp.soft-sys.math.maple-14706, ∗ - file could not be parsed.

Problem Relations Input Automorphisms Output Total

Apollonius 0.114 3 4.355 7 0.318 4 0.000 9 4.789 3
Branin System 0.023 9 0.000 8 0 0 0.024 7
Chemistry 0.006 3 0.000 4 0 0 0.006 7
Combustion
Chemistry

0.006 9 0.000 3 0 0 0.007 1

Countercurrent
Reactors

0.031 4 0.127 0 0.053 0 0.003 0 0.214 4

Eco9 0.020 1 0.000 4 0 0 0.020 5
Eiger-Sikorski-
Stenger

0.051 8 1.310 2 0.071 4 0.000 8 1.434 2

Eqlin 0.070 5 0.013 3 0 0 0.083 8
Geneig 0.014 5 0.000 4 0 0 0.014 9
Himmelblau 0.002 7 0.000 2 0 0 0.002 9
I5 4.877 5 6.085 9 0.709 2 0.000 9 11.673 5
Katsura6 0.011 3 0.000 4 0 0 0.011 7
Kin1 Modified 0.015 5 0.005 7 0.003 7 0.001 3 0.026 3
Kincox 0.004 6 0.002 1 0.003 4 0.000 9 0.011 0
Kinema 0.033 1 0.857 3 0.053 8 0.001 0 0.945 2
More20 0.080 1 0.002 7 0 0 0.082 9
Nauheim 0.020 8 0.367 1 0.016 6 0.001 0 0.405 4
Robot Kine-
matics

0.043 0 1.327 2 0.049 2 0.001 1 1.420 4

Stenger 0.001 9 0.000 2 0 0 0.002 1
Yamamura1 0.012 8 0.111 0 0.007 0 0.000 9 0.131 7

Table 4: Time needed for different parts of Local implementation for non-symmetric problems.
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Figure 3: Results for symmetric and non-symmetric cases in respect to number of variables in
the problem.
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Figure 4: Results for symmetric and non-symmetric cases in respect to number of relations in
the problem.
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6 Conclusions

Presented algorithms can be used to detect variable constraint symmetries or conclude that the
symmetry group is trivial in variety of problems. We have shown that for larger ones which
possibly could benefit more when breaking the symmetries Local approach performs better than
other methods given the number of relations is relatively low.

Total time of Local approach could be improved in the future if input for Nauty is gener-
ated faster with the same representation of constraints. Moreover, since the number of auto-
symmetries for large problems can grow large, it might be also useful to search for a less extensive
representation.
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Appendix A: Group Theory

Definition 1. A set G together with an operation ∗ : G×G→ G is called a group if it satisfies
the following conditions:

1. (Associativity) ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c);

2. (Existence of identity element) ∃e ∈ G : a ∗ e = e ∗ a = a ∀a ∈ G;

3. (Existence of inverse element) ∀a ∈ G ∃a−1 ∈ G : a ∗ a−1 = a−1 ∗ a = e.

We abbreviate the notation of the group (G, ∗) to G.

Definition 2. A non-empty set H ⊆ G together with operation ∗ : G × G → G is called a
subgroup of a group G if ∀h1, h2 ∈ H : h1 ∗ h−12 ∈ H.

We use notation H ≤ G to denote that H is a subgroup of G.

Definition 3. A set X ⊆ G is called a generating set of a group (G, ∗) if every element of G
can be expressed as a finite product of elements from X and their inverses under operation ∗,
i.e. ∀g ∈ G : g = xα1

1 ∗ x
α2
2 ∗ · · · ∗ xαnn , where xi ∈ X, αi ∈ {−1, 1}, n <∞.

We will denote G = 〈X〉. Elements xi ∈ X are called generators of the group G.

Definition 4. A set Hg = {h ∗ g | h ∈ H}, where g ∈ G, is called a right coset of a subgroup
H in a group G.

Definition 5. A set T is called a right transversal of a subgroup H, H ≤ G, if T contains
exactly one element from each right coset of H in G.

Definition 6. A group is called a symmetric group on a set Ω if it is a group of all permutations
of Ω under composition of mappings. We will denote this group as Sym(Ω). In case Ω =
{1, 2, . . . , n}, we will denote the Sym(Ω) as Σn.

Definition 7. Action of a group G on a set Ω is a homomorphism φ : G→ Sym(Ω).

Definition 8. A set Gβ = {g ∈ G | βg = β}, where G is a group acting on Ω, β ∈ Ω, is called
stabilizer of element β in group G.
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