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Gabriela Cembrano ∗,∗∗∗
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Abstract: A distributed set-membership approach is proposed for the state estimation of large-
scale systems. The uncertain system states are bounded in a sequence of the distributed set-
membership estimators considering unknown-but-bounded system disturbances and measure-
ment noise. In the framework of the set-membership approach, the measurement consistency
test is implemented by finding parameterized intersection zonotopes. The size of the intersection
zonotope is minimized by solving an optimization problem including a sequence of linear/bilinear
matrix inequalities based on the weighted 2-norm criterion of the generator matrix. Meanwhile,
for the distributed set-membership estimators, the partial projection method is considered to
correct the estimation of the neighbor state. On the other hand, an on-line method is also
provided. Finally, the proposed distributed set-membership approach is verified in a case study
based on a urban drainage network.
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1. INTRODUCTION

The set-membership state estimation for uncertain dy-
namic systems as an iterative algorithm has been well-
discussed in the last decades (Jaulin et al., 2001; Puig
et al., 2001; Alamo et al., 2005; Puig, 2010), which can
be also applied into fault diagnosis and fault-tolerant con-
trol (see, e.g. Fagarasan et al. (2004), Puig (2010), Olaru
et al. (2010), Blesa et al. (2011), Blesa et al. (2016)).
The set-membership approach can deal with unknown-
but-bounded system state disturbances and measurement
noise. The uncertain system states are bounded in a set
with a specific geometrical characteristic, for instance a
zonotope (considering its simple computational complex-
ity). And then, with the measurement outputs, the system
consistency test can be implemented by computing the
intersection between the predicted uncertain state set (by
using the direct image with the state model) and the
measurement state set (by using the inverse image with
the output function). The intersection set is usually over-
approximated by also using a zonotope (Alamo et al., 2005;
Le et al., 2013b).
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The intersection zonotope can be formulated with respect
to a correction matrix (Alamo et al., 2005). This correction
matrix can be found by a number of different methods.
Among them, the optimal correction matrix can be com-
puted by solving an optimization problem to minimize the
P -radius of the zonotope (Le et al., 2013a). In fact, the P -
radius of a zonotope represents a corresponding ellipsoid.
In terms of large-scale systems, the challenge is to solve
an optimization problem in a centralized way with a large
amount of decision variables.

The main limitation of the zonotopic set-membership state
estimation is the dimension of the system model. For a
high dimensional model, it is difficult to provide an outer
approximation of the intersection zonotope. Naturally,
the distributed set-membership approach is quite suitable
especially for large-scale systems. From the literature,
only a few papers have discussed the distributed set-
membership approach (see, e.g. Garćıa et al. (2016)).
In principle, a distributed set-membership estimator is
designed by using a sequence of sets for bounding the
uncertain system states in different subsystems.

This paper proposes a distributed set-membership ap-
proach for state estimation in large-scale systems. The
system consistency test with the available measurements
is implemented by finding a sequence of the intersection



zonotopes between the prediction zonotopes and the mea-
surement zonotopes to be used by a set of distributed
estimators. The sizes of these intersection zonotopes are
minimized by using an optimization-based method with a
series of linear matrix inequalities (LMIs). The weighted
2-norm of the generator matrix of the zonotope is used
as the size criterion. Besides, the bounds of the neighbor
states from two sub-systems can be corrected applying
the projection method. On the other hand, an on-line
method is also discussed for updating the correction ma-
trices method. Finally, an urban drainage network is used
for testing the effectivenesses of the proposed approaches.

The remainder of this paper is organized as follows:
Problem statement is formulated in Section 2. The dis-
tributed set-membership approach based on the optimiza-
tion method with partial projections is proposed in Sec-
tion 3. Results of applying the proposed distributed set-
membership approach into the case study of an urban
drainage network are shown in Section 4. Finally, conclu-
sion is drawn in Section 5.

2. PROBLEM STATEMENT

Consider a discrete-time linear system as shown in Fig. 1
partitioned into subsystems:∑

i

: xik+1 = Aix
i
k +Biu

i
k + ωik, (1a)

∑

i

: yik = Cix
i
k + υik, (1b)

where i = 1, 2, . . . , s denotes the index of the subsystem.
xi ∈ Rnxi denotes the vector of system states. ui ∈ Rnui

denotes the vector of inputs. yik ∈ Rmi represents the
vector of measurement outputs. Ai, Bi and Ci are linear
system matrices of appropriate dimensions. ωik ∈ Rnwi and
υik ∈ Rmi denote the unknown system disturbance vector
and measurement noise vector, respectively.

In general, some system states might be shared into
different subsystems based on the chosen partitioning
approach in the considered distributed model. Hence, there
may have overlapped parts of some subsystems.
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Fig. 1. Distributed linear system model

A zonotope Z ∈ Rn (m ≥ n) is defined by an unitary
hypercube Bm = [−1,+1]

m
affine projection with the

center p ∈ Rn and a generator matrix H ∈ Rn×m as
Z = p ⊕ HBm. For simplicity, the zonotope Z is simply
denoted as〈p,H〉 with the following form:

Z = 〈p,H〉 =
{
p+Hz, z ∈ Bm, ‖z‖∞ ≤ 1

}
. (2)

The operators ⊕ and � denote the Minkowski sum and
the linear image, respectively. Meanwhile, the following
properties hold:

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉, (3a)

L� 〈p,H〉 = 〈Lp,LH〉. (3b)

The interval hull rs(H) ∈ Rn×n of the zonotope 〈p,H〉
can be regarded as an aligned minimum box. Therefore,
the following condition holds:

〈p,H〉 ⊂ 〈p, rs(H)〉, (4)

where rs(H) is a diagonal matrix such that rs(H)i,i =∑m
j=1 |Hi,j | for i = 1, 2, . . . , n.

Assumption 1. ωik and υik for i = 1, 2, . . . , s are unknown
but bounded in centered zonotopic sets:

ωik ∈ Wi = 〈0, Fi〉, υik ∈ Vi = 〈0,Σi〉, (5)

where Σi = diag(σi) and σi is a vector of independent
bounds for each measurement noise.

Assumption 2. The initial state vector xi0 is also bounded
into a known zonotopic set:

xi0 ∈ X
i
0 = 〈p0, H0〉. (6)

As the set-membership approach firstly proposed in
(Alamo et al., 2005), before introducing the distributed
approach steps, some set definitions are recalled as follows:

Definition 1. Consider the model of the i-th subsys-
tem (1) and the corresponding state xik−1 ∈ X̂ ik−1 =

〈p̂ik−1, Ĥi
k−1〉, i = 1, 2, . . . , s at time instant k − 1, the

uncertain state set X ik for i = 1, 2, . . . , s at time instant
k can be propagated as X ik = AX ik−1 ⊕Wi.

Definition 2. Consider the model of the i-th subsystem
(1) and the measurement outputs yik, the corresponding
consistent state set X iyk for i = 1, 2, . . . , s at time instant

k is defined as X iyk =
{
xik ∈ Rnxi | yik ∈ Cixik ⊕ Vi

}
.

Definition 3. Consider the model of the i-th subsystem
(1), the corresponding uncertain state set X ik and consis-
tent state set X iyk for i = 1, 2, . . . , s in Definition 1 and

2, the distributed exact uncertain state set x̂ik ∈ X̂ ik for
i = 1, 2, . . . , s at time instant k can be computed by means
of the intersection between X ik and X iyk as X̂ ik = X ik ∩X iyk .

Considering that the set-membership approach is an it-
erative method, the outer approximations of the exact
uncertain state set X̂ ik for i = 1, 2, . . . , s at time instant
k are built by means of the zonotopes as well.

Proposition 1. Given the estimated state x̂ik−1 bounded in

the zonotope 〈p̂ik−1, Ĥi
k−1〉 and the consistent state set X iyk

expressed in a polytopic representation as

X iyk =
{
xik ∈ Rnxi |

∣∣Cixik − yik
∣∣ ≤ σi

}
, (7)

Then, there exists a correction matrix Λi ∈ Rnxi
×nmi at

time instant k such that the corresponding exact uncertain
states x̂ik can be enclosed in the following guaranteed
intersection zonotope:

x̂ik ∈ X̂
i
k(Λi) = 〈p̂ik(Λi), Ĥ

i
k(Λi)〉, (8)

with

p̂ik(Λi) = (I − ΛiCi)Aip̂
i
k−1 + (I − ΛiCi)Biu

i
k + Λiy

i
k, (9a)

Ĥi
k(Λi) =

[
(I − ΛiCi)Ai ↓q,W Ĥi

k−1 (I − ΛiCi)Fi ΛiΣi

]
, (9b)

where ↓q,W Ĥi
k−1 is the reduced-order generator matrix at

the time instant k − 1 with a suitable weight W .



Proof. According to the distributed model in (1) and

x̂ik−1 ∈ 〈p̂ik−1, Ĥi
k−1〉, there exists a vector s1 ∈ Br such

that the uncertain state xik can be propagated by

xik = Ap̂ik−1 +Biu
i
k +
[
AĤi

k−1 Fi
]
s1. (10)

There exists a correction matrix Λi ∈ Rnxi
×nmi such that

by adding and subtracting a term ΛiCi
[
AĤi

k−1 Fi
]
s1 to

(10), we have

xik = Ap̂ik−1 +Biu
i
k + ΛiCi

[
AĤi

k−1 Fi
]
s1

+
[
(I − ΛiCi)AĤ

i
k−1 (I − ΛiCi)Fi

]
s1. (11)

From (7), there exists a vector s2 ∈ Bnmi such that

Cix
i
k − yik = Σis2. (12)

Replacing xik in (12) by (10), we obtain

Ci
[
AĤi

k−1 Fi
]
s1 = yik + Σis2 − Ci

(
Ap̂ik−1 +Biu

i
k

)
. (13)

With (11) and (13), the exact uncertain state x̂ik can be
found by

x̂ik = Ap̂ik−1 +Biu
i
k + Λiy

i
k + ΛiΣis2

−ΛiC
(
Ap̂ik−1 +Biu

i
k

)

+
[
(I − ΛiCi)AĤ

i
k−1 (I − ΛiCi)Fi

]
s1

= (I − ΛiCi)Aip̂
i
k−1 + (I − ΛiCi)Biu

i
k + Λiy

i
k

+
[
(I − ΛiCi)AiĤ

i
k−1 (I − ΛiCi)Fi ΛiΣi

] [s1
s2

]
. (14)

In order to reduce the complexity of the generator matrix
of the zonotope, the reduction operator ↓q,W (Combastel,
2005) is used. Hence, the proof is completed. 2

According to (Le et al., 2013a,b), the size of the inter-
section zonotope can be measured by using the weighted
2-norm, which is defined as the P -radius of the intersection
zonotope as

`ik , max
xi
k
∈X̂ i

k

∥∥xik − p̂ik(Λi)
∥∥2
Pi

= max
z∈Br

∥∥∥Ĥi
k(Λi)z

∥∥∥
2

Pi

, (15)

where z ∈ Br denotes the unitary vector of the appropriate
dimension depending on Ĥi

k(Λi). Pi denotes the weighting
matrix of appropriate dimension for the i-th subsystem.
Note that this weighting matrix Pi can be also used as W
in (9b).

In fact, the P -radius can be regarded as a corresponding
ellipsoid in terms of the zonotope. The design of the
correction matrix Λi is required to guarantee that the P -
radius is not increasing, that is to find a minimum ellipsoid
enclosing the intersection zonotope. Hence, we obtain the
correction matrix Λi in such a way that there is a scalar
βi such that the following condition can be satisfied:

`ik ≤ βi`
i
k−1 + max

s1∈B
nwi

‖Fis1‖22 + max
s2∈B

nvi

‖Σis2‖22 , (16)

where s1 and s2 denote the unitary vectors of appropriate
dimensions depending on the system disturbances and the
measurement noise.

To determine the unknown variables including Λi, βi and
Pi for the i-th intersection zonotope, the objectives of the

minimization of the zonotope together with satisfying the
condition (16) are required.

The main steps of the distributed set-membership state
estimation are written as follows:

• Find a sequence of the intersection zonotopes X̂ ik with
i = 1, 2, . . . , s for all the subsystem with the suitable
correction matrices Λi.

• For the neighbor states (shared states in two subsys-

tems) xi,jk , the projection zonotopes used for state es-
timation can be found by using a projection method.
Therefore, the neighbor state estimation can be im-
plemented by computing another intersection be-
tween two projection zonotopes:

xi,j
k
∈ X̂ i,j

k

(
Λ̄i,j
)
∩ X̂ j,i

k

(
Λ̄j,i
)
, j = 1, . . . , Ni, (17)

where X̂ i,jk
(
Λ̄i,j

)
denotes the zonotope for the i-th

intersection zonotope projected to the neighbor states
shared with the j-th subsystem at time instant k.
Ni denotes the number of neighborhoods for the i-th
subsystem.

Remark 1. The projection zonotopes can be found by
adding the new objective with the projection constraints
and satisfying the condition (16). The P -radius is mini-
mized mainly regarding to the projected state.

3. DISTRIBUTED SET-MEMBERSHIP STATE
ESTIMATION

The distributed set-membership approach is used for find-
ing a sequence of the intersection zonotopes. The system
states xik in the i-th subsystem can be estimated by using

the interval hull of the intersection zonotope X̂ ik at time

instant k. Besides, the neighbor states xi,jk shared with
the j-th subsystem can be updated by computing the
intersection between the projection zonotopes X̂ i,jk and

X̂ j,ik at time instant k.

The correction matrix Λi and the weighting matrix Pi with
i = 1, 2, . . . , s can be firstly computed off-line by solving
a BMI/LMI optimization problem. By selecting different
objective, the projection zonotopes can be also found off-
line. On the other hand, a new on-line method for updating
the correction matrix Λi is proposed in this paper.

3.1 Computing the Intersection Zonotopes

According to (Le et al., 2013a), the convergence condition
(16) of the P -radius of the zonotope can be reformulated
as a LMI. Therefore, there exists a vector Yi ∈ Rnxi , a
matrix Pi and a scalar βi such that the following LMI can
be satisfied:


βiPi 0 0 ATi Pi −A

T
i C

T
i Y

T
i

∗ FTi Fi 0 FTi Pi − F
T
i C

T
i Y

T
i

∗ ∗ ΣTi Σi ΣiY
T
i

∗ ∗ ∗ Pi


 � 0. (18)

Let εi = max
s1∈Bnwi

‖Fis1‖22 + max
s2∈Bnvi

‖Σis2‖22 and the time

instant k →∞ such that

`i∞ = βi`
i
∞ + εi. (19)

From (19), we have



`i∞ =
εi

1− βi
. (20)

Therefore, the uncertain trajectories are ultimately bounded

in the corresponding ellipsoid Ei ,
{
xi | xiTPixi ≤ εi

1−βi

}
.

The ellipsoid of the smallest diameter can be found by solv-
ing an eigenvalue problem (Boyd et al., 1994). Therefore,
there exists a maximum positive scalar τi such that

(1− βi)Pi
εi

� τiI, (21a)

τi > 0. (21b)

Hence, Λi is computed by solving the following BMI/LMI
problem:

max
τi,βi,Pi,Yi

τi (22)

and subject to (18) and (21).

After solving the above BMI optimization problem, Λi can
be obtained off-line as follows:

Λi = P−1
i Yi. (23)

It is noticed that the BMI optimization problem (22) can
be solved as a LMI one by using the linear search algorithm
for finding βi ∈ (0, 1]. Therefore, the LMI optimization
problem can be implemented by searching the maximum
τi > 0 from the smallest βi with a desirable accuracy.

3.2 Computing the Projection Zonotopes

The objective of the optimization problem (22) is deter-
mined by finding the ellipsoid of the smallest diameter. For
the projection zonotope, this objective can be moved into
finding the smallest ellipsoid only for the neighbor states.

The ellipsoid is defined by
[
xa − ca
xb − cb

]T [
Paa PTab
Pab Pbb

] [
xa − ca
xb − cb

]
≤ 1. (24)

where
[
cTa cTb

]T
is the center of the ellipsoid.

The projection on the xa space of the ellipsoid (24) is given
by

(xa − ca)T
(
Paa − PTabP

−1
bb

Pab
)

(xa − ca) ≤ 1. (25)

From (25), it is clear that this projection set is still an
ellipsoid. In order to minimize the size of this new ellipsoid,
we can minimize the maximum eigenvalue of new matrix
of the ellipsoid. Therefore, by using the Schur complement
lemma, the constraints (21) in the optimization problem
(22) is rewritten as

[
(1−βj)

ε
P i,jaa − τiI

(1−βj)

ε
P i,j
ab

T

(1−βj)

ε
P i,j
ab

(1−βj)

ε
P i,j
bb

]
� 0, (26a)

τj > 0, (26b)

with P̄i,j can be divided into P̄i,j =

[
P i,jaa P i,jab

T

P i,jab P i,jbb

]
.

Then, the correction matrix Λ̄i,j for the i-th subsystem
with the j-th projection zonotope can be found by solving
the following optimization problem:

max
τj ,βj ,P

i,j
aa ,P

i,j
ab
,P

i,j
bb
,Yj

τj (27)

and subject to (18) and (26).

As a result, Λ̄i,j can be computed off-line by

Λ̄i,j = P̄−1
i,j Yj . (28)

Remark 2. In some specific cases, the projection method
could not improve so much performance since the state
bounding results are satisfactory.

3.3 On-line Updating Correction Matrices

By implementing the optimization problems (22) and (27),
the weighting matrices Pi and P̄i,j of the intersection and
projection zonotope for i = 1, 2, . . . , s and j = 1, . . . , Ni
can be obtained.

Consider the weighting matrix Pi for the i-th intersection
zonotope obtained by implementing the optimization (22),
the P -radius in (15) at time instant k can be reformulated
with known Pi as

˜̀
k = max

z∈Br

∥∥∥Ĥi
k(Λ̃ik) · z

∥∥∥
2

Pi

= z̃T · Ĥi
k(Λ̃ik)TPiĤ

i
k(Λ̃ik) · z̃, (29)

where z̃ denotes the unitary vector in order to find the
maximum radius of the zonotope. Λ̃ik denotes the updated
correction matrix for the i-th intersection zonotope at time
instant k.

In order to deal with the infinite vertexes of the ellipsoid
and find Λ̃ik, there always exists a diagonal matrix Dk at
time instant k such that the following inequality holds:

Dk ≥ Ĥi
k(Λ̃ik)TPiĤ

i
k(Λ̃ik). (30)

Applying Schur complement lemma to (30), we have the
following LMI:

[
Dk Ĥi

k(Λ̃ik)TPi
∗ Pi

]
� 0. (31)

Since the trace of the diagonal matrix Dk is a measure of
the size of the uncertain set, the on-line updated correction
matrix Λ̃ik and the diagonal matrix Dk can be found by
solving the following optimization problem:

min
Λ̃i
k
,Dk

tr(Dk) (32)

subject to (31), where tr(·) denotes the trace of a given
matrix.

Similar to the on-line method for intersection zonotope in
(32), after finding the weighting matrix P̄i,j , the updated

correction matrix Λ̌i,jk at time instant k can be obtained
by solving the following optimization problem:

min
Λ̌
i,j
k
,D̄k

tr(D̄k) (33a)

subject to

[
D̄k ĤT

k (Λ̌i,j
k

)P̄i
∗ P̄i

]
� 0. (33b)

Remark 3. As mentioned in the projection method, the
on-line method might produce the similar results as the
off-line method without important improvements for some
system states because there exists the trade-off to mini-
mize the zonotope size for all the system states.



3.4 Distributed Set-Membership Algorithm

As presented before, the intersection zonotopes are found
for observing the normal distributed states at each subsys-
tem while the neighbor states can be observed by using the
intersection between the projection zonotopes. In general,
the distributed set-membership approach can be summa-
rized as the following algorithm.

Algorithm 1 Distributed set-membership algorithm

Data: X̂ i0, X̂ i,j0 and X̂ j,i0 known for i = 1, . . . , s and
j = 1, . . . , Ni;

Off-line compute Pi and P̄i,j for i = 1, . . . , s and j =
1, . . . , Ni by means of solving the optimization problems
(22) and (27);
for k=1:tend do

Compute the correction matrix Λ̃ik for the intersection
zonotopes by solving the optimization problem (32) for
i = 1, . . . , s;
Compute the correction matrix Λ̌i,jk for the projection
zonotopes by solving the optimization problem (33) for
i = 1, . . . , s and j = 1, . . . , Ni;
Compute the intersection between the projection zono-
topes: xi,jk ∈ X̂

i,j
k

(
Λ̄i,j

)
∩ X̂ j,ik

(
Λ̄j,i

)
, j = 1, . . . , Ni,;

The state estimation results can be found by using the
interval hull (4);

end

4. CASE STUDY: AN URBAN DRAINAGE
NETWORK

4.1 Description

In order to verify the proposed distributed set-membership
approach, a urban drainage network from a portion of
the Bogotá (Colombia) urban drainage network (Barreiro-
Gomez et al., 2015) is chosen and its topology is shown
in Figure 2. The virtual tanks/reservoirs model is used as
the mathematical model of this network. In general, there
are 9 virtual tanks and 7 sensors placed in the network
for measuring the flows through the sewer pipes. In this
example, it is considered that for virtual tank, the nominal
rain run-off can be regarded as an known input signal. The
stochastic rain run-off are assumed to be unknown but
bounded in known zonotopes as system disturbances.

Virtual Tank

Rain-gauge

Flowmeter

(a)
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Fig. 2. Topology of the urban drainage network and the
rain runoff

The mathematical model for the i-th virtual tank is given
by ẋi = qiin − qiout, where qiin denotes the inflows to the
tank, xi denotes the volume of the i-th virtual tank and

the relationship of the outflow and the volume is given by
a linear function as qiout = Kix

i. The parameters Ki for
each virtual tank are given in Table 1.

Table 1. Parameters of the UDN model

Tank Coefficient Ki Tank Coefficient Ki
1 0.002332 6 0.004764
2 0.003870 7 0.008975
3 0.002217 8 0.005185
4 0.003170 9 0.006147
5 0.008239

The distributed model of this network is used in discrete-
time and the system states are divided into the 3 subsys-
tems as shown in Table 2.

Table 2. Distributed Model of the UDN

Subsystem Virtual tanks Neighbor state

S1 x1, x2, x3 x3

S2 x4, x5, x6 x6

S3 x3, x6, x7, x8, x9 -

The proposed optimization problems can be solved by
using the Yalmip toolbox (Löfberg, 2004) and the com-
mercial LMI solvers, for instance MOSEK (MOSEK ApS,
2015). All the simulations have been done in a PC of Intel
i7-5500U CPU 2.40 GHz with 12GB RAM.

4.2 Simulation Results

The state estimation result of x7 by using the off-line and
on-line distributed methods is plotted in Fig. 3. All the
uncertain real states are bounded in two bounds. From the
result, it is clear that the bounds from the on-line method
are similar to the ones from the off-line method. As shown
in Fig. 4, the bounds of two neighbor states x3 and x6 are
obtained by using the off-line and on-line methods. The
on-line method is able to find more tightened bounds in
an iteratively way.
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Fig. 3. State estimation result of x7 by using the dis-
tributed set-membership approach
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Fig. 4. State estimation results of the neighbor states by
using the distributed set-membership approach

Moreover, the centralized set-membership approach is also
applied to the general model of this network. In the cen-
tralized approach, only one intersection zonotope is ob-
tained by using the off-line method without considering the



projection constraints or using the on-line method. In or-
der to compare the centralized and distributed approaches,
the mean square error (MSE) of the state estimation and
the mean square of the P-radius are computed. In Table 3,
the comparison results for four approaches are presented.
From the MSE, the centralized methods have bigger es-
timation error than the distributed one. Meanwhile, the
on-line distributed approach is a little better than the
others for this example. The results of the mean square of
the P -radius for all the approaches are very close and the
distributed one is a little larger than the centralized one.
The simulation time for all the approaches are recorded
in Table 4. From this table, it is noted that the recorded
simulation time for the distributed approach corresponds
to the worst-case time of a single subsystem since the
distributed approach can be implemented using the par-
allel computing. Generally, the on-line approaches require
longer time since the optimization problem is solved in an
iterative way. The distributed approaches can reduce the
required simulation time, which will be benefit for large-
scale systems with a lot of variables.

Table 3. Comparisons between the centralized
and distributed approaches

Approaches MSE ‖H‖2P
Off-line Centralized 2.0357e-04 1.8149e-2
On-line Centralized 2.0357e-04 1.8149e-2
Off-line Distributed 1.3372e-04 1.8159e-2
On-line Distributed 1.0341e-04 1.8158e-2

Table 4. Simulation time of applying the cen-
tralized and distributed approaches

Approaches Optimization time [s] Total time [s]

Off-line Centralized 41.322 43.8
On-line Centralized 98.645 101.172
Off-line Distributed 35.8 36.5
On-line Distributed 87.4 88.3

5. CONCLUSION

In this paper, a distributed set-membership approach is
proposed based on optimization methods. The P -radius
criterion is used for evaluating the size of the zonotope.
The distributed system states can be estimated by a se-
quence of the intersection zonotopes and projection zono-
topes with respect to correction matrices. The correction
matrices can be computed off-line and on-line. From the
effective simulation results, the proposed distributed ap-
proach is effective. Meanwhile, we can see that the on-line
distributed approach takes longer time for solving the opti-
mization problem. Comparing to the centralized approach,
the distributed set-membership approach is faster and also
easier to apply to the large-scale systems.
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Löfberg, J. (2004). YALMIP: A Toolbox for
Modeling and Optimization in MATLAB. URL
http://users.isy.liu.se/johanl/yalmip.

MOSEK ApS (2015). The MOSEK optimiza-
tion toolbox for MATLAB manual. URL
http://docs.mosek.com/7.1/toolbox/index.html.
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