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Abstract: A periodic nonlinear economic model predictive control (EMPC) with changing
prediction horizon is proposed for the optimal management of water distribution networks
(WDNs). The control model of the WDN is built by means of nonlinear differential-algebraic
equations in which both the hydraulic pressure and flow variables are taken into account.
The model allows the controller to consider minimum pressure constraints at the demands.
A periodic terminal constraint is employed in order to guarantee closed-loop stability. The
prediction horizon is modified on-line in order to guarantee convergence to the optimal periodic
trajectory. The proposed control strategy is verified with the case study of the Richmond water
network in a realistic hydraulic simulator. Although there are modeling errors between the
control model and hydraulic model, the closed-loop system converges to a sub-optimal periodic
trajectory satisfying all the constraints.
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1. INTRODUCTION

A water distribution network (WDN) in an urban area
is part of a water cycle after the water production and
transport parts. It generally consists of a large number
of hydraulic elements, such as reservoirs/tanks, pressur-
ized pipelines, pumping stations (including several parallel
pumps) and valves. The main task of a WDN is to sup-
ply enough water flows with suitable pressures to all the
demand sectors.

Different optimal control strategies for the operational
management of WDNs have been discussed in the past
decade considering the economic performance using the
model predictive control (MPC) framework, see e.g.
(Brdys and Ulanicki, 1994; Cembrano et al., 2000; Ocampo-
Martinez et al., 2013; Wang et al., 2016a). In these refer-
ences, the optimal flow set-points for actuators (pumps
and valves) can be computed by solving a finite-horizon
optimization problem with the minimization of a multi-
objective problem including economic costs and safety
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indexes. However, only the water flows are considered as
the system variables and the pressures/hydraulic heads 1

are ignored. Looking into more realistic scenarios, it is nec-
essary to include the hydraulic heads inside the model of
the WDN when minimum pressures at the demand sectors
are required. Meanwhile, the suitable pressure allocation
for the WDN is also able to protect the system equipments
from fatigue.

Economic model predictive control (EMPC) has attracted
a lot of attention recently (Ellis et al., 2017). The stability
of this class of EMPC controllers is an open issue to be
clarified because the conventional MPC stability analysis
considers that there exist system references. Recently, the
dissipativity assumption has been widely used for prov-
ing the stability of EMPC (Angeli et al., 2012; Liu and
Liu, 2016). The stability analysis of EMPC is established
assuming that the considered linear or nonlinear system
is dissipative. Besides, the terminal constraint and region
are usually employed in order to guarantee convergence

1 The hydraulic head is a measure of the potential energy of a fluid.
It is usually measured in meters, referring to the pressure under a
static water column of this height. The hydraulic head at any node in
a water distribution network is the sum of its topographical elevation
and the pressure at that node, expressed in water-column units.



in closed-loop. From the application point of view, for a
large-scale system, it would be computationally expensive
to find the terminal region and probably not possible to
obtain a time-varying terminal region within a compu-
tation time that is consistent with real-time constraints.
Moreover, for a specific system, it is also necessary to
satisfy the dissipativity property.

From the industrial experience, the possible optimal con-
trol actions for management of a WDN could be obtained
with a periodic behavior because water demands and
electricity costs usually present daily repetitive patterns.
Hence, a periodic EMPC is suitable for optimal manage-
ment of a WDN in order to guarantee the multiple control
objectives, including satisfying water demands to all the
customers, protecting the equipments inside the network
and maximizing their work life.

The main contribution of this paper is to propose a peri-
odic nonlinear EMPC (PNEMPC) strategy for the opera-
tional management of WDNs. The control-oriented model
of the WDN is built by means of nonlinear differential-
algebraic equations in discrete-time taking into account
not only the water balance equations, but also the hy-
draulic head and the relationship between flows and head-
drops in the network. The periodic operation of the pro-
posed controller is enforced by employing a periodic termi-
nal equality constraint. The prediction horizon is chosen to
be time-varying in order to guarantee convergence under
certain assumptions to the optimal periodic trajectory also
satisfying all the constraints. The results of applying the
proposed strategy to the Richmond water network show
its effectiveness both using the control-oriented model and
EPANET.

2. PROBLEM STATEMENT

2.1 Optimal Operation of WDNs

The common operational objectives for the operational
management of WDNs include (Ocampo-Martinez et al.,
2013):

• Economic: To provide a reliable water supply with
required pressures minimizing operational costs.
• Safety: To guarantee the availability of enough water

and hydraulic head in each storage tank to satisfy its
underlying uncertain water demands.
• Smoothness: To operate actuators of the WDN under

smooth control actions.

To this end, the actuators and pumps of the network
have to be operated so that these objectives are satisfied
taking into account the available information on the future
demands and other relevant parameters such as electricity
costs. Most MPC applications found in the literature focus
only on controlling the water at the different tanks using
model-based water balance equations. However, another
key variable is the hydraulic head/pressure at different
nodes of the network. To control this variable, nonlinear
algebraic equations have to be considered relating flow and
head.

The actuator in most WDNs can only operate in an
ON/OFF fashion, defining the control laws as simple
switching logics which in general are hard to tune (Van Zyl

et al., 2004). Switching actuators lead to hybrid models
which in general are difficult to consider in an EMPC
setting. In this work, we follow a hierarchical approach,
in which a periodic EMPC controller will decide the mean
flow in each actuator of the WDN, and a low level control
layer will implement the switching sequence to guarantee
that mean flow. In the case that the pumps and valves
can be regulated controlling directly the frequency or
the degree of opening, PID controllers can be used. If
only ON/OFF sequences can be implemented, which is a
common constraint in real networks, an appropriate open-
loop or closed-loop strategy has to be used. In particular,
we proposed a control strategy in which at the beginning of
the sampling period, all pumps and valves are switched on,
and are switched off only when the amount of water needed
in the period is reached. In this case, it is important to
note that the hydraulic head at the nodes depends on the
state of the actuators, leading to sudden pressure changes.
For this reason, the output variable is defined as the mean
hydraulic head at the demand nodes.

The simulations will be carried out using EPANET, a
well known software that models water distribution piping
systems (Rossman, 2000), and using the Yalmip toolbox
(Löfberg, 2004) and IPOPT solver through OPTI toolbox
(Currie and Wilson, 2012) in MATLAB. EPANET pro-
vides continuous time simulations of the network between
sampling times.

2.2 Control-oriented Model of WDNs

In order to define the EMPC controller an appropriate
model is needed. We propose to model a WDN by a set
of discrete-time differential-algebraic equations as follows
(Wang et al., 2016c):

xk+1 = Axk +Buuk +Bvvk +Bddk, (1a)

0 = Euuk + Evvk + Eddk, (1b)

0 = Pxxk + Pzzk + ψ (vk) , (1c)

where xk ∈ Rnx denotes the vector of hydraulic heads at
the storage nodes (reservoirs/tanks) as differential states,
zk ∈ Rnz denotes the vector of mean hydraulic heads at the
non-storage nodes as algebraic states, uk ∈ Rnu denotes
the vector of mean manipulated flows of the actuators
(pumps and valves), vk ∈ Rnv denotes the vector of mean
non-manipulated flows through the interconnected pipes
and dk ∈ Rnd denotes the vector of mean water demands,
which are regarded as the measured system disturbances.
Moreover, A,Bu, Bv, Bd, Eu, Ev, Ed, Px and Pz are time-
invariant matrices with suitable dimensions decided by
the network topology while ψ is a vector of the nonlinear
mapping functions.

Equation (1a) describes the system dynamics, (1b) presents
the physical and static relations in the water network
by means of mass balance at non-storage nodes and (1c)
describes the hydraulic head-flow relationship in the pipes
that connect the demand nodes to different tanks, which
is built by using the Chezy-Manning formula:

zik − z
j
k = Ri,jv

i,j
k

∣∣∣vi,jk

∣∣∣ , (2)

where zi and zj denote the heads at the i-th and j-
th nodes, respectively, vi,j denotes the flow through the
pipe between the i-th and j-th nodes and Ri,j is the pipe



coefficient. Notice that zi or zj are replaced by xi or xj

depending on the network topology. Assuming that the
hydraulic heads at the storage nodes vary sufficiently slow,
these equations provides an estimate of the mean hydraulic
head drop at each pipe. This model can be used both for
WDNs controlled using PIDs or with a switching logic
as proposed in the previous subsection. In the proposed
model, the hydraulic head-flow relationship of actuators
is not considered. Hence, this implies that only hydraulic
heads of demands directly connected to tanks can be
estimated.

The water demand dk+i for i = 1, 2, . . . ,Hp along the

prediction horizon Hp is assumed to be predicted as d̂k+i

by using a suitable short-term forecasting method, such as
in Wang et al. (2016b). The demand forecasts are periodic
with a period T .

2.3 General EMPC Problem

The control performance of the WDN is evaluated by
an economic cost function ` that considers an exogenous
periodically time-varying parameter pk with the period
T . The economic parameter p represents the periodically
time-varying electricity price in a WDN and its variation
is assumed to be known.

The periodic behavior implies that the time-varying eco-
nomic cost function is T -periodic. The economic perfor-
mance is measured with the average of the time-varying
economic cost function in closed-loop considering an infi-
nite horizon, which is formulated as

L∞ , lim
n→∞

1

nT

nT−1∑
i=0

`(·). (3)

In addition, we consider the following constraints:

xk ∈ X , (4)

zk ∈ Z, (5)

uk ∈ U , (6)

where X , Z and U denote constraints on x, z and u
depending on the physical limitations of components in
the WDN, respectively.

We propose to use a finite horizon optimization problem to
define the EMPC in which a suitable value for n is chosen
at each time step to guarantee convergence of the closed
loop system to the optimal infinite horizon trajectory. In
this paper, the criterion of the selection of a time-varying
n is discussed.

2.4 Constraint and Cost Function Settings

Considering the aforementioned control objectives for the
management of WDNs, we propose next an objective
function computed as the weighted sum of several terms.
Assuming a linear relation between the flow and the
energy used by a pump, the economic performance can
be estimated as

`e (uk, pk) , pTk uk, (7)

where `e (uk, pk) directly measures the operational costs
from the usage of the pumps in the WDN.

The safety and smoothness objectives can be optimized by
using the following two cost functions:

`m (ξk) , ξTk ξk, (8a)

`s (uk) , ∆uTk ∆uk, (8b)

with
∆uk , uk − uk−1, (9)

where (8a) corresponds to a soft constraint setting with a
predefined safe water head vector xs at storage tanks and
a positive slack variable ξk at time instant k, which can be
formulated as

xk ≥ xs − ξk, (10a)

ξk ≥ 0. (10b)

and (8b) penalizes the quadratic term of the slew rate ∆uk
at time instant k.

In order to maintain the stability and closed-loop conver-
gence to the optimal steady states, an additional penalty
term is considered in order to guarantee that we only keep
the minimum reserved water in storage tanks, which is
defined as follows:

`x(xk) = ‖xk − xs‖22 . (11)

Furthermore, the minimum pressure is required at each
demand sector. Hence, an additional constraint for the
variable zk at time instant k is added as follows:

zk ≥ z, (12)

where z denotes the vector of the minimum heads at non-
storage nodes where there is a demand associated. Note
that the minimum head at demand sector contains its
elevation and the required minimum pressure.

Considering the feasibility of the corresponding MPC
optimization problem, (12) is also set as a soft constraint.
Therefore, (12) can be reformulated as

zk ≥ z − ζk, (13a)

ζk ≥ 0, (13b)

where ζk is also a slack variable and corresponding cost
function is defined as

`z (ξk) , ζTk ζk, (14)

Thus, the general economic cost function for the manage-
ment of the WDN can be written as follows:

`T = λ1`e (uk, pk) + λ2`m (ξk) + λ3`s (uk)

+ λ4`x (xk) + λ5`z (ζk) , (15)

where λ1, λ2, λ3, λ4 and λ5 are the prioritization weights
for different functions.

Remark 1. Parameter λ4 should be small compared to the
rest of weights because the main objective for management
of WDNs is to minimize the economic cost depending on
pumping with periodically time-varying electrical prices.
Hence, it is optimal to accumulate water in the storage
tanks when the electricity price is low.

3. PERIODIC NONLINEAR ECONOMIC MODEL
PREDICTIVE CONTROL WITH CHANGING

HORIZON

3.1 PNEMPC Planner

In order to analyze the closed-loop convergence, a PEN-
MPC planner is also designed. By using this planner, the



optimal steady states and control inputs can be obtained.
Moreover, the optimal planner cost can be also obtained.

Considering the T -periodic operations for the management
of WDNs, the optimal steady trajectory can be obtained
by a finite-horizon open-loop optimization problem with a
periodic terminal constraint as follows (Angeli et al., 2012;
Limon et al., 2016):

min
x∗s ,u

∗
s ,ξ
∗
s ,ζ
∗
s

Ls
T ,

T−1∑
i=0

`T , (16a)

subject to

xi+1 = Axi +Buui +Bvvi +Bdd̂i, (16b)

0 = Euui + Evvi + Edd̂i, (16c)

0 = Pxxi + Pzzi + ψ (vi) , (16d)

xi ∈ X , (16e)

ui ∈ U , (16f)

xi ≥ xs − ξi, (16g)

zi ≥ z − ζi, (16h)

x0 = xT . (16i)

Assumption 1. The steady-state planner implemented in
the optimization problem (16) has a unique solution
that defines the optimal periodic trajectory that can be
reached.

The feasible solutions of the above finite-horizon optimiza-
tion problem are denoted by x∗s and u∗s are regarded as the
best feasible periodic steady-state pair (x∗s,u

∗
s). Besides,

the optimal operational cost is denoted by Ls
T .

3.2 PNEMPC with Changing Prediction Horizon

The PNEMPC strategy for management of WDNs is im-
plemented by solving the following optimization problem:

Ln
k , min

x∗
k
,u∗

k
,ξ∗

k
,ζ∗s

1

n

nT−1∑
i=0

`T , (17a)

subject to

xk+i+1|k = Axk+i|k +Buuk+i +Bvvk+i +Bdd̂k+i|k, (17b)

0 = Euuk+i + Evvk+i + Edd̂k+i, (17c)

0 = Pxxk+i|k + Pzzk+i + ψ (vk+i) , (17d)

xk+i+1|k ∈ X , (17e)

uk+i ∈ U , (17f)

xk+i+1|k ≥ xs − ξk+i, (17g)

zk+i|k ≥ z − ζk+i, (17h)

xk|k = xk+nT |k, (17i)(
xk|k, d̂k|k

)
= (xk, dk) , (17j)

where (17i) denotes the periodic terminal equality con-
straint in order to achieve the periodic operational behav-
ior.

If the optimization problem (17) is feasible, a sequence

of optimal control actions u∗k =
{
u∗0|k, u

∗
1|k, . . . , u

∗
nT−1|k

}
and the corresponding optimal operational cost Ln∗

k at
time instant k is obtained. The controller is implemented

in a receding horizon scheme, applying the first optimal
control action and discarding the rest of the solution:

u∗k = u∗0|k. (18)

The prediction horizon Hp in the corresponding PNEMPC
optimization problem (17) is set as nT , where n is a param-
eter to be determined taking into account the convergence
of the closed-loop system to the optimal planner trajec-
tory if possible. In this paper, we proposed an heuristic
algorithm to achieve this property.

Recursive feasibility of the optimization problem, and
hence stability, is guaranteed by the (17i) assuming that
the parameter n′ at time k+1 is the same as the parameter
n at time k. This is proved taking into account that by
definition x(k + 1) = x(k + 1|k) so using the shifted
sequence of control actions a periodic trajectory that
satisfies all the constraints is obtained.

This also implies that since the previous optimal sequence
of control actions is feasible, the optimal operational cost
at time k + 1 will be at least equal to the optimal
operational cost at time k, that is:

Ln
k ≤ Ln

k+1

However, there is no guarantee that the cost will decrease,
which can possibly lead to a closed-loop steady trajectory
different from the optimal trajectory of the planner.

Taking into account Assumption 1, it can be proved that
under mild assumptions:

lim
n→∞

Ln
k = Ls

T

for all feasible x(k). This implies that increasing the value
of the parameter to n′ > n can lead to a decrease in the
cost, that is,

Ln
k = Ln

k+1 > Ln′

k+1

proving convergence to the planner cost. Convergence
to the planner cost is achieved when the cost does not
decreases as the parameter n increases, that is:

Ln
k = Ln

k+1 = Ln′

k+1

for all n′ > n.

Following these ideas, we propose the following heuristic
control algorithm to determine n and the corresponding
optimal solution. At time step k, solve problem (17) to
obtain Ln

k . If the cost has decreased, that is, Ln
k < Ln

k−1
then apply the first optimal input. If the cost is the
same, solve problem (17) with n′ = n + 1. If the cost

has decreased, that is, Ln′

k < Ln
k then apply the first

optimal input and set n = n′. If the cost is the same, then
the closed-loop system has reached the optimal planner
trajectory, apply the first optimal input and set n = 1.

4. CASE STUDY: RICHMOND WATER NETWORK

4.1 System Description

The Richmod water network 2 is chosen as the case study
in this paper. In this network, there are 6 tanks, 7
actuators (pumps), 11 water demand sectors, 41 non-
storage nodes and 41 interconnected pipes.
2 http://emps.exeter.ac.uk/engineering/research/cws/resources
/benchmarks/operation/richmond.php



Table 1. Safety heads of the storage tanks

Tank Safety head [m]

A 185.15
B 218.03
C 259.40
D 242.28
F 235.90

To obtain the proposed control-oriented model (1), several
simplification were made. In particular, the flows through
the pipes (ID: 1783) and (ID: 1793) were assumed to be
equal and tank E was considered to be full at all times,
acting as a pipe with a fixed output hydraulic pressure.
These simplifications introduce modeling errors between
the control model and EPANET, in particular, the errors
will be high if tank E is not full. By simulation, we have
demonstrated that because of the head and size difference
between tanks D and E, tank E is always full in normal
operation. Note also that both tanks are connected in a
passive link without pumps. Using these simplifications,
the resulting model has 5 states, 6 actuators, 11 demands
and 15 nonlinear algebraic equations.

Regarding the benchmark information of the Richmond
water network, we changed the sign of the demand at
Junction (ID: 777) so that it consumes water. In addition,
both the electrical price pattern and the demands are
supposed to start at 07:00 when the electrical price pattern
starts from the peaks.

Every hour, the tank levels are read from EPANET, the
optimization problem is solved to obtain the desired mean
flows. Then, a series of EPANET simulations is carried
out to decide at which minute each of the pumps should
be turned off depending on the amount of water delivered.

The selection of weights in the cost function are λ1 = 10,
λ2 = 1, λ3 = 0.1, λ4 = 0.001 and λ5 = 1. The time-
varying electricity prices pk, system constraint on xk are
obtained from the original Richmond network given in the
EPANET model. The physical constraints on uk and the
minimum heads around pumps are obtained from running
the simulation in EPANET. The safety heads for the
storage tanks are given in Table 1. Moreover, the minimum
required pressure at all the demand sectors are set as 10
meters.

The short-term water demand forecasts are available with
a daily period. Therefore, the period T of the EMPC
control strategy is chosen as 24 hours. Considering the
computational cost of solving a nonlinear optimization
problem, the possible prediction horizons in this case study
are Hp = 24 hours (n = 1) and Hp = 48 hours (n = 2)
in this paper. All the simulations have been executed for
5 days.

4.2 Results of PNEMPC with Changing Horizon

In order to verify the proposed algorithm of the PNEMPC
with changing horizon, the first simulation is carried out by
using the PNEMPC controller and nonlinear control model
in (1) as the simulator. In this scenario, the modeling
errors are zero. The results of system state evolutions
are expected to reach the optimal steady states after the
transient period. Fig. 1 shows the on-line PNEMPC cost

and the nonlinear planner cost. The prediction horizon Hp

is switched between 24 and 48 hours. During the transient
period between k = 6 and k = 10, Hp is set to 48 in order
to guarantee that the PNEMPC cost is always decreasing.
When the PNEMPC cost is close enough to the nonlinear
planner cost, Hp is set back to 24.

20 40 60 80 100 120

L
n k

146

150

154 PNEMPC
Planner

k [h]
20 40 60 80 100 120

H
p

24

48

Fig. 1. Closed-loop optimal operational cost trajectory us-
ing the control-oriented model to simulate the system
(blue). Planner cost (red).

The results of system states and control inputs are shown
in Fig. 2 and 3. From an initial condition, the system
states can reach the optimal steady states obtained by
the nonlinear planner as shown in Fig. 2. Hence, the
Richmond water network operated using the proposed
controller provides and appropriate closed-loop behavior.
On the other hand, the electrical price patterns for each
pump are also shown in Fig. 3. The control inputs can
not only reach the optimal steady inputs but also time-
varying with respect to the economic objective. When the
price is high, less water is pumped. Hence, it is clear that
the economic performance is correctly taken into account.
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Fig. 2. Closed-loop tank trajectories using the control-
oriented model to simulate the system.
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Fig. 3. Closed-loop pump trajectories using the control-
oriented model to simulate the system.

4.3 Closed-loop Results with the EPANET Simulator

The results obtained using the EPANET simulator are
presented below. As explained in the nonlinear control-
oriented model, there are mismatches between the predic-
tion model and the EPANET model.



k [h]
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Fig. 4. Closed-loop actual operational cost trajectory using
EPANET to simulate the system.

The closed-loop actual operational cost trajectory is shown
in Fig. 4. In this plot, the cost is increasing until it reaches
the cost of the periodic optimal operation that the MPC
can deliver. The average actual cost is computed in a
sliding window of 24 hours. The average actual cost is
computed as

Lc
k ,

1

T

T−1∑
i=0

`T (x̌k−i, ǔk−i) , k ≥ T, (19)

where x̌k and ǔk are the actual heads at storage tanks and
mean flows through actuators obtained from the EPANET
simulator.

The closed-loop results of system states and control inputs
are shown in Fig. 5 and 6. The optimal solutions of system
states are compared with the actual states simulated with
the EPANET model in Fig. 5. It can be seen that the
Richmond network is controlled appropriately by using
the prediction model in spite of the modeling errors. As
introduced in Section 2, the optimal flow set-points can
be translated into a sequence of ON-OFF values and then
these ON-OFF values are sent to the EPANET simulator.
The actual mean flows through actuators fed back from
the EPANET simulator is compared with the optimal flow
set-points for each pump in Fig. 6.
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Fig. 5. Closed-loop tank evolutions using EPANET to
simulate the system.
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Fig. 6. Closed-loop pump operations using EPANET to
simulate the system.

5. CONCLUSION

In this paper, a new EMPC controller for the operational
management of WDNs is presented along with two set

of simulation results using the Richmond water network
case study. First, the simulation with the nonlinear control
model is carried out in order to investigate the system
convergence by applying the PNEMPC strategy with
changing horizon. Then, the closed-loop simulation with
the EPANET simulator is executed. Both simulations
prove that the PNEMPC strategy is effective and is able
to operate the WDN achieving the expected performances.
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