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ABSTRACT
In this paper we are interested in recognizing human actions from
sequences of 3D skeleton data. For this purpose we combine a 3D
Convolutional Neural Network with body representations based
on Euclidean Distance Matrices (EDMs), which have been recently
shown to be very e�ective to capture the geometric structure of
the human pose. One inherent limitation of the EDMs, however, is
that they are de�ned up to a permutation of the skeleton joints, i.e.,
randomly shu�ing the ordering of the joints yields many di�erent
representations. In oder to address this issue we introduce a novel
architecture that simultaneously, and in an end-to-end manner,
learns an optimal transformation of the joints, while optimizing the
rest of parameters of the convolutional network. �e proposed ap-
proach achieves state-of-the-art results on 3 benchmarks, including
the recent NTU RGB-D dataset, for which we improve on previous
LSTM-based methods by more than 10 percentage points, also sur-
passing other CNN-based methods while using almost 1000 times
fewer parameters.

1 INTRODUCTION
In recent years, 3D sensing technologies, and in particular RGBD
cameras have become increasingly cheap and widely available.
Devices such as the Kinect or Leap Motion, and the associated
so�ware libraries, allow for accurate 3D tracking of human body
parts with minimal e�ort. Because of this, human action recognition
algorithms working directly with 3D skeletal data have gained
substantial popularity in the research community. As in many other
�elds of research, remarkable results have recently been obtained
in this task by employing deep learning-based approaches [16, 22,
26, 36, 38] exploiting large-scale datasets [22].

Human action recognition from 3D skeletal data is inherently
a sequence-based problem, which can be naturally tackled in the
context of deep learning using recurrent networks. Indeed, many
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Figure 1: We encode sequences of skeletons in 3D space as
stacked Euclidean Distance Matrices. By performing convo-
lution both along the spatial and temporal dimensions our
network learns to respond to the spatio-temporal dynamics
of the input data.

works [16, 22, 36, 38] propose Long Short-Term Memory (LSTM)
networks working directly on the 3D coordinates of the body
joints [16, 38] or hand-cra�ed geometric features derived from
these [36]. An alternative, more recent approach is that of project-
ing and color coding the joint trajectories in image space [17, 31],
obtaining a compact representation of the whole skeleton sequence
that can be processed using standard convolutional networks. �is
allows the authors of [17, 31] to reuse well-tested CNN architec-
tures (i.e. AlexNet [15]) and to exploit large scale image datasets (i.e.
ILSVRC2012 [21]) to pre-train their networks, obtaining the cur-
rent state of the art on a challenging large-scale action recognition
dataset [22].

Following from the success of [17, 31], we propose a novel ac-
tion recognition CNN based on the ResNeXt architecture of Xie et



al. [33]. Di�erently from these works, however, we explicitly take
the temporal nature of our problem into account, by constructing
a network composed of spatio-temporal convolution and pooling
operators. Furthermore, instead of the indirect, image-based repre-
sentation employed in [17, 31], we encode the input skeletons as
sequences of Euclidean Distance Matrices (EDM) computed over
their joints. EDMs are rigid transformation-invariant represen-
tations of sets of points, which can be e�ectively processed by
convolutional networks, as recently shown in [19]. Intuitively, as
depicted in Fig. 1, convolutional neurons can learn to respond to
local EDM structures which encode the spatial con�gurations of
groups of 3D joints. By performing convolution also along the
time dimension, we allow the network to learn to respond to the
spatio-temporal dynamics of our data.

Euclidean Distance Matrices, however, are de�ned up to a per-
mutation of the points they represent. By changing the order of
the joints when computing an EDM, the region of the skeleton
associated with each local neighborhood of the matrix would also
change. �is would lead the same convolutional neurons to re-
spond in a radically di�erent way to the same skeleton. To sidestep
this problem, we augment our EDM representation with a learned
combination of the input points. �us, we endow our network with
the capability of selecting the most advantageous distance matrix
con�guration for the purpose of classifying actions. �is only adds
a negligible amount of parameters to the overall model, which can
be trained end-to-end together with the rest of the network.

We evaluate our network, named DM-3DCNN, on three bench-
mark datasets, including the challenging and recently released NTU
RGB-D [22], obtaining competitive results w.r.t. other recent meth-
ods. On this particular dataset, we obtain the new state of the art,
surpassing previous LSTM-based approaches by an average of 10 %
accuracy and the CNN-based approach in [17] by 3 %, while using
about 1000 times fewer parameters and operations.
Contributions. To summarize, this paper includes three main
contributions. First, we present an approach to human action recog-
nition from 3D skeletal data represented as sequences of Euclidean
Distance Matrices. To overcome the permutation ambiguity in-
herent in encoding the skeletons as EDMs, we compute the dis-
tance matrices from a learned combination of the joints which
is general enough to include all possible permutations. Second,
we propose a ResNeXt-inspired [33] network architecture built
from spatio-temporal convolution and pooling operators and tak-
ing sequences of EDMs as input. �ird, we evaluate our approach
on three benchmarks, obtaining the new state of the art on the
large-scale NTU RGB-D dataset and surpassing recent CNN-based
approaches [17, 31] while employing three orders of magnitude
fewer parameters and operations.

2 RELATEDWORK
Human action recognition is one of the most interesting topics of
computer vision, and it has many use cases within the academy, ro-
botics, surveillance, games and entertainment multimedia; because
of this, the quantity and diversity of works is impressive, and im-
possible to cover in a single work. We will focus then in reviewing
the works we consider relevant to this particular problem and to
our approach.

�e diversity of works and datasets also imply diversity in the
representation of the actions. We will consider two main represen-
tations: skeletal data sequences and RGBD sequences.

2.1 Skeleton Sequence based Methods
Before the advent of the deep learning methods, most works focused
in designing representation of the movements that could be learned
or hand cra�ed, and allowed a simple model to classify or make
inference on them.

�e �rst type of methods are based in Support Vector Machines
(SVMs), which are simple yet powerful classi�ers that can easily
learn to discriminate the sequences, when the features are able to
convey the relevant information. To accomplish that, these features
need to be both invariant to changes in the viewpoint and length
of the sequence. In [13] the authors encode the sequence using
temporal and view invariant representations based on di�erent dis-
tance measures between the joints in a skeleton, computed in time
and space dimensions. Similarly, [11] encodes the sequence using
covariance features of the joint locations in a small time window.
In [32], sequences were represented by Histograms of the location
of 3D joints (HOJ3D), and in [20], by spatio-temporal Histogram of
Gradients (HoGs) in the joint angles. Another way to abstract the
complexity of the movements is to learn dictionaries to group and
classify them easily [18, 37]. A very abstract representation can be
found in [27], where the sequences are transformed into lie groups,
mapped to its lie algebra, and passed through Dynamic Time Warp-
ing (DTW) for aligning and applied pyramidal fourier analysis. A
di�erent approach was proposed in [25], were a Gaussian Mixture
Model (GMM) was used to learn a compact representation of the
sequence and a hierarchical Hidden Markov Model (HMM).

Alternatively, instead of classifying the whole sequence at once,
we can classify the frames of such sequence, and then combine
this classi�cation in a global prediction. �e idea is to be able to
identify certain important frames or instances, that unequivocally
identify the sequences. Roughly following this idea we �nd a family
of methods called Multiple Instance Learning [34, 35].

More recently, a number of works leverage on the deep learning
methods that are the state of the art in many pa�ern recognition
problems. �ese works focus on creating models with deep archi-
tectures, that are capable to learn to classify the sequences from
a very simple encoding or even raw data. We can �nd two main
groups of architectures: those based in Recurrent Neural Networks
(RNN) and variants like the Long Short Term Memory [9] (LSTM)
network; and on the other hand the Convolutional Neural Networks
(CNN) based methods.

�e following models inspire their architectures by taking into
account the separation of the body into parts of interest (e.g. le�
and right arms/legs, and the central part composed by torso, neck
and head). �e Hierarchical-RNN [5] takes each body part as the
input to a separate RNN and combines them into a unique output
which is used for classi�cation. [38] proposes Co-occurrence LSTM,
a modi�cation of the LSTM cell that seeks to capture the corre-
lation between the di�erent parts involved in a movement. With
similar inspiration, [24] proposed an LSTM with a�ention model
that reweighs the relevance of the joints in the input at each time
frame. And also we have the Part-aware LSTM [22], that modi�es



the LSTM cell to have the input to hidden state gates explicitly
separated by each body part.

One of the most important factors to measure the information in
a frame is the amount of movement. Some models build upon
this idea. For instance, [26] proposes a modi�ed LSTM model
which incorporates the magnitude of the di�erence with respect
to previous frame into the gating mechanisms of the cell. [16],
introduces the ST-LSTM, a modi�ed LSTM model that scans the
input in a path following fashion over a graph, and such graph
is constructed by unrolling the time component of the input; ST-
LSTM also incorporates a trust gate to the cell, that basically takes
an inverse distance measurement that reweighs the input to the
empirically estimated trust over such input.

Regarding the CNN based methods, one of the �rst approaches
was [4], which converted the sequences to images by representing
the skeleton as a vector of pixels, and concatenating these vectors
along the temporal dimension to create a single RGB image; this
image was then fed to a CNN to perform action classi�cation. More
recently, a group of models leverage on widely known CNN archi-
tectures like AlexNet [15] to perform human action recognition. In
these models some transformations and projections of the sequence
are performed, yielding a single color image that serves as input
to the network: in [31] the 3D skeleton is projected as a 2D image
by framing it in the point of view of a camera along the X, Y or Z
axis; the temporal dimension is converted into a color code, and
�nally the 2D image used as input is the superposition of all frames.
It is worth to note also, that reusing known architectures is very
convenient, as it allows for e�cient training, and also allows for
building ensemble models, that usually perform be�er than the
single network models; in [31] the output of three networks are
combined to produce an ensemble classi�er. [17] follows a very
similar approach, the main di�erence being that the projection is
done over a transformed coordinate system instead of the Carte-
sian system, and that the ensemble model combines ten networks
instead of three.

2.2 Image Sequence based Methods
Di�erently to the skeleton based methods, image sequence methods
do not explicitly model the human body. Instead they work with
raw pixels, and try to �nd meaningful pa�erns in the distributions
of pixels in each frame and its transformations over the time.

To apply convolutions over a sequence of images we can either
represent the input sequence as a 3D volume of information over
which we can apply 3D convolutions, or we can take the time dimen-
sion in the input as di�erent channels and perform 2D convolutions.
�e �rst approach in this category was [12] which performed 3D
convolutions over the video, in a similar manner as the 2D convo-
lutions were applied to a single image. A number of convolutional
layers were used to extract features and the network output was
produced by a dense layer and a so�max classi�er. �is relatively
straightforward approach is however limited however by a high
computational cost. For this reason, other types of models using 2D
CNNs were proposed: the family of models comprised by stream
networks [23, 29], take as input two di�erent representations, a
single image and the optical �ow of the sequence; these two repre-
sentations are passed through a parallel inference architecture, that

fuses the extracted features in its topmost layer. Another option is
to represent the whole video as a single image, by transforming its
representation to a sort of histogram over the movements in the
video [2, 30]. Also worthwhile of mention models that take mixed
approaches. For instance, in [10] 2D CNNs are used to extract fea-
tures, and 3D CNNs over the computed features fuse the spatial
and temporal information.

2.3 Other Methods
�ere are a few other methods that in�uence this work, and are
important to mention. In the related problem of human pose estima-
tion, we can �nd [19], where the authors show that the use of CNNs
over EDMs as view invariant representation of the skeletons pro-
duces good results. Also, we consider the ResNeXt [33] architecture,
as a reference of a top performing modern CNN architecture.

Drawing inspiration, ideas and design choices from all the works
mentioned in this section, we propose a novel method that mixes them
in a sensible way and produces excellent results for this problem.

3 METHOD
Our goal is to recognize human actions or interactions from tem-
poral skeleton data, i.e. sequences of human body joints encoded
as 3D points varying over time. In general, the sequences might
comprise multiple human bodies, but we restrict our focus to in-
teractions that involve up to two actors, since this is the se�ing
commonly encountered in the main benchmark datasets (i.e. NTU
RGB-D dataset [22] and SBU Interaction dataset [35]).

�e problem se�ing is given as follows. Let J be the number of
skeleton joints and let S ⊂ R3×J be the set of all possible con�gu-
rations of joints for a single body skeleton at some �xed time. For
convenience we simply call skeletons the elements of S. Joints are
given as 3D points and each skeleton forms a 3 × J matrix with
joints as columns. �e input space for our action (or interaction)
recognition problem is given by X = (S × S)L, i.e. sequences of L
pairs of skeleton con�gurations, where L is a �xed time-window
length. We consider pairs of body skeleton in the sequence to ac-
count for up to two actors in the scene. In case only a single actor
is in the scene, this will be repeated twice to form a pair. �e set
of possible actions (or interactions) to be predicted is denoted by
Y = {1, . . . ,K} and the action recognizer is a function fθ : X → Y
parametrized by θ that assigns action labels in Y to sequences of
pairs of skeletons in X. �e set of feasible parameterizations is
denoted by Θ.

�e state-of-the-art methods for human action recognition from
skeleton data follow two main approaches: i) implementing the ac-
tion recognition function fθ as a deep recurrent neural network; ii)
rendering the skeleton sequences as a single image and implement-
ing fθ as a deep CNN taking these images as input. Our solution
is closer in spirit to the la�er type of approaches, but instead of
encoding the sequence of skeletons as a single image, we retain
one additional spatial dimension for representing skeletons and
introduce by construction invariance to rigid transformations. �is
is indeed our �rst contribution that we implement by using distance
matrices de�ned over a learned transformation of the skeleton data.
Distance matrices are in fact invariant to rigid transformations by



Figure 2: Overview of the proposed network architecture. Skeletons from the input sequence are transformed using a learned
linear function ξΠ and the output is used to compute a sequence of EuclideanDistanceMatrices (green blocks). �ematrices are
stacked to form a 3D tensor, which is fed to a fully-convolutional network built fromResNeXt units [33] with 3D convolutions
(yellow blocks). Finally, a classi�er composed of global mean pooling, dropout and a fully connected layer with so�-max (blue
blocks) is used to compute the predicted probability distribution over action classes (red blocks). Note that we are not showing
the case of multiple skeletons per frame for the sake of simplicity.

nature. Our second contribution consists in adopting a deep neu-
ral network with spatio-temporal convolutional operators applied
to distance matrices extracted from skeleton data. �is contrasts
with the approaches in the literature that typically rely on standard
CNNs, or recurrent neural networks.

3.1 EDMs over Transformed Skeletons
Many approaches in the literature [5, 25, 38] do not feed the action
recognizer with the original skeleton data, but try manipulate the
input to enforce some form of invariance to rigid transformations.
�is is indeed empirically shown to be bene�cial to the human ac-
tion recognition task. For instance, in [5] the skeletons are put into
a canonical reference system through a change of coordinates. �e
solution we pursue to achieve invariance to rigid transformations is
di�erent and consists in representing skeletons in terms of distance
matrices, which are inherently invariant to rigid transformations.

Given a 3×M matrix Z of 3D points we de�ne the corresponding
Euclidean distance matrix D = edm(Z) ∈ RM×M+ as the nonnegative,
symmetric M ×M matrix with (i, j )th entry given by the squared
Euclidean distance between the ith and jth columns of Z. �at is,
Di j = ‖Zi −Zj ‖2, where ‖ · ‖ is the Euclidean norm, and Zi ∈ R3 is
the ith column of matrix Z. Distance matrices are invariant to rigid
transformations (e.g. translations, rotations, re�ections) applied
to the original points and thus suit well our purpose of having a
representation for skeletons that is invariant to such transforma-
tions. However, distance matrices are not invariant to permutation.
�is means that the EDM computed from a skeleton is sensitive
to the ordering of the joints. In general, permutations might exist
that have a negative impact on the �nal performance of the action
recognition task (see Sec. 4.4), in particular if we aim to exploit
local structures of the distance matrix via convolutional neural
networks (see next subsection). To overcome this issue, we propose

to learn a transformation of the skeleton that is su�ciently general
to represent all possible permutations, and compute the distance
matrices of transformed skeletons. By having this component em-
bedded into the neural network, we give the classi�er the freedom
of emphasizing the importance of some joints and potentially dis-
covering an optimal permutation of the joints that enhances local
structures in the distance matrices. At the same time we preserve
an invariance to rigid transformations in all layers that follow the
distance matrix computation. In this work we keep the skeleton
transformation simple by considering a linear operator

ξΠ (S) = SΠ ,

acting on S, where Π ∈ RJ×J is a J× J real matrix to be learned. �is
transformation encompasses permutations of joints as a special
case.

Next we deal with the problem of encoding pairs of skeletons in
terms of EDMs, since our problem se�ing assumes up to two body
skeletons in the scene. Accordingly, let S, Ŝ ∈ S be two skeletons
and remind that S = Ŝ if a single skeleton is present. �ere are
di�erent ways in which the two skeletons can be encoded using an
EDM representation. We consider the following two approaches:
Decoupled encoding. �e �rst approach simply encodes S and Ŝ inde-
pendently, a�er undergoing the transformation ξΠ , into edm(ξΠ (S))
and edm(ξΠ (Ŝ)), and stacks the two representations as they were
two separate feature channels. As a result we obtain a J × J × 2
tensor representing the two skeletons.
Coupled encoding. �e second approach concatenates the two skele-
tons into a single matrix of points that we denote as S|Ŝ ∈ R3×2J

and uses the distance matrix edm(ξΠ (S|Ŝ)) as encoding. �is yields
a 2J × 2J matrix representation for the two skeletons.



�e encoding of skeleton data that we have detailed for a pair of
skeletons is actually applied to the entire sequence of skeletons. �is
adds also the temporal dimension to the representations mentioned
above, yielding a L × J × J × 2 tensor if we opt for the independent
encoding scheme, and a L × 2J × 2J if we apply the joint encoding
instead, where L is the temporal window length.

3.2 3D CNNs over Distance Matrices
�e application of CNNs to distance matrices has recently proven
e�ective to tackle the problem of human pose regression from skele-
ton data [19]. Indeed, distance matrices exhibit rich local structures
(up to permutations), which can be e�ectively learned by convolu-
tional �lters. In this work, we extend the ideas in [19] by considering
time as an additional spatial dimension when performing convo-
lution. �is results in a 3D spatio-temporal convolution operator
which allows our network to capture the temporal evolution of the
local structures encoded by the EDMs,

Formally, given a tensor Z ∈ RT×H×W×C and a convolutional
�lter w ∈ Rt×h×w×C, we de�ne 3D convolution ? as

(w?Z)i, j,k =
t∑

i′=1

h∑
j′=1

w∑
k ′=1

C∑
c=1

wi′, j′,k ′,cZi+i′, j+j′,k+k ′,c ,

where the �rst three dimensions of Z and w are interpreted as spa-
tial dimensions, while C are the feature channels. In practice, 3D
convolution can be used as a drop-in replacement for 2D convo-
lution in most networks, providing us with great �exibility when
de�ning our architecture.

Building from these spatio-temporal convolution operators, we
propose a network architecture inspired by the recent ResNeXt of
Xie et al. [33] (see Fig. 2). In particular, we adapt the con�guration
employed in [33] for the CIFAR-10 experiments, replacing each
convolution with a spatio-temporal convolution and performing
the �nal global average pooling both over the spatial and time
dimensions. To partially compensate for the increased number of
parameters in our kernels compared to the ones in [33], we reduce
the number of �lters in each layer by a factor 2. Furthermore,
di�erently from [33], we perform dropout on the inputs of the �nal
fully-connected layer. For additional details refer to Appendix A.

3.3 Network Training
Given a training set T ⊂ X ×Y we estimate an action recognition
function fθ : X → Y by minimizing the regularized empirical risk

R (θ ;T ) =
1
|T |

N∑
(X ,y )∈T

`( fθ (X ),y) + λΩ(θ ) ,

over Θ, where ` : Y × Y is a loss function penalizing wrong
predictions and Ω : Θ→ R is a regulariser. In our experiments, `
coincides with the standard log-loss and Ω with the `2 norm.

�e minimization of the empirical risk is performed using sto-
chastic gradient descent. Details about the hyperparameters of the
optimizer are provided in the experimental section.

4 EXPERIMENTS
In the following Sec. 4.3 we study the performance of the proposed
action recognition method by conducting an extensive evaluation

on three benchmark datasets (see Sec. 4.1), including the recent
large-scale NTU RGB-D [22]. Furthermore, in Sec. 4.4 we perform
an in-depth ablation study to evaluate the e�ects of learning the
shu�e matrix under di�erent sets of constraints. Additional details
about our network architecture and training procedure are reported
in Sec. 4.2.

4.1 Datasets
In this work we consider three benchmark datasets, described in
the following.

NTU RGB-D. �e NTU RGB-D dataset [22] is, to the best of our
knowledge, the largest-scale publicly available action recognition
dataset. It contains over 56 thousand sequences, captured with
multiple Kinect 2 sensors, of 40 actors performing 60 di�erent
actions in 17 di�erent setups. Each action is repeated 2 times for
each actor / setup pair and recorded from three di�erent views
at the same time. For each sequence, both RGB-D videos and 3D
skeletons with 25 joints, automatically extracted using the Kinect 2
so�ware, are made available. Depending on the action class, one or
two actors can be present in the same sequence at the same time.
Following the experimental protocol in [22], we consider both a
cross-view and a cross-subject se�ing, spli�ing training and testing
data on the basis of, respectively, the view from which the action is
recorded or the actor performing it.

MSRC12 Gestures dataset. �e MSRC12 Gesture dataset [6] contains
594 video sequences, captured with a Kinect, of 30 actors performing
12 actions. Each sequence contains several repetitions of the action
of interest, for a total of 6244 action instances. As in [17, 31], we
follow a cross-view evaluation protocol. Di�erently from NTU RGB-
D, the skeleton detections provided with this dataset are computed
using the Kinect v1 so�ware, and contain skeletons with 20 joints.

SBU Interaction dataset. �e SBU Interaction dataset [35] focuses
solely on actions involving two interacting actors. It contains ≈
300 sequences, subdivided in 21 sets, each containing one or two
repetitions of each of 8 action classes, performed by a di�erent
pairing of subjects from a set of 7. Skeleton detections with 15 joints,
extracted using the PrimeSense so�ware, are provided together
with the original RGB-D video sequences. In our experiments we
follow the 5-fold cross-validation protocol also adopted in [35].

4.2 Implementation and Training Details
We train our DM-3DCNN network by stochastic gradient descent
using the Adam [14] algorithm, with a batch size of 32 and parame-
ters β1 = 0.9 and β2 = 0.999. When considering the NTU RGB-D
and MSRC12 datasets, we adopt the following training schedule:
we start with a learning rate of 10−3, reducing it by a factor 10
a�er 40 epochs and again a�er 60 epochs, training for a total of
80 epochs. �e network parameters are initialized following the
method from [7]. For SBU, given its considerably small size, we
train by �ne-tuning from the network trained on NTU RGB-D:
we initialize all convolutional �lters from the values learned on
NTU RGB-D, while learning the �nal fully connected classi�er
from scratch, and train for 300 iterations with an exponential learn-
ing rate decay from 10−4 to 10−5. In all cases, the regularization
factor (i.e. weight decay) is set to λ = 5 × 10−4. We implement



Table 1: Results on the NTU RGB-D dataset.

Cross Cross
Method Subject View

LSTM-based methods
Deep LSTM [22] 60.7 % 67.3 %
Part-aware LSTM [22] 62.9 % 70.3 %
ST-LSTM [16] 69.2 % 77.7 %
Multilayer LSTM in [36] 64.9 % 79.7 %

CNN-based methods
Liu et al. [17] best single 73.5 % 84.0 %
Liu et al. [17] ensemble 80.0 % 87.2 %
DM-3DCNN 82.0% 89.5%

our networks using the TensorFlow [1] framework and run our
experiments on a single Nvidia GTX 1080 GPU1.

Following the experimental se�ing in [22], in all datasets we
down-sample the input sequences along the temporal dimension
by subdividing it into 20 equally spaced sections and randomly
selecting a frame from each. During training a di�erent random
sampling is considered each time a sequence is fed to the network,
as we observed that this provides a useful regularizing e�ect. As
mentioned in Sec.3.1, depending on the dataset, we consider up to
two input skeletons at each time step. Since the datasets considered
in our experimental evaluation do not de�ne any explicit semantic
about the ordering of the skeletons, during training we randomly
select which one is interpreted as S and Ŝ each time a sequence is
loaded. �e same sampling procedure, both for sequence down-
sampling and skeleton swapping, is also performed at test time,
and all results in the following are reported as the average of the
accuracies over 10 independent runs.

4.3 Comparison with State of the Art
Before performing our main evaluation, we conduct a set of prelim-
inary cross-validation experiments on held-out training data from
NTU RGB-D and SBU, in order to select which EDM encoding to
use (see Sec.3.1). Interestingly, we observe that for NTU RGB-D the
decoupled encoding exhibits the best performance, while for SBU
the coupled encoding is favored. �is is not surprising: the SBU
dataset is mostly focused on interactions, thus the cross-skeleton
distances encoded in the coupled EDM contain valuable informa-
tion for our network. On the other hand, interaction classes are
a strict minority in NTU RGB-D, thus making the more compact
representation of the decoupled encoding a be�er �t for this dataset.
Note that we do not need to choose which encoding to use in the
MSRC12 case, as it only contains sequences with one skeleton.

NTU RGB-D
Compared to most previous datasets [6, 28, 35], NTU RGB-D con-
tains 1-2 orders of magnitude more data, captured with the im-
proved Kinect 2 sensor. Nonetheless, we note that the skeleton de-
tections provided with the dataset still contain a substantial amount

1�e source code is available at: h�ps://github.com/magnux/DMNN

Table 2: Results on the MSRC12 dataset.

Method Accuracy
Hand-cra�ed features

LC-KSVD [37] 90.2 %
Cov3DJ [11] 91.7 %

CNN-based methods
Du et al. [4] 84.5 %
Wang et al. [31] 93.1 %
Liu et al. [17] best single 93.2 %
Liu et al. [17] ensemble 96.6%
DM-3DCNN 95.8 %
DM-3DCNN ensemble of 5 96.6%

of noise, to the point that, even for a human observer, it can be hard
to recognize the actions just by looking at the skeletons.

In a �rst set of experiments, we compare the performance of our
method against recent LSTM-based and CNN-based approaches
to human action recognition from skeleton data. In particular, we
consider: the part-aware LSTM in [22]; the spatio-temporal LSTM
(ST-LSTM) in [22]; the multi-layer LSTM with geometric features
in [36]; the ensemble of CNNs approach in [17]. For the method
in [17] we report both the performance of the ensemble and that of
the best single network in the ensemble. Finally, we also consider a
plain 3-units LSTM baseline, as reported in [22].

Table 1 summarizes our results, highlight the advantages of our
method when dealing with this large and challenging dataset. Com-
pared to the best LSTM-based approach we observe an absolute
increase in accuracy of ≈ 8 % in the cross-subject and ≈ 6 % in the
cross-view se�ing. Similarly, we obtain a ≈ 2 % improvement over
the CNN-based approach in [17] in both se�ings under exam. It is
worth noting that the networks used in [17] have a considerably
larger number of parameters than DM-3DCNN, i.e. ≈ 6×107 param-
eters for each network in the ensemble [15] and ≈ 6 × 108 overall,
compared to 6.1 × 105 parameters in DM-3DCNN. �is suggests
that our EDM-based encoding is indeed more e�ective at repre-
senting sequences of skeletal data, compared to the image-based
one adopted in [17], as our network is able to exploit it to obtain
superior performance while using ≈ 1000 times less parameters.

MSRC12
In the next set of experiments, we focus our a�ention on the MSRC-
12 dataset. Here we consider two traditional approaches based on
hand-cra�ed features, i.e. LC-KSVD [37] and Cov3DJ [11]; and
three CNN-based approaches, i.e. Du et al. [4], Wang et al. [31] and
Liu et al. [17]. �e results are reported in Tab.2. It is clear that the se-
quences in this dataset are considerably less challenging than those
in NTU RGB-D, as most methods under exam are able to achieve
greater than 90 % accuracy. Among the non-ensemble models, DM-
3DCNN obtains the highest accuracy, also surpassing the ensemble
of CNNs in [31]. Interestingly, DM-3DCNN performs be�er than
the single best CNN of [17], while being slightly surpassed by their
ensemble, at the cost of employing ≈ 1000 times more parameters
and, consequently, ≈ 1000 times more operations. Furthermore,
di�erently from DM-3DCNN, the networks in [17] also exploits

https://github.com/magnux/DMNN


Table 3: Results on the SBU Interaction dataset.

Method Accuracy
Other LSTM-based methods

HBRNN [5] 80.4 %
Deep LSTM [38] 86.0 %
Co-occurrence LSTM [38] 90.4 %
ST-LSTM [16] 93.3 %
DM-3DCNN 93.7%

a vast amount of additional data, as they are pre-trained on the
ILSVRC2012 data [21].

Given the results of Liu et al. [17], both in NTU RGB-D (Tab. 1)
and MSRC-12 (Tab. 2), it appears that an ensemble of networks, each
trained on a di�erent representation of the skeleton sequences, can
signi�cantly outperform the single models. �is concept can easily
be extended to our approach, e.g. by feeding a di�erent permutation
of the joints to each network in the ensemble. To explore this
idea, we train �ve independent instances of DM-3DCNN, using
the default joint ordering and four additional permutations2, and
average their output probabilities to obtain the �nal predictions.
�e results are reported in Tab.2 in the “DM-3DCNN ensemble of
5” row. Using our ensemble we are able to �ll the performance
gap with the method of Liu et al. [17], while still using ≈ 200
times fewer parameters. Note, however, that in our case the relative
improvement going from the single model to the ensemble is smaller
than in [17], further validating the e�ectiveness of our network.

SBU Interaction
In our �nal comparison with state of the art methods, we consider
the interaction-focused SBU dataset. Table 3 reports the results
obtained with DM-3DCNN and four RNN-based approaches: the
hierarchical recurrent network of [5], the co-occurrence LSTM
of [38] and the spatio-temporal LSTM of [16]. We also include
in the comparison a plain LSTM model as reported in [38]. DM-
3DCNN shows the highest accuracy, surpassing ST-LSTM by 0.4 %,
a considerably lower advantage when compared to that obtained in
the NTU RGB-D dataset. A possible explanation of this di�erence
lies in the relative size of the two datasets. In fact, SBU contains
about 200 times less sequences than NTU RGB-D, suggesting that
our DM-3DCNN can be more e�ective at exploiting large-scale
datasets compared to the LSTM-based approach in [38].

4.4 In-depth Analysis of DM-3DCNN
As noted in Sec.3.1, the joint permutation considered when forming
the EDMs to be fed to the network can have a substantial impact
on classi�cation accuracy. To compensate for this, we propose to
calculate the EDMs on a learned linear combination ξΠ of the joints,
which encompasses all possible permutations as special cases. In
order to validate this approach, we perform an ablation study on the
NTU RGB-D dataset and collect the results in Fig.3. In particular, we
consider variations of DM-3DCNN trained with EDMs computed

2�e permutations are selected by separating the joints in six subsets corresponding to
le�/right arm, le�/right leg, head and torso and randomly shu�ing the subsets while
keeping the order of the joints in each subset �xed.

Cross Subject Cross View
75

80

85

90

95

Ac
cu

ra
cy

%

NTU RGB-D

Original Random
Original + ξΠ Random + ξΠ

Figure 3: Ablation study on the NTU RGB-D dataset, com-
paring four di�erent settings of DM-3DCNN: without joint
transformation, using the original permutation (Original)
or a random one (Random); with joint transformation, us-
ing the original permutation (Original + ξΠ) or a randomone
(Random + ξΠ).

Figure 4: Original skeleton points from NTU RGB-D (circu-
lar markers) end transformed points using ξΠ (cross mark-
ers). Two views are shown to better convey the 3D shape of
the data. (Image best viewed on screen)

on the original joints (Original) or their transformation with ξΠ
(Original + ξΠ). Learning ξΠ produces an observable increase in
accuracy, both in the cross-subject and cross-view se�ings.

While ξΠ is in principle able to produce any permutation, we still
expect the initial ordering of the input joints to play a role, as we are
learning Π by minimizing an highly non-convex function. To test
this e�ect, we re-run the experiments above, this time considering
a di�erent, randomly selected permutation of the joints instead
of the original one given in the dataset. �e resulting accuracies,
visualized in Fig. 3 as Random and Random + ξΠ , are noticeably
lower than those obtained with Original and Original + ξΠ . �is
can be easily explained by observing that the original permutation
is not random, but instead (loosely) follows the structure of the
skeleton, keeping joints from distinct body parts close together and
thus, intuitively, producing more informative local structures in
the EDMs. Interestingly, however, when learning ξΠ our network



Figure 5: Distance matrices corresponding to the points in
Fig.4. Le�: original points. Right: transformed points.

is able to overcome the disadvantage imposed by the random shuf-
�ing and reach the same accuracy obtained with the hand-picked
permutation.

Since we are not applying any constraint on the matrix Π, in
general ξΠ will transform the skeletons in complex, if useful, ways.
In order to gain some more insights about the action of ξΠ on the
points, in Fig.4 we plot an example of original and transformed
skeletons from NTU RGB-D. Two main phenomena are immediately
apparent: i) the transformed points are shi�ed towards the origin of
the coordinates system; ii) the limbs appear to be stretched, while
the torso becomes comparatively more compressed. (ii) can be
explained as the network giving more importance to the joints in
the arm and legs, which, intuitively, can be more discriminative
for the task of recognizing actions. For another perspective on the
e�ect of ξΠ , in Fig.5 we plot the distance matrices corresponding
to the points in Fig.4. Here, the pa�erns visible in the EDM of the
transformed points appear to be more contrasted than those in the
original one, with stronger edges and corners.

5 CONCLUSION
In this work we presented a novel DNN architecture for recognizing
human actions from 3D skeletal data. Our approach is based on two
main ideas: (i) representing sequences of skeletons as sequences
of euclidean distance matrix (EDM) over a learned transformation
of the skeletons’ joints; (ii) processing these sequences using a 3D
convolutional neural network. We validated our method on three
benchmark datasets, obtaining state of the art results. In particular,
on the large-scale NTU RGB-D dataset we achieved an improvement
in accuracy of ≈ 2 % over the previous state of the art approach,
while using almost 1000 times fewer parameters and operations. A
promising direction for future research involves unifying skeleton
detection from RGB-D video and action recognition in a single, end-
to-end di�erentiable architecture, e.g. by combining our approach
with those in [3] and [19].

A NETWORK ARCHITECTURE DETAILS
Following the terminology employed in [33], our network is com-
posed of three stages of 3 ResNeXt blocks each. Each block is

obtained from the bo�leneck template


1 × 1 × 1, 32
3 × 3 × 3, 32
1 × 1 × 1, 128


, with car-

dinalityC = 16 and pre-activation structure [8]. �e network starts

with a 3 × 3 × 3 convolution with 32 �lters. In the second and
third block we halve the spatial resolution of the feature maps by
applying a stride of 2 × 2 × 2 on the �rst ResNeXt block. Corre-
spondingly, we increase the depth of the feature maps by a factor
2. �e third stage is followed by global 3D average pooling and a
fully connected layer producing the �nal prediction.
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