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Abstract— In this paper, we propose a novel Aerial Social
Force Model (ASFM) that allows autonomous flying robots
to accompany humans in urban environments in a safe and
comfortable manner. To date, we are not aware of other state-
of-the-art method that accomplish this task. The proposed
approach is a 3D version of the Social Force Model (SFM)
for the field of aerial robots which includes an interactive
human-robot navigation scheme capable of predicting human
motions and intentions so as to safely accompany them to their
final destination. ASFM also introduces a new metric to fine-
tune the parameters of the force model, and to evaluate the
performance of the aerial robot companion based on comfort
and distance between the robot and humans. The presented
approach is extensively validated in diverse simulations and
real experiments, and compared against other similar works
in the literature. ASFM attains remarkable results and shows
that it is a valuable framework for social robotics applications,
such as guiding people or human-robot interaction.

I. INTRODUCTION

In recent years, we have seen extensive progress in the
field of robotics and machine learning. At present, ground
and aerial robots can be found for a wide range of appli-
cations, such as transportation, entertainment, and domestic
tasks. Despite this progress, robot navigation is one of the
most difficult challenges which researchers face, mainly
because real environments present obstacles and highly dy-
namic objects moving in different directions and velocities,
making it difficult to accomplish safe navigation towards a
final destination.

Research on aerial robots has also grown substantially,
thanks to modern advances in technology, materials, and
systems of perception and control. This research paves the
way for a near future wherein aerial and ground robots
interact with people in houses, streets, or retail environments
in order to perform specific tasks.

To accomplish this goal, the interaction between robots
and humans plays a key role, since robots must learn and
act in accordance with human behaviors and observe certain
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Fig. 1: Aerial robot accompanying a person. ASFM com-
putes the interactive forces which enable the robot navigate
side-by-side with a human. Top row: Two instances of a
person interplaying with the robot. Bottom row: The same
scenes depicting the aerial social forces provided by ASFM.

social conventions, such as maintaining the level of personal
space by which people feel safe and comfortable.

Nowadays, this is a subject of study where efforts are
mainly focused on the development of autonomous compan-
ion robots capable of performing human-robot interactions
in a more natural way [1], [2]. However, these works were
developed for ground robots using 2D social force models.
Similarly, other works for robot companion introduce me-
diating factors, such as person’s individual experience with
robots [3] or gender identity [4], albeit, the experiments were
conducted on controlled areas with no dynamic obstacles nor
people.

With regards to aerial robots, the research on robot com-
panion is relatively minimal [5], [6].Furthermore, the works
have been mainly devoted to simple robotics tasks with little
interaction between the robot and the person.

Unlike previous works for ground robots, we propose a
new robot companion approach for aerial robots in urban
environments. This approach, called Aerial Social Force
Model (ASFM), defines a social interaction model between
persons, robots, and objects (refer to Fig. 1). Particularly,
ASFM is an 3D extension of the Social Force Model (SFM),
introduced by Helbing [7], in order to consider the possibility
to navigate in real world in different altitudes instead of
moving in a plane.



The proposed approach consists of three main stages. In
the first stage, ASFM includes an efficient and accurate pre-
diction module based on online linear regression to estimate
the person’s trajectory [8]. This module allows the flying
robot to accompany the person by his or her side in order to
provide a higher degree of comfort and safety for the person.

This contrasts with other methods based on following
people without inferring the intention of people. The output
of this module is a set of future person’s positions, whereas
the input are the current positions of the person and aerial
robot acquired by the Optitrack motion capture system used
in our experiments.

The second stage of ASFM corresponds to the computa-
tion of the interacting forces that determine the behavior of
the robot during the accompaniment. To apply the required
forces, we learned the appropriate parameters of the social
force model. This is carried out in two steps. Initially, the
force parameters are computed using a genetic algorithm [9]
and a database created for this goal during a training phase.
In the second step, we adjust the model’s parameters using
post-experiment questionnaires to get human feedback about
the robot’s behavior and the person comfort during the
companion task.

Finally, in the last stage, we introduce a new quantitative
metric to evaluate the robot’s performance. Since the verifi-
cation of man-in-the-loop systems is fuzzy, we developed
an quantitative metric that evaluates the behavior of our
robot companion approach, during the task the robot tries
to maximize this performance.

The remainder of the paper is organized as follows.
Section II describes the Aerial Social Force Model (ASFM)
and its main components. In Section III, ASFM is evaluated
exhaustively in diverse simulations and real-life experiments.
Finally, Section IV provides the conclusions.

II. AERIAL SOCIAL FORCE MODEL

In this section, we proceed to describe the different mod-
ules of the proposed ASFM approach: The regression model
used to estimate people’s motion, the interactive forces of
the aerial force model, and the quantitative metric used to
evaluate the performance of the robot.

A. Online Regression Model

In this work, we make use of the well-known regression
model to estimate people’s future positions in order to let the
robot navigate side-by-side with humans. The coordinates of
the person and the aerial robot positions are acquired using
the Optitrack sensing system, including an array with the
differential values between consecutive values. Subsequently,
the coefficients of the model are computed using Stochastic
Gradient descent (SGD) [8]. This process is online, and
therefore, the robot computes continuously the estimation
of people motion and uses this information to calculate the
interactive social forces.

f(X) = w0 +

p∑
j=1

Xjwj (1)

Where the input vector is defined as X =
(∆x1,∆x2, ...,∆xp) and w=(w1, . . . , wp) are the unknown
coefficients to be adjust, to finally predict a real-valued
output Y.

To estimate the coefficients, X and Y matrices are built,
the number of previous values to take into account in this
case are five, this means, six unknown parameters need to
adjust. During the optimization process the gradient descent
method was used, and the number of examples N was one
hundred.

X =


1 ∆xn1,1 ∆xn2,2 · · · ∆xnp,p

1 ∆xn2,1 ∆xn3,2 · · · ∆xnp+1,p

...
...

...
. . .

...
1 ∆xnN−p,1 ∆xnN−p+1,2 · · · ∆xnN−1,p


(2)

y =
[
∆xp+1,∆xp+2, . . . ,∆xN

]′
(3)

With the previously collected data, and the matrices built,
the weights were found using the well-known method gra-
dient descent optimization method, with an initial random
guess of the parameters. The cost function was defined as:

J(w) =

N∑
i=1

(f(X)− y)2 (4)

This method works in an iterative way, in which in each
iteration the weights are updated in order to be closer to the
optimal minimum, changing the weights in each iteration k
in the direction of the gradient, seeking that:

J(wk+1
0 , wk+1

1 , ..., wk+1
p ) < J(wk0 , w

k
1 , ..., w

k
p) (5)

Until the cost function is not reduced anymore, or until
the iteration cycle finishes. The gradient of the cost function
is defined as follows:

∇J(w) =

(
∂J

∂w0
,
∂J

∂w1
, ...,

∂J

∂wp

)
(6)

∂J

∂wp
=

1

N

N∑
i=1

 p∑
j=0

Xijwj − yi

Xp (7)

In order to move through the gradient, the RMSprop
strategy is used, this method was proposed by Geoff Hinton
in an unpublished work, and it states that dividing the
gradient by the root of the expected value of the gradient,
taking into account a short window, makes the learning work
much better.

E[∇J(w)2]t = γE[∇J(w)2]t−1 + (1− γ)∇J(w)2t (8)

where γ means the momentum value, typically set to 0.9 or
0.95, and always < 1.

∆wt = −η · ∇J(w) (9)

In which η means the learning rate set by the user.

wt+1 = wt + ∆wt (10)



wt+1 = wt −
η

2
√
E[∇J(w)2]t + ε

∇J(w) (11)

where E[∇J(w)2]t means the decaying average over past
squared gradients, and ε is a smoothing term that avoid the
division by zero value.

B. Interactive Forces

In this section, we proceed to describe a model capable
of representing the interactions between a pedestrian and
a flying robot, based on the works of [7], [10]. Their
researches state that changes in behavior (trajectory) can be
explained in terms of social fields or forces. Nevertheless, in
these works their representation models are in 2-dimensions,
while in the present paper, we introduce an extension of
these models adding a new dimension. Also, they do not
take into account the interaction between people and aerial
robots, which are two of the main contributions of the this
work.

In the social force model, pedestrian interactions and
final destinations are defined as a summation of existing
interactive forces that determines the resultant force, and
hence, people’s trajectories. The model states the final motion
which can be expressed through a function depending on
the pedestrians’ positions and velocities. In the Aerial Social
Force Model (ASFM), we introduce a flying robot in the
social environment, and take into account the interaction
among the robot, people and obstacles.

More precisely, the total force is defined by the sum of
the robot-humans and robot-objects interaction forces, and
the attraction forces, that makes the robot being closer to
the human being accompanied,

FR = fgoalR + Fint
R . (12)

The interaction force Fint
R is the summation of all the

repulsive forces exerted by other pedestrians, objects and
robot around him, and is defined as:

Fint
R =

∑
pj∈P

f intRj +
∑
o∈O

f intRo (13)

where P is the set of people moving in the environment
and O is the set of obstacles. Next, it is defined each
interaction force affecting the robot individually, and the
motivation behind this.

1) Goal force attraction: This force drives the robot to the
goal. In our case, there are two attraction forces, one which
pursues the position of the human being accompanied, and
the second one that pushes the robot to the human forecasted
position in the next future steps. The robot will adapt its
actual velocity vR with a certain relaxation time k−1. Both
attraction forces are defined as:

fgoalR = k(v0
R − vR) (14)

Formally, the social forces model assumes that a robot R
with mass mi tries to move at a certain desired speed v0R in a
desired direction eR, i.e., with desired velocity v0

R = v0ReR.

2) Robot-human interaction force: Pedestrians also exert
a repulsive force over the robot. In the same way, people want
to keep a certain distance to the robots and other pedestrians
and objects, because whether they are too close to the robot,
they might feel uncomfortable. One of the main contributions
of this work is the extension of the study of the pedestrian’s
and robot’s“personal” space, which in the previous work
[1] was well studied taking into account a land-based robot
interplaying with pedestrians,

f intRj = ARje
(
dR−dRj

BRj
) rRj(t)

dRj(t)
ψ(ϕRj , θRj) (15)

where ARj , BRj , λRj , dR are the parameters to be
learned. ψ(ϕRj , θRj) represents the anisotropic factor in a
3D space, which depends on ϕRj , an angle formed between
the desired velocity of the pedestrian pi and the vector rRj

(which is the distance between the robot and the pedestrian
pj and pointing to him) and θRj , which is the angle between
the x and z coordinates, an angle formed between the
position of the robot and the pedestrian. ψ(ϕRj , θRj) is
defined as:

ψ(ϕRj , θRj) = w(ϕRj) cos(θRj)(h + ξRjw(ϕRj)) (16)

where h is the height of the pedestrian, Further, w(ϕRj)
is described as:

w(ϕRj) = λRj + (1− λRj)
(

1 + cos(ϕRj)

2

)
(17)

where λRj defines the strength of the anisotropic, and
cos(ϕiR) is calculated as:

cos(ϕRj) = −nRj · epj (18)

nRj, which describes the direction of the force, is the
normalized vector pointing from the robot to pj and epj is
the desired motion direction of the pedestrian pj (which is
pointing to the goal).

The robot anisotropic factor has some differences with
respect to the anosotropic factor of the humans, due that the
drone is on the air all the time and does not has the same
limitations as in the ground. This new anisotropic factor is
defined by:

ψ(ϕRj , θRj) = w(ϕRj) cos(θRj) (19)

In Fig. 2, it is shown the representations of the anisotropic
factors (personal spaces) of both people and flying robots.
In order to determine these values, we conducted a series
of tests in which a flying robot moved towards a person at
different speeds (0.4m/s, 0.7m/s and 0.9m/s), at different
angles (0o,45o,90o,135o and 180o) and height (0.5m, 0.75m,
1m, 1.25m, 1.5m, 1.75m, 2m).



(a) (b) (c) (d)
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Fig. 2: Anisotropic factor in 3D view . Top row: Human’s anisotropic factor in 3D view , with λRj = 0.25 and ξRj = 0.25.
Bottom row: Drone’s anisotropic factor in 3D view, (e) and (f) with λ1 = 0.90 and (g) and (h) with λ = 0.50

3) Robot-object interaction force: The flying robot, as
well as humans do, keeps a certain distance from objects
when navigates, trying to follow an objects-free path to
safely reach its goal. Therefore, the objects around the flying
robot exert a force diverting its path, with a repulsive and
monotonic decreasing potential Uio [7]. This repulsive force
is defined as:

f intRo = −∇rRo
URo(‖ rRo ‖) (20)

where URo(‖ rRo ‖) is defined as:

URo(‖ rRo ‖) = U0
Roe

−‖rRo‖
C , (21)

the vector rRo is defined as the difference between the
location of the robot and the location of the obstacle o that
is nearest to the robot.

The total force which will drive the flying robot is defined
by:

FR = fgoalR,dest + fgoalRj + Fint
Rj + Fint

Ro (22)

Constraints in drone’s velocity has also be taken into
account, depending on how close the aerial robot is. We
have defined zones inspired on how people interacts and in
function of the pedrestrian proximity:

vR =


vsafety

dRj

w(ϕRj)
≤ µsafety

vcruise µsafety <
dRj

w(ϕRj)
≤ µsocial

vfree otherwise

(23)

being vsafety the maximum velocity the drone can take,
when is at least one person inside the inner safety zone.
vcruise is the velocity when someone is inside its social
safety zone and vfree is the maximum velocity when no
one is inside its safety zone.

C. Quantitative Metrics

To evaluate the performance of the task accomplished by
the flying robot, a new quantitative metric is defined. This
assessment is based on “proxemics”, proposed by [11] and
the importance to walk side-by-side. This work considers the
following distances between people:
• Intimate distance: the presence of another person is

unmistakable (0-45cm).
• Personal distance: comfortable spacing (45cm-1.22m).
• Social distance: limited involvement (1.22m-3m).
• Public distance: outside circle of involvement (> 3m).
To define the metric used in the present work, four

different areas have been defined: (i) People’s Personal space
Ci, where the robot must not perturb the human’s vital space,
eq. 24. (ii) Social distance area A, which the robots must
respect to be socially accepted. (iii) The robot should be in
the human’s field of view to allow human-robot interaction
during the performance of the task and must navigate side-
by-side with the person B. (iv) Finally, if there are other
pedestrians in the environment pj , the robot must not perturb
pedestrians’ personal space

⋃
pj

Cj .
A =

{
x ∈ R3 \ (B ∪ C) | d(x, pi) < 3

}
B =

{
x ∈ R3 \ C | d(x, pi) < 3ψ(ϕpi , θpi)

}
C =

{
x ∈ R3 | d(x, pi) < ψ(ϕpi , θpi)

}
(24)

where ψ(ϕpi , θpi) is defined in eq. 16. Moreover, the
flying robot is represented as ψ(ϕRj , θRj), previously in-
troduced in eq. 19.

Thus, we can now define the performance of the task
accomplished by the robot, depending on human’s position
pi and robot’s position pR.

ρ(r, pi) =

∫
(B\

⋃
pj

Cj)∩R

dx

|R|
+

∫
(A\

⋃
pj

Cj)∩R

dx

2|R|
∈ [0, 1]

(25)



Fig. 3: Optitrack System. An indoor environment with
Optitrack depicting the experiments we performed.

Where x ∈ R3. The range of the performance function is
defined between 0 and 1. If the complete area of the robot
is allocated in zone B, the performance gets the maximum
value, i.e., 1. As the robot moves far from the person and
enters to zone A, the performance decreases to 0.5. Finally,
the performance in zones Ci is 0, as it is not allowed that
the robot enters in people’s personal space.

III. EXPERIMENTS

In the present section, we proceed to describe the synthetic
and real-live experiments the autonomous flying robot has
been performed according to the ASFM.

A. Robotic Platform and Environment

During the experiments, we have used the AR.Drone 2.0,
a flying quadcopter build by Parrot. The quadcopter is a very
good choice to test our algorithms in a short-time setup.

Moreover, we make use of the Optitrack Motion Capture
system, it is a system created by NaturalPoint Inc. In this
work, Optitrack was used to analyze an indoor environment
to track the human and the drone’s positions in a previously
defined space. Optitrack allows us to calculate the interaction
forces between the person and the robot and to see the
behavior of our model in real time. Both, human and drone
used markers in the body to let the software detect the
exactly position of each of them. The working area for the
experiments were 5x5 m.

B. Synthetic Experiments

Here, we present the evaluation of the performance of
the ASFM, for this reason, we have built a simulated social
environment. In this section, we introduce the computation of
the parameters that have been used in the model, the results
of the implemented regression model to estimate person’s
motion and the simulations of the complete system.

Fig. 4: Regression Model. Different humans’ trajectories
and the forecasted paths versus the real path. The error was
measure using the Root-mean-square error.

1) Online Regression Model: During the synthetic exper-
iments we simulated the social behavior of a set of pedestri-
ans, the drone and the human being accompanied. Then, we
collected the data, which help us to see an approximate real
behavior of pedestrians walking along a path, and we used
this data to build a model to forecast the next position few
seconds ahead. The model is based on the differential values
in x and y positions.

Different trajectories were tested with the regression
model, always taking into account the last five human’s
positions, and then the path that the person will follow
was built. One of the strongest points is the high accuracy
prediction when the path is not too complicate, nevertheless,
also good results were obtained when the path drastically
changed as is shown in Fig. 4, first plot. With these results,
the robot can move along the direction, navigating side-by-
side with the human being accompanied.

The drone’s prediction capacity proved to be useful in
highly dynamic environments, in which a lot of people
walked around the accompanied human and the flying robot.
In this situation, the walking behavior of the accompanied
human can change unexpectedly, nevertheless the drone
proves to adapt to the accompanied human with very good
accuracy.

2) ASFM parameters: As described above, we consider
three kinds of interaction forces: human-human, human-
obstacle and human-drone. The two first interactions have
been presented previously in [12], [13]. Moreover, in [10] a
description of the interaction between a ground robot and a
human is described. However, the human-drone interaction
parameters were not obtained in any previous work, thereby,
in this section we introduce the results obtained for the
parameters {ARj , BRj , λRj , dRj}.

We optimized the parameters of the force interaction
model under the presence of a moving flying robot, where
this interaction force is the only external force altering the
outcome of the described trajectory. All optimizations used
to learn the model forces parameters were carried out using



Interaction k A B d λ

Human-Human [13] 2 1.25 0.1 0.2 0.5
Human-Human [12] 4.9 10 0.34 0.16 1
Human-Robot [10] 2.3 2.66 0.79 0.4 0.59
Human-Flying robot 4.45 3.35 0.565 0.295 0.55

TABLE I: Aerial Social Force Model Parameters. Com-
parison of the learned parameters in diverse works of human-
human, human-robot and human-drone interactions after
applying the minimization process.

genetic optimization algorithms [9], which minimize the fol-
lowing error function throughout all N training trajectories,

{A,B, λ, d} = arg min
{A,B,λ,d}

{∑
N

∑
time

‖x0(t)− xe(t)‖

}
(26)

Table I shows the parameters learned after applying the
minimization process in the set of recorded human-drone
navigation trajectories and compared with the parameters
obtained in other reserach works.

3) Simulations: To this end, we have implemented a
complete social environment, depicted in the first row in
Fig. 5, which takes into account pedestrians, obstacles and
drones, where each element is reactive to its surrounding
according to the ASFM. By doing this, we can get a dynam-
ical environment, in which each action of the autonomous
drone alters the behavior of the other pedestrians in the
environment.

To evaluate mathematically the correctness and the per-
formance of the presented model, we built a simulated
social environment. This simulated environment allows us
to validate the performance of the method, using the metrics
defined in Sec. II-C, in different environments and under
different pedestrian density.

In order to give statistical consistency to our results, more
than 10k experiments have been carried out, only varying
the initial position of each pedestrian in the simulation. We
would like to emphasize on the fact that the environment has
a high density of persons and each person aims to a random
destination.

The bottom row of Fig. 5 shows the overall performance of
the different methods with respect to the pedestrian density
in the scene. It can be seen, that using our ASFM method, the
performance highly increases. The predictive behavior using
the regression model clearly enhances the performance of
the task, in both scenarios.

C. Real-live Experiments

In this section, we present different real-live experiments,
in which we tested the ASFM model, considering both,
humans and obstacles. Two scenarios were tested, in the
first one there are no obstacles, while in the second one
there are different obstacles. The data was collected using
the Optitrack system and we used a ROS visualization tool
to show the position of the human and the drone, and the
interaction forces.

During real-live experiments, we tested our model and
its capacity to maintain the drone close to the human and

Fig. 5: Synthetic experiments. Top row: Simulated environ-
ments. Bottom row: Performance presented previously; blue
line represents the ASFM with the regression model; purple
refers to ASFM without regression, and green color is the
performance of the work presented in [14]. All results are
function of the pedestrian density in the environment.

accompany him/her in a comfortable manner. We noticed that
all real experiments carried out with our robot and different
volunteers achieved the goal, that is, the drone was able
to accompany the human while navigating in a social and
acceptable manner.

In Fig. 6 are shown three different scenarios of experiment
trials. In all the scenarios, the top view is the picture of the
trial and bottom view is the drawn of the interaction forces.

In the first scenario, two rows of images in the top of the
figure, Fig. 6-top shows how a human walks around the robot
in a closer way, and the bottom shows the repulsion forces
drawn as red arrow that makes the robot move backward,
respecting human’s personal space.

In the second scenario, two rows of images in the middle
of the figure, Fig. 6-middle shows how a human walks in
the drone’s direction as if they were to collide, and then the
human moves backward quickly. In this case, the highest
repulsion force is obtained when the distance between the
drone and the human is minimum.

Finally, in the third scenario, two rows of images in the
bottom of the figure, in Fig. 6-bottom we put a cylindrical
obstacle between the drone and the human. The repulsion
force that is exerting the object keeps the drone away, as
long as the human is behind the object.

We would like to point the reader to check all the
videos of synthetic and real experiments on following link
http://www.iri.upc.edu/people/agarrell/
iros2017.html

IV. CONCLUSIONS

This paper has presented a novel approach based on the
Social Force Model. The major contributions of this chapter
are twofold. On the one hand, we present a new Aerial Social
Force model to accompany a human, and we explain how



Fig. 6: Real-live experiments. Top row: Human moving through a certain path surrounding the drone, the drone moved
backward. It is plotted the visualization of the scenario and representation of the interaction forces in real-time too. Middle
row: Human moving forward in the direction of the drone, in the image below, the repulsion force depicted as a red arrow.
Bottom row: Human moving around an obstacle, the drone stays in the same position as the sum of the forces was zero.

to obtain the force parameters of human-robot interactions
specifically suited to the AR Drone.

On the other hand, we present a new evaluation met-
ric. Since the verification of any system involving human
participation is hard to evaluate objectively, we define an
analytical metric that allows to measure the behavior of our
autonomous flying robot when accompany a human.

We validated the model through an extensive set of simula-
tions and real-live experiments. In contrast to other existing
approaches, our method can handle realistic and dynamic
situations, such as dealing with large environments littered
with obstacles and dense crowds. For that reason, this work
can be applied to various specific real-live robot applications;
for instance, guiding tourists through crowded city streets.

In future work, we aim to use a visual system to detect
humans’ positions and thus, to work in outdoor environments
without the necessity of relying on the Optitrack system.
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