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Abstract

This paper proposes a moving horizon estimator for nonlinear systems with un-

known inputs, which do not comply with the model structures proposed in the litera-

ture for the design of nonlinear observers. The estimator is designed as an optimization

problem over a moving horizon, constrained to process model equations and consid-

ering the unknown inputs as random inputs among their operating bounds. This

proposal is applied to the transport of mineral slurries among process units, typically

present in chemical and biological processes. There, to have the slurry properties as

on-line measurements is vital to an efficient control of those processing units. The

performance of proposed estimator is evaluated by simulation with data from a real

processing plant, and its performance is compared with a linear estimator executing

the same estimation task. Better results are obtained using the proposed estimator by

considering the nonlinearities of the process.
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1 Introduction

Nonlinear systems have a wide application in chemical and biological processes because

the complexity of phenomena that govern these sort of processes, which are not usually lin-

earized. Thus, from the nonlinear systems, it is possible to represent the main phenomena

that govern the behavior of these systems. However, nonlinear models are quite restrictive

for designing observers due to the particularities of each process and their nonlinear terms

in the model equations.1 Therefore, the study of the nonlinear dynamics, the modeling

process, and the development of new control strategies correspond to an active research

area, with important developments in the science, the engineering, and other fields in the

last decades.2 Nevertheless, these processes, as well as linear systems, have the problem

of needing internal information of the process from their available measurements. This

necessity arises when tasks such as modeling, monitoring, and/or control are required.3

In the minerals processing industry, the particulate minerals are usually mixed with

water in order to ease their transport and benefit. This mixture is known as mineral slurry.

Slurry properties like density and viscosity are strongly affected by solid phase concen-

tration. In addition, these properties are normally used as the quality indicator of the

processed minerals, and for determining the energy efficiency of the process. Therefore, the

slurry properties must be correctly determined, measured, or estimated for guaranteeing

the optimal operating conditions. However, and due to the presence of solids, the mixture

properties are difficult to measure online and must be estimated by using observers based

on models. When the observers are designed based on a phenomenological model, fact

that allows modeling the phenomena in the process, in some cases the nonlinearities of the

model equations cannot be organized in the suggested form as the proposed observer struc-

tures in the literature.1 Therefore, observers able to estimate the slurry properties for the

transport processes, which in addition considered the disturbances and the nonlinearities,

are required for completing the implemented monitoring and control systems.4

To obtain the variables estimation of the nonlinear dynamics, many approaches have
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been developed. Among them, it can be mentioned the Extended Kalman filter (EKF),

the H∞ observer,5 observers designed using linear matrix inequalities,6 or sliding mode

observers for uncertain systems.7 Nevertheless, most of these designs are quite restric-

tive regarding the model structure and their nonlinear functions. To overcome this fact,

estimation methods based on optimization were developed such as the moving horizon

estimation, which are powerful tools for nonlinear systems.8 The moving horizon esti-

mation is a method based on online optimization using available information (e.g., data,

knowledge about the process, operating conditions) as constraints and cost function for

relating past measurements and the process model, all over a moving observation horizon.

The aim of having a moving observation horizon is to include new measurements and

eliminate the old ones in this horizon as time goes on.9 The applications of this estimation

method are extended along many fields of engineering, such as the systems with delayed

measurements, parameters estimation, uncertain systems, among others.8,10,11

The main contribution of this paper consists in the design of a nonlinear observer for the

online estimation of slurry properties based on a phenomenological based semi-physical

model (PBSM) describing the main phenomena of the system. The proposed observer

approach is based on moving horizon estimation considering the original structure of

model and each one of the terms from the nonlinear mathematical model. This type of

processes can be generalized to any multiphase mixture moving through pipes assemblies

in a process plant. In addition, and taking into account the inherent disturbances that

can affect the mentioned transport process, and the difficulty to characterize this kind of

fluids, one approximation for the disturbances or unknown inputs (UIs) is considered

into the design, producing the proposed nonlinear moving horizon estimator (NLMHE).

Thereby, based on the process knowledge, a feasible region for the UIs (or disturbances) is

established, and from this, the UIs are approximated as random values into that region.

Consequently, one NLMHE, without restrictions in the model structure and considering

the UIs, is presented.
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The remainder of this paper is organized as follows. In Section 2, the estimation

problem and the process model for transporting a mineral slurry are exposed. In Section

3, the necessary mathematical tools for the design of the NLMHE are introduced. Next,

the proposed estimator, the simulation results, and the discussions related to these results,

including the online estimation of both the density and viscosity of a mineral slurry flowing

through a pipe-and-fittings assembly (PFA), are presented in Section 4. Finally, the main

conclusions and some ideas for further research are drawn in Section 5.

Notation

In this work, column vectors are denoted in lower case and bold style (e.g., x), while the

matrices are written in upper case and bold style (e.g., M). Real numbers are denoted by

R, all the non-negative real numbers by R≥0, and the positive integer numbers by Z≥0.

Finally, the dependency in continuous time and discrete time are denoted by (t) and (k),

respectively.

2 Transport process of a mineral slurry

For transporting a mineral slurry through a PFA, the existence of a differential pressure

between the inlet and outlet points of the pipeline is required. This differential pressure

indicates the required energy to overcome the friction forces that are generated between

fluid layers and fluid and pipe surface. However, the flow through the PFA is conditioned

by the fluid properties (such as density and viscosity), which are strongly related to laminar

or turbulent flow regime, characterized by the Reynolds number.12 This number directly

affects the calculations of friction factor, energy losses and pressure drop of a fluid flowing

through a PFA.

During the process of a mineral slurry (Figure 1), the solids (minerals) are normally

mixed with water to obtain a slurry, which can be pumped through different process units.
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This kind of fluids can exhibit non-Newtonian behavior due to the presence of phases in the

mixture and, as a result, modify the mixture properties (density and viscosity).12 Taking

into account that the Reynolds number depends on the density and viscosity, this and the

flow behavior of the fluid (as a Newtonian or non-Newtonian fluid) impose conditions

to the slurry transport through the PFA. Therefore, the non-Newtonian behaviors must

be characterized in order to obtain a correct estimation of the slurry properties. These

properties are commonly estimated since, in many cases, there are no available devices for

measuring them and, when available, their use might be quite expensive.13,14

Figure 1: Basic scheme for the transport process of a pulp.

In these processes, the solids concentration in the mixture cannot be known with

certainty since features and supply conditions of the raw material constantly change.

Therefore, this concentration is often considered as an unknown input in the transport

process. Nevertheless, the online estimation of both density and viscosity of a mineral

slurry has often been approached using state observers based on empirical models and

neural networks, and without considering that solids concentration constantly changes.4,15

Nonetheless, some works like the one proposed in Ref. 16 have tackled the estimator design

based on phenomenological models. In the mentioned work, an unknown-input observer

based on a PBSM is proposed, for estimating both density and viscosity of a mineral

slurry. The relevance of this observer is that considers a PBSM that allows separating the
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estimation of the density and viscosity based on the conservation principles of mass and

momentum, the main phenomena that govern the slurry flow and its rheological behavior.

However, the linear observer proposed there, limits the observer performance to a region

near the point used to linearize the model. Removing this restriction is the aim of this

paper.

In the case of non-linear observers, there exist many options that establish a set of

restrictions or conditions for mathematical forms of nonlinearities in the model equations.

These options establish different model structures and transformations of the model

equations to propose an observer structure. The main difficulty of these approaches is that

they are quite restrictive regarding the model structure since were developed for a specific

class of system or process.1 In the transport process of a mineral slurry flowing through a

PFA, the main nonlinearities can be found in the terms for calculating the energy losses

and the friction factor. Thus, the process model used for this development, proposed in

Ref. 16, is briefly presented below.

2.1 Flow model of a slurry

From mass and energy conservation principles, a PBSM (see Ref. 17) for the transport of a

mineral slurry can be represented by the following balance equations:16

dρ2(t)
dt

= [ρ1(t)− ρ2(t)]
Q(t)

V
, (1a)

dQ(t)
dt

=
A
L

[
−P2(t)

ρ2(t)
+

ṁ1(t)
ṁ2(t)

P1(t)
ρ1(t)

− gz2 +
ṁ1(t)
ṁ2(t)

gz1

]
+

[
− ṁ1(t)

ṁ2(t)
h f1→HP(t)− h fHP→2(t)

]
, (1b)

where t ∈ R≥0, and the subindices 1, 2 and HP are the inlet, outlet and homogenization

point, respectively. In (1), ρ1

[
kg
m3

]
and ρ2

[
kg
m3

]
are the inlet and outlet density, respectively,

while Q
[

m3

s

]
, V [m3], A [m2] and L [m] are the volumetric flow, the pipeline volume, the

pipe cross area and length between the inlet and outlet points, respectively. Equations in (1)
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correspond to the mass and mechanical energy balance, respectively. These balances have

been obtained considering disturbances in the inlet solids concentration (wS,1) through its

relationship with the inlet slurry density (ρ1). In addition, in order to consider that the

outlet density and density inside the pipe are the same, i.e., with the same properties, the

perfect agitation principle was assumed for the slurry inside the PFA (ρ = ρ2).

Equation (1b) represents the changes in the kinetic energy of the fluid produced by

mechanical terms such as the flow, gravitational, and friction works acting on the fluid.

In this case, the driving-machine work is not considered because no device is installed

into the PFA. In (1b), g
[

m
s2

]
is the gravity, P1 [Pa], P2 [Pa] are the inlet and outlet pressures,

respectively, z1 [m], z2 [m] are the height at inlet and outlet respect to a reference, respec-

tively, ṁ1

[
kg
s

]
and ṁ2

[
kg
s

]
are the inlet and outlet slurry mass flow, respectively, and

h f1→HP

[
m2

s2

]
and h fHP→2

[
m2

s2

]
are the friction losses between the inlet and homogenization

points, and this latter and the outlet point in the PFA. The homogenization point (HP)

corresponds to that point in the PFA in which the slurry is homogenized after a disturbance

takes place.

Since the slurry is considered as a mixture of solids with water, the relationship between

the phases concentration and the slurry density is given by the known harmonic weighted

average

ρ(t) =
1

wW(t)
ρW

+ wS(t)
ρS

, (2)

being wW and wS the water and solids concentrations, respectively, and ρW and ρS the

water and average solid densities, respectively. It should be mentioned that the subscript

i is used to indicate the inlet or outlet points of the slurry in the PFA (i = 1 for inlet and

i = 2 for the outlet). From (2), it is possible to obtain the solids concentration wS,2 after ρ2
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is estimated. The set of constitutive equations used to compute h f1→2 is the following:

h f1→2(t) =
(
Kp(t) + ΣKF(t)

) 1
2

Q2(t)
A2 , (3a)

Kp(t) = fDi(t)
(

D
L

)
, (3b)

KF(t) =
K1

NRei(t)
+ K∞

(
1 +

1
ID

)
, (3c)

fDi(t) =
{
−2 log

[
ε/D
3.1
− 5.02

NRei(t)
log
(

ε/D
3.71

+
14.5

NRei(t)

)]}−2

, (3d)

NRei(t) =
vi(t) D ρi(t)

µi(t)
. (3e)

Equation (3a) is used to compute the energy losses in the pipeline and the fittings,

whereas Kp and KF in (3b) and (3c) are the K-factors of losses for pipe and fittings, re-

spectively. The K-factor calculation for the fittings is done based on the type of element

and its union to the pipe, for instance, welded, flanged, threaded, etc. These features are

considered into the parameters K1 and K∞, which are taken from Hooper in 1981. In (3c),

ID corresponds to the pipe inner diameter in inches.

The friction factor is calculated using (3d) (the Shacham Equation Ref. 19), which in-

cludes highly nonlinear terms. In (3d), ε is the absolute pipe roughness while the Reynolds

number (NRei) is computed by (3e), being µi [Pa s] the slurry viscosity. In Ref. 16, the pro-

posed observer assumes the density as a state variable (with differential equation) while

the viscosity is estimated using an algebraic expression, which considers the operating

conditions for the flow in the PFA and the rheological behavior of pseudoplastic fluids.

This latter behavior is a feature of this kind of slurries. Then, taking into account the

rheological behavior and flow conditions through a pipeline, the viscosity expression is

given by

µ(t) = Kµ(t)
[(

3n(t) + 1
4n(t)

)
8u(t)

DT

]n(t)−1

, (4)

where µ, Kµ and n are the viscosity, the consistency factor and the behavior index, respec-
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tively. Moreover, u [m/s] and DT [m] are the average velocity in the line and the diameter

of pipe, respectively. The factor in brackets in (4) corresponds to the shear rate (γ̇) for

non-Newtonian fluids in a pipe.20 The detailed deduction of the viscosity expression and,

the explanation on how to compute the parameters Kµ and n are presented in Appendix.

The expressions (1) - (4) form the equations of the PBSM, from which the proposal

presented in this paper is developed. Based on these equations, the model nonlinearities

can be noticed, such as the logarithm function in (3d), which involves the properties

to be estimated (density and viscosity). Due to the nature of these equations (obtained

from different conservation principles) and the resulting structure, the nonlinear state

transformation-based techniques proposed for the design of nonlinear observers (see e.g.,

Ref. 21–23) are not useful tools for the transport model since it is not possible to apply any

useful mathematical transformation.1

3 Nonlinear moving horizon estimator with bounded un-

known input

In order to overcome the estimation problem for nonlinear systems with unknown inputs,

a NLMHE is designed. This estimator can be used to deal with nonlinear systems that

do not comply with the structural conditions in the model equations, or which do not

satisfy the restrictions for the nonlinear terms proposed in the literature for the design

of nonlinear estimators. Besides, the proposed estimator considers an approximation by

intervals for the dynamics of the UIs.

The moving horizon approach is considered for developing an estimator of the state

variables, which describes the system condition at time t based on the difference between

the values of the measurement and estimation for the measured variables from the process.

However, since the NLMHE needs to know all variables and parameters that will not be

estimated, one method for modeling the dynamics of the UIs is required. From this, and
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when the UIs cannot be modeled but can be bounded, these are assumed as random inputs

among their bounding values. In addition, the interval-observer approach is used in order

to determine and to evaluate the operating region for the estimator.

The proposed NLMHE estimates state variables based on the solution of an optimiza-

tion problem constrained to the process model, and using a random value for the UIs into

its feasible region. Thus, the interval approach will be developed by solving the proposed

NLMHE both for the admissible minimum and maximum value of the UI, with the aim

determining the feasible region for estimation of the state variables. Thereby, the admissi-

ble minimum and maximum value of the UI can be established from the knowledge of

the operating range for solids concentration, which is related to the slurry density as it is

evident from the known harmonic weighted average (see (2)). The main tools used in the

development of this proposal are presented in Sections 3.1 and 3.2.

3.1 Moving horizon state estimator

According to Boegli in 2014, the moving horizon estimation is an optimal control approach

pointing to find the system states, which are more consistent with current and past input-

output data and the available process model. The aim of this method is to estimate

the current states by solving a least squares optimization problem constrained to the

model process, and considering a fixed horizon of measurements {y0, y1, . . . , yT−1}, which

penalizes the deviation between the measurements and estimated outputs.25,26 Thus, the

estimation problem is formulated over a moving horizon of fixed length, which is moved

in the time and at each time step that horizon moves to the next data, the past measurement

is discarded and a new measurement is taken into account. Then, since the moving horizon

is changing at each time instant, a new optimization problem is solved and the estimation

is obtained.26,27

In order to state the observer design, consider a continuous-time system model of the
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form

dx(t)
dt

= fc(x(t), u(t), d(t)) + ω(t), (5a)

y(t) = gc(x(t)) + υ(t), (5b)

where x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu , d ∈ D ⊆ Rnd and y ∈ Y ⊆ Rny are the state,

manipulated input, unknown input and output vector, respectively, while ω ∈ W ⊆ Rnx

and υ ∈ V ⊆ Rny are the uncertainties vectors in the model and measurements, respectively.

Moreover, fc : Rnx ×Rnu ×Rnd → Rnx and gc : Rnx → Rny are the nonlinear mapping

functions for the dynamics and output equations, respectively. In general, to perform

any computation, the continuous-time version of the process model must be discretized.

Thus, based on the finite difference discretization scheme and Taylor series expansion, the

discrete-time version of the model in (5) is obtained as

x(k + 1) = f(x(k), u(k), d(k)) + ω(k), (6a)

y(k) = g(x(k)) + υ(k), (6b)

being k ∈ Z≥0 the discrete-time index, and related to the continuous time by t = k ∆t, for

∆t the sampling time (or discretization period).

It should be noted that for the case of stiff systems, the system discretization is more

complex, and techniques such as single shooting, collocation, etc, are required for nonlinear

systems.28 Based on sensors in the real process, the sampling time is established and the

discrete versions of the known inputs are the observations from these sensors. Thus, for

the unknown inputs, the discrete approximation is obtained selecting one random value

for each UI among the bounded values for these inputs at each time instant. Hence,
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X ={x ∈ Rnx |x(k) ∈ [x, x] , ∀ k}, (7a)

U ={u ∈ Rnu |u(k) ∈ [u, u] , ∀ k}, (7b)

D ={d ∈ Rnd |d(k) ∈
[
d, d

]
, ∀ k}, (7c)

Y ={y ∈ Rny |y(k) ∈
[
y, y
]

, ∀ k}, (7d)

where x and x are the vectors of minimum and maximum values of state variables, respec-

tively. In the same way, this notation is valid for other variables, i.e., u, d and y.

Based on the discrete-time version of the model in (6), and keeping in mind that the

moving horizon estimation solves a constrained optimization problem over a finite horizon,

the estimator at current time T is designed based on the following problem formulation:24

min
x̃,ω̃

φT(x̃, ω̃), (8a)

subject to

x(k + 1) = f(x(k), u(k), d(k)) + ω(k), (8b)

y(k) = g(x(k)) + υ(k), (8c)

for all k ∈ [T−N, T], and being x̃ = {x̃1, x̃2, · · · , x̃T−1, x̃T} and ω̃ = {ω̃1, ω̃2, · · · , ω̃T−1, ω̃T}

the sequences to be found along the moving horizon until t = T obtained from the solution

of (8a), whereas N ∈ Z>0 is the length of the moving horizon. On the other hand, the cost

function in (8a) can be expressed as

φT(x̃, ω̃) =‖ x̃T−N − x̄T−N ‖2
P−1

T−N
+

T

∑
k=T−N+1

‖ y(k)− ỹ(k) ‖2
R−1

k
+ ‖ ω̃(k) ‖2

Q−1
k

, (9)
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where φT : Rnx × Rny × Rnx → R, the first term in the right side of (9) is the arrival

cost that summarizes past information between t0 and tT−N, y and ỹ are the vectors of

the measurements and optimized outputs (measured state variables), respectively, while

Q−1
k , R−1

k and P−1
T−N are the inverses of the weighting matrices regarding model uncertainty,

measurement uncertainty and covariance of all available past information, respectively.

The couple (x̄T−N, PT−N) can be considered as a regularization term for the first estimate,

namely x̂T−N , along N, and which ensures the stability of the proposed scheme mainly for

short horizons.24 There are different ways to compute x̄T−N and PT−N depending on the

nature of the system (linear or nonlinear). For example, the nonlinear filters are commonly

used for estimating the state variables and covariance matrix at T− N. These filters obtain

the required values in the arrival cost function (x̄T−N, PT−N) from data history about the

previous evolution of the system up to the first value of the current estimation horizon

considered. For nonlinear systems, the common methods are the Extended Kalman filter

(EKF), the unscented Kalman filter (UKF) and the particle filter (PF).24,26,28

In addition, if the input vector u is considered as independent input without uncertainty

and the model uncertainty ω̃ is not considered, the last term in (9) can be dropped,24 and

then (9) is reduced to

φT(x̃) =‖ x̃T−N − x̄T−N ‖2
P−1

T−N
+

T

∑
k=T−N+1

‖ y(k)− ỹ(k) ‖2
R−1

k
. (10)

Then, determining the regularization pair (x̄T−N, PT−N) and solving the optimization

problem in (10), vector x̃ is obtained, which corresponds to the estimated states (x̂). How-

ever, although the moving horizon estimation method allows to obtain the estimation of

the state variables, this method needs to know all variables and parameters that will not be

optimized. Hence, it is necessary to establish a way to include the UI into the estimation

problem. The proposal of this paper for considering the UI is presented in Section 3.2.
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3.2 Approximation of the unknown inputs

Assuming that the UI can be bounded from the knowledge about the process, this input is

taken as a random value between the lower and upper values of its admissible domain at

each time instant k. From this, two different NLMHE are designed, one for each bound of

the UI, and thus obtaining the feasible region for the state estimation.

If the UI can be restricted to the admissible region defined by the range [d, d], the state

estimation for one random value of dr(k) will be found between the estimated states for d

and d. Considering the proposal for the NLMHE, the optimization problem when d = d

is stated as follows:

min
x̃
‖ x̃T−N−x̄T−N ‖2

P−1
T−N

+
T

∑
k=T−N+1

‖ y(k)− ỹ(k) ‖2
R−1

k
, (11a)

subject to

x(k + 1) = f (x(k), u(k), d(k)), (11b)

y(k) = g(x(k)), (11c)

for all k ∈ [T− N, T]. In (11a), x̃ corresponds to the solution of the optimization problem

in (11) when the disturbance takes the value d, and the last value of this sequence is the

state estimation at time T (x̂T|T−N). On the other hand, considering d, the optimization

problem is stated as follows:

min
x̃
‖ x̃T−N−x̄T−N ‖2

P−1
T−N

+
T

∑
k=T−N+1

‖ y(k)− ỹ(k) ‖2
R−1

k
, (12a)
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subject to

x(k + 1) = f (x(k), u(k), d(k)), (12b)

y(k) = g(x(k)), (12c)

for all k ∈ [T − N, T], being x̃ the solution of the optimization problem (12) and x̂T|T−N

the optimal state estimation when disturbances take the value d. Although (11a) and (12a)

have the same structure, they are different in the ỹ(k) value obtained from the model

equations using either d or d, respectively. Consequently, the solution x̂∗T|T−N, for an

random value dr(k), should hold

x̂T|T−N ≤ x̂∗T|T−N ≤ x̂T|T−N. (13)

Then, without considering dynamics for the UI and using the interval-observer ap-

proach, it is possible to determine the feasible region of estimation. In addition, the

proposed estimator is not restricted to a stationary state because the nonlinearities of

the model are considered, and the UI is bounded and approximated as a random value.

Algorithm 1 collects the required steps to follow for designing the proposed NLMHE.

4 Simulation results

According to Section 3, and since the only available measurement from the process is Q

and the pressure drop (∆P = P2 − P1 [Pa]), the optimization problem for the design of the

NLMHE for slurry properties can be written as follows:

15



Algorithm 1 Estimation of x̂∗T|T−N

Require:
N > 0, x̄0, P0, Q, R
y ∀ k ∈ [T − N, T]
Select the random UI: d(k) ∈ [d, d], ∀ k
Initialization:
x̄0 → x̄T−N
P0 → PT−N
for k < N do

Solve EKF
end for
Optimization:
for k > N do

Solve (10) with x̄T−N, PT−N and y
end for
Obtain the current estimation variables x̂∗T|T−N from x̃
return

min
x̃
‖ x̃T−N − x̄T−N ‖2

P−1
T−N

+
T

∑
k=T−N+1

‖ Qm(k)− Q̃(k) ‖2
R−1

k
, (14a)

subject to

ρ2(k + 1) = f1(x(k), u(k), d(k)), (14b)

Q(k + 1) = f2(x(k), u(k), d(k)), (14c)

y(k) = Q̃, (14d)

for all k ∈ [T − N, T], where Qm and Q̃ are the measured outlet and the optimized

outlet, respectively, while the estimated states ρ̂2 and Q̂ are obtained from x̃ and the

process model in (14b) - (14d). In (14), f1 and f2 correspond to the discrete versions of

the model expressions (1a) and (1b), respectively. According to Algorithm 1, the solution

to the optimization problem (14) was obtained in two stages: the former uses the EKF

to determine the terms in the arrival cost function based on the past information to the
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Table 1: Classification of the process variables.

Type Symbol
State variables x = [ρ2, Q]T

Known inputs u = [P1, P2, µ2]
T

Unknown inputs d = wS,1
Measured outlets y = Q

estimation horizon, and considering PT−N = 1 and Rk = 0.0001 since the unique available

measure in the process is the volumetric flow, which is obtained from the flowmeter with a

measuring uncertainty of 0.0001 m3/s. In the latter, the results of the first stage for T − N

are replaced in (14a) to solve the optimization problem and determining the estimated

values. From the proposed estimator and the model presented in Section 2, the simulation

results for the online estimation of the density and viscosity of a mineral slurry flowing

through a PFA are presented in this section. These results were obtained based on the

classification of process variables shown in Table 1, and the model parameters presented

in Table 2.

It should be noted that although µ2 is one of the variables to estimate, it is considered as

a known value in this paper since the estimation structure does not consider the viscosity

as state variable but is estimated from algebraic equations, which are in function of the

states. Therefore, the initial iteration is done considering a seed value, which is replaced

by the estimated value in the next iteration since the slurry viscosity is computed after the

state variables (Q and ρ2) are estimated.

All results presented in this paper were obtained using the software package NPSOL of

Tomlab R© under the Matlab R© interface. Each simulation was done considering additive

noise in the measured variable (volumetric flow, Q). In addition, two disturbances in

the solids initial concentration were applied to evaluate the performance of the proposed

NLMHE, and compared with the linear observer proposed in Ref. 16.
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Table 2: Simulation and model parameters.

Parameter Symbol Value Units
Simulation time ts 100 s
Sampling time ∆t 0.1 s
Length of moving horizon N 5 -
Initial time for estimation T0 10 s
Tolerance for the optimization Tolx 10−6 -
Pipe length L 11.766 m
Pipe cross area A 0.0323 m2

Pipe volume V 0.3798 m3

Solids density ρS 2600.4 kg
m3

Water density ρW 1000 kg
m3

Pipe roughness ε 1.5× 10−6 m
Pipe diameter D 0.2027 m
Height of inlet point z1 0 m
Height of outlet point z2 12.58 m

4.1 Validation of the proposed NLMHE

The performance of the proposed NLMHE was validated in simulation considering a

real data set from a Colombian industry of mineral processing.16 Considered data set

includes measurements of volumetric flow, pressures, and slurry density for a normal

operating conditions of the process (without disturbances). Then, based on the available

data set, the moving horizon was selected, and from this the NLMHE was designed. The

validation results for the proposed estimator are presented in Figure 2. According to

the results shown in this figure, it is possible to see that the proposed estimator follows

the real behavior with small differences between the real flow and its estimation. Thus,

the NLMHE estimates the state variables (measured and unmeasured), just using Q into

the cost function, with an estimation error lower that 2%. In addition, the estimation is

done considering additive noise in the measured variable and a random value for the

inlet density (UI) within the considered range. The estimator was tested using a length of

moving horizon N = 5, which was selected as it is explained in Section 4.2.

It should be noted that since the real signal Qm, with 100 s of duration and ∆t = 0.1
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(b) Validation from real data set for the unmeasured variable.

Figure 2: Validation from real data set for the proposed NLMHE.

s, corresponds to a nominal operating point without disturbances, this data cannot be

used to validate the observer performance when the disturbances take place. Therefore, to

evaluate the performance of NLMHE considering disturbances in the solids concentration,

the results presented hereafter were obtained from the operating point of process (for

handling the real data) but introducing changes in the initial concentration of the solids.
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4.2 Selecting the length of N

Taking into account that the NLMHE requires a set of historical measurements, the length

of N must be selected. Therefore, based on the real data, a set of fifteen historical mea-

surements is taken as the available data for establishing a suitable value of N. It is worth

mentioning that each one of measurements and estimations obtained by the NLMHE

has hereafter ∆t = 0.1 s due to the restrictions for correct performance of the EKF. Thus,

different sizes of N were tested, and based on these results, the length of N was fixed. The

results above mentioned are shown in Figure 3. Once the estimation of the state variables

is done, the slurry viscosity is computed by using these estimations and (4). The obtained

result for this viscosity is presented in Figure 4.

The selection of N was done based on the computing time per iteration (tc,iter), and

the estimation error quantified using the Root Mean Square Error (RMS), the Residual

Standard Deviation (RSD), and the Index of Agreement (IA). The corresponding equations

for computing the above error indices are given by

RMS =

√√√√∑n
i=1 (ym − ŷ)2

∑n
i=1 (ym)2 , (15)

RSD =

√
∑n

i=1 (ym − ŷ)2

n
, (16)

IA = 1− ∑n
i=1 (ym − ŷ)2

∑n
i=1

(
y′m − ŷ′

)2 (17)

where y′m(i) = ym(i)− ȳm and y′(i) = y(i)− ȳm, and being ȳm the mean value of the

measured variable. The RMS and RSD corresponding to the standard deviation of residual,

and values close to zero indicate goodness-of-fit, while the IA indicates a suitable degree

of fitting of the estimated and measured state variables for values above to 0.9. According

to Table 3, each one of the evaluated error indices has similar values for the different
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Figure 3: Simulation of NLMHE for different values of N.

cases of N tested, which allows to evidence that the proposed NLMHE follows the real

trajectory of the state variables, and the estimation error is less than 2% in all the cases

considered. However, regarding the computing time per iteration, which includes the

stages to solve the EKF and the optimization problem in (14), it is significantly smaller for

N = 5 compared to the other cases tested. Therefore, based on the results in Table 3, N = 5

was selected for the simulations presented hereafter since that has the less computing time

even for similar estimation errors to those obtained when N = 7 and N = 10.

It should be noted that most of the computing time is employed to solve the EKF stage
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Figure 4: Viscosity estimation for different values of N.

with almost 75% of the total time. From this, more efficient alternatives than EKF for

computing the arrival cost can be tested towards reducing the computing time.

4.3 Approximation for the unknown inlet

Taking into account that N = 5, the proposed NLMHE was tested for the feasible interval

of the UI. It should be recalled that the UI will be approximated as a random input between

the bounds for the inlet density of slurry in the real process. Thereby, that value of the UI

was obtained by using the command rand from Matlab R©. Since the transport of a mineral

slurry involves operations with solids, d and d must consider the presence of those solids

in the mixture. From the real data, the operating range for the slurry inlet density is

Table 3: Error indices and computational time for the state estimation and different values
of N.

N tc,iter [s]
RMS RSD IA

Q̂[L
s ] ρ̂2 [

kg
m3 ] Q̂[L

s ] ρ̂2 [
kg
m3 ] Q̂[L

s ] ρ̂2 [
kg
m3 ]

5 0.248 3.855× 10−5 0.005 9.826× 10−6 0.145 0.984 0.989
7 0.314 4.452× 10−5 0.005 1.135× 10−5 0.150 0.995 0.997

10 0.356 6.936× 10−5 0.007 1.768× 10−5 0.224 0.997 0.998

22



ρ1,max = 1060
[

kg
m3

]
,

ρ1,min = 1010
[

kg
m3

]
,

(18)

and

ρr
1 = rand(1010, 1060), (19)

then,

ρ1,min ≤ ρr
1 ≤ ρ1,max. (20)

Based on (18) - (20), the performance of NLMHE was evaluated for each density bound.

The simulation results for the state variables, considering the same disturbances in the UI,

are shown in Figure 5. From these results, it can be observed that the estimation using

the highest possible limit of inlet density produces a higher estimation of slurry density.

This increment in ρ2 is compensated with lower values of Q to satisfy the model equations

because the pressure drop is considered constant, and therefore the system energy by

slurry transport is (and should be) the same. From this fact, the only way to transport a

slurry denser is by decreasing the flow and vice versa. The error indices obtained using

a random value inside the feasible region for UI are presented in Table 4. Finally, from

the estimation of slurry density and volumetric flow, the viscosity estimation is obtained

based on (4) and the obtained result is shown in Figure 6.

According to the previous results, the estimation of the slurry properties always remains

within the obtained interval from the possible values of ρ1. Thus, the approximation by

interval and the consideration of a random value for the slurry inlet density is a useful tool

for the online estimation of slurry properties. In spite of random variation of the estimated

values, to count with density and viscosity in real time is a valuable input for a closed-loop
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Table 4: Error indices for estimation based on the interval approximation of ρ1.

Unknown input RMS RSD IA
Q̂[L

s ] ρ̂2[
kg
m3 ] Q̂[L

s ] ρ̂2[
kg
m3 ] Q̂[L

s ] ρ̂2[
kg
m3 ]

ρ1,max 1.918× 10−5 0.021 1.930× 10−5 0.235 0.955 0.971
ρr

1 7.571× 10−5 0.007 4.893× 10−5 0.674 0.865 0.943
ρ1,min 2.001× 10−5 0.032 5.118× 10−5 1.049 0.734 0.898
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Figure 5: Simulation of the NLMHE with interval approximation of ρ1 and N = 5.

operation of separation units and other mineral processing equipment.
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Figure 6: Simulation of NLMHE with interval approximation of ρ1 and N = 5.

4.4 Comparison between the linear and nonlinear observers

To compare the performance of the proposed NLMHE and the linear UIO presented in Ref.

16, it was considered a random value of inlet density between an interval with mean value

of ρ1 = 1040
[

kg
m3

]
. This latter takes into account that this value of ρ1 corresponds to the

stationary state used for designing the linear UIO.16 For comparing both estimators, the

simulation conditions remained the same. From this, the same total time of simulation, the

disturbances, and the noise for the measured variable was considered.

For the case of the linear UIO, the estimation is restricted to regions near to a steady

state, because the design of the observer involves a linearization of the nonlinear model

equations in (1) at a steady state of process. Besides, one transformation of the linearized

model, to eliminate the terms that contain the UI, is implemented.16 Thus, this observer

does not consider the model nonlinearities, and as the process moves away from the

steady state over which it was linearized, the estimation error will be propagated and the

estimation becomes worse.

The simulation results obtained for the linear UIO and the NLMHE are shown in Figure

7 and 8. For this case, and since disturbances are considered, the admissible interval for ρ1
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Figure 7: Comparation of performance of NLMHE and UIO proposed in Ref. 16.

was set so that the value of steady state (for the UIO) corresponds to the mean value. In

addition, the sampling time was the same (∆t = 0.1s) for both cases. In Table 5, the error

indices for the online estimation of measured and unmeasured variables is presented for

both estimation structures: linear UIO and NLMHE.

According to the obtained results, the NLMHE shows a better online estimation of

slurry properties than the linear version of UIO presented in Ref. 16. In addition, the

NLMHE has error indices significantly lower than the UIO, both in the measured and
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Figure 8: Viscosity estimation using the NLMHE with N = 5, and the linear UIO proposed
in Ref. 16.

unmeasured variables, and the computational time by iteration is lower when the model

linearization is not required.

5 Conclusions and future work

In this paper, a proposal for online estimation of the properties of a mineral slurry flowing

through a PFA is presented. The main advantage of this proposal is that, although it

considers the disturbances in the process, it does not assume a specific dynamic for

the unknown input. Taking into account that the estimator is designed by stating an

optimization problem, which does not require any mathematical transformation of the

model equations, the nonlinearities of the model are always considered.

From the proposed NLMHE, considering the unknown input as a random value, it is

Table 5: Error indices for estimation based on UIO and NLMHE.

Estimator RMS RSD IA
Q̂[L

s ] ρ̂2[
kg
m3 ] Q̂[L

s ] ρ̂2[
kg
m3 ] Q̂[L

s ] ρ̂2[
kg
m3 ]

UIO 9.949× 10−5 0.0331 2.539× 10−5 0.435 0.989 0.846
NLMHE 3.389× 10−5 0.004 8.618× 10−6 0.127 0.991 0.993
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possible to obtain the estimation of slurry properties without restricting the estimation to

a particular operation point (or stationary state). Therefore, the online estimation can be

performed covering all admissible values of the unknown inputs or disturbances affecting

the process. Based on the historical data set of the measured and unmeasured variables, the

PBSM, and the operating range for the slurry inlet density, the solution of the optimization

problem in (14) yields a sequence of optimal values of the state variables from T − N until

T of size equal to N.

Although only the measurements of the volumetric flow are considered in the cost

function, the estimation of both the volumetric flow and the slurry density are performed

with significantly lower estimation errors and small computational times using measured

pressures into the model as known inputs. This latter even when noise is considered in

the measured variable and independently of the inlet density. However, the estimation

could be improved by considering other forms of the cost function. Therefore, some

laboratory tests (done to determine slurry properties as a quality indicator, for example)

could be included for updating the data set or the moving horizon, or as an asynchronous

measurement in the cost function, in order to improve the optimization result.

Comparing the two estimators, the linear observer proposed in Ref. 16 and the nonlin-

ear estimator proposed in this work (NLMHE), the state estimation using the NLMHE is

better and faster than the estimation using the linear observer, even when the nonlinear

estimation has been stated as an optimization problem. This fact is given since the linear

version of the estimator proposed in Ref. 16 requires a sampling time ∆t = 0.1s for solving

the differential equations, which involves many iterations, while the optimization prob-

lem considering in the moving horizon estimation method is not restricted to a specific

sampling time except for computational burden limitations. However, in this case, the

EKF implemented for the arrival cost is limited to a sampling time ∆t = 0.1s too. From

this fact, the evaluation of more efficient alternatives for computing the arrival cost can be

considered in order to reduce the computational time.
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Finally, from the proposed approach for the design of observers, based on the method

of moving horizon estimation, it is possible to handle nonlinear systems of unknown

inputs. This proposal is not restrictive for the model structure, but it requires information

about the operational range of the unknown inputs. However, the proposed scheme was

tested for systems with a number of UI equal to the number measured variables. An

analysis for systems that do no satisfy this requirement must be done.

Appendix

According to Ref. 16, an algebraic equation for calculating the slurry viscosity of pseudo-

plastic fluids can be represented by the power law model

µ(t) = Kµ(t)|γ̇(t)|n(t)−1, (21)

where µ, γ̇, Kµ and n are the viscosity, the shear rate, the consistency factor and the behavior

index, respectively. In addition, for computing the parameters Kµ and n, two polynomial

correlations in function of solids concentration have been proposed as follows:

K(t) = 981072 w2
v,sol(t)− 45397 wv,sol(t) + 583.01, (22)

n(t) = − 269.87 w3
v,sol(t) + 104.09 w2

v,sol(t)− 12.009 wv,sol(t) + 0.6188. (23)

So far, replacing (22) and (23) in (21), an expression for the viscosity, in function of the

solids concentration is obtained. However, the viscosity should also consider the flow

conditions in the pipeline. Therefore, the shear rate γ̇ in (21) is computed taking into

account the type of duct to obtain an expression of the viscosity that considers the real flow

conditions. For non-Newtonian fluids, Madlener et al. in 2009 proposed the following

expression for the shear rate:
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γ̇(t) =
(

3n(t) + 1
4n(t)

)
8u(t)

DT
, (24)

where u and DT are the average velocity in the line and the diameter of the pipe, respec-

tively. Finally, the expression for the slurry viscosity is given by:

µ(t) = Kµ(t)
[(

3n(t) + 1
4n(t)

)
8u(t)

DT

]n(t)−1

. (25)
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