
Dimensionality Reduction for Dynamic Movement Primitives and
Application to Bimanual Manipulation of Clothes

Adrià Colomé, Member, IEEE, and Carme Torras,Senior Member, IEEE

Abstract— Dynamic Movement Primitives (DMPs) are nowa-
days widely used as movement parametrization for learning
robot trajectories, because of their linearity in the parameters,
rescaling robustness and continuity. However, when learning
a movement with DMPs, a very large number of Gaussian
approximations needs to be performed. Adding them up for all
joints yields too many parameters to be explored when using
Reinforcement Learning (RL), thus requiring a prohibitive
number of experiments/simulations to converge to a solution
with a (locally or globally) optimal reward. In this paper
we address the process of simultaneously learning a DMP-
characterized robot motion and its underlying joint couplings
through linear Dimensionality Reduction (DR), which will
provide valuable qualitative information leading to a reduced
and intuitive algebraic description of such motion. The results
in the experimental section show that not only can we effectively
perform DR on DMPs while learning, but we can also obtain
better learning curves, as well as additional information about
each motion: linear mappings relating joint values and some
latent variables.

I. INTRODUCTION

Motion learning by a robot may be implemented in a
similar way to how humans learn to move. An initial
coarse movement is learned from a demonstration and then
rehearsed, performing some local exploration to adapt and
possibly improve the motion.

We humans activate in a coordinated manner those mus-
cles that we cannot control individually [1], generating
coupled motions of our articulations that gracefully move our
skeletons. Such muscle synergies lead to a drastic reduction
in the number of degrees of freedom, which allows humans
to learn and easily remember a wide variety of motions.

For most current robots, the relation between actuators
and joints is more direct than in humans, usually linear, as
in Barrett’s WAM robot.

Learning robotic skills is a difficult problem that can be
addressed in several ways. The most common approach is
Learning from Demonstration (LfD), in which the robot is
shown an initial way of solving a task, and then tries to
reproduce, improve and/or adapt it to variable conditions.
The learning of tasks is usually performed in the kinematic

This work was partially developed in the context of the Advanced Grant
CLOTHILDE (”CLOTH manIpulation Learning from DEmonstrations”),
which has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 741930). This work is also partially funded
by CSIC projects MANIPlus (201350E102) and TextilRob (201550E028),
and Chist-Era Project I-DRESS (PCIN-2015-147).

The authors are with the Institut de Robòtica i Informàtica Indus-
trial (CSIC-UPC), Llorens Artigas 4-6, 08028 Barcelona, Spain. E-mails:
[acolome,torras]@iri.upc.edu

domain by learning trajectories [2], [3], but it can also be
carried out in the force domain [4], [5], [6].

A training data set is often used in order to fit a relation be-
tween an input (experiment conditions) and an output (a good
behavior of the robot). This fitting, which can use different
regression models such as Gaussian Mixture Models (GMM)
[7], is then adapted to the environmental conditions in order
to modify the robot’s behavior [8]. However, reproducing
the demonstrated behavior and adapting it to new situations
does not always solve a task optimally, thus Reinforcement
Learning (RL) is also being used, where the solution learned
from a demonstration improves through exploratory trial-
and-error. RL is capable of finding better solutions than the
one demonstrated to the robot.

Fig. 1: Two robotic arms coordinating their motions to fold a polo shirt.

These motor/motion behaviors are usually represented
with Movement Primitives (MPs), parameterized trajectories
for a robot that can be expressed in different ways, such as
splines, Gaussian mixtures [9], probability distributions [10]
or others. A desired trajectory is represented by fitting certain
parameters, which can then be used to improve or change it,
while a proper control (a computed torque control [11], for
example) tracks this reference signal.

Among all MPs, the most used ones are Dynamic Move-
ment Primitives (DMPs) [12], [13], which characterize a
movement or trajectory by means of a second-order dy-
namical system. The DMP representation of trajectories has
good scaling properties wrt. trajectory time and initial/ending
positions, has an intuitive behavior, does not have an explicit
time dependence and is linear in the parameters, among other
advantages [12]. For these reasons, DMPs are being widely

used with Policy Search (PS) RL [14], [15], [16], where
the problem of finding the best policy (i.e., MP parame-
ters) becomes a case of stochastic optimization. Such PS
methods can be gradient-based [16], based on expectation-
maximization approaches [15], can also use information-
theoretic approaches like Relative Entropy Policy Search
(REPS) [17], [18] or be based on optimal control theory,
as for the case of Policy Improvement with Path Integrals
(PI2) [19], [20], [21]. All these types of PS try to optimize
the policy parameters θ, which in our case will include the
DMPs’ weights, so that an expected reward J(θ) is maximal,
i.e., θ∗ = argmaxθJ(θ). After each trajectory reproduction,
namely rollout, the reward/cost function is evaluated and,
after a certain number of rollouts, used to search for a set
of parameters that improves the performance over the initial
movement.

These ideas have resulted in algorithms that require several
rollouts to find a proper policy update. In addition, to have
a good fitting of the initial movement, many parameters are
required, while we want to have few in order to reduce the
dimensionality of the optimization problem. When applying
learning algorithms using DMPs, several aspects must be
taken into account:

• Model availability. RL can be performed through sim-
ulation or with a real robot. The first case is more
practical when a good simulator of the robot and
its environment is available. However, in the case of
manipulation of non-rigid objects or, more generally,
when accurate models are not available, reducing the
number of parameters and rollouts is critical. Therefore,
although model-free approaches like deep reinforcement
learning [22] could be applied in this case, they require
large resources to successfully learn motion.

• Exploration constraints. Certain exploration values
might result in dangerous motion of the real robot, such
as strong oscillations and abrupt acceleration changes.
Moreover, certain tasks may not depend on all the
Degrees of Freedom (DoF) of the robot, meaning that
the RL algorithm used might be exploring motions that
are irrelevant to the task, as we will see later.

• Parameter dimensionality. Complex robots still re-
quire many parameters for a proper trajectory repre-
sentation. The number of parameters needed strongly
depends on the trajectory length or speed. In a 7-DoF
robot following a long 20-second trajectory, the use
of more than 20 Gaussian kernels per joint might be
necessary, thus having at least 140 parameters in total.
A higher number of parameters will usually allow for
a better fitting of the initial motion characterization,
but performing exploration for learning with such a
high dimensional space will result in a slower learning.
Therefore, there is a tradeoff between better exploita-
tion (many parameters) and efficient exploration (fewer
parameters).

For these reasons, performing Dimensionality Reduction
(DR) on the DMPs’ DoF is an effective way of dealing

with the tradeoff between exploitation and exploration in
the parameter space to obtain a compact and descriptive
projection matrix which helps the RL algorithm to converge
faster to a (possibly) better solution. Additionally, Policy
Search approaches in robotics usually have few sample
experiments to update their policy. This results in policy
updates where there are less samples than parameters, thus
providing solutions with exploration covariance matrices that
are rank-deficient (note that a covariance matrix obtained
by linear combination of samples can’t have a higher rank
than the number of samples itself). These matrices are
usually then regularized by adding a small value to the
diagonal so the matrix remains invertible. However, this
procedure is a greedy approach, since the unknown subspace
of the parameter space is given a residual exploration value.
Therefore, performing DR in the parameter space results
in the elimination of unexplored space. On the contrary,
if such DR is performed in the DoF space, the number of
samples is larger than the DoF of the robot and, therefore,
the elimination of one degree of freedom of the robot (or a
linear combination of them) will not affect such unexplored
space, but rather a subspace of the DoF of the robot that has
a negligible impact on the outcome of the task.

Other works [23], [24], [25] proposed dimensionality
reduction techniques for MP representations. In our previ-
ous work [26], we showed how an iterative dimensionality
reduction applied to DMPs, using policy reward evaluations
to weight such DR could improve the learning of a task, and
[27] used weighted maximum likelihood estimations to fit a
linear projection model for MPs.

In this paper, our previous work [26] is extended with
a better reparametrization after DR, and generalized by
segmenting a trajectory using more than a single projection
matrix. The more systematic experimentation in three set-
tings shows their clear benefits when used for reinforcement
learning. After introducing some preliminaries in Section
II, we will present the alternatives to reduce the parameter
dimensionality of the DMP characterization in Section III,
focusing on the robot’s DoF. Then, experimental results with
a simulated planar robot, a single 7-DoF WAM robot, and
a bimanual task performed by two WAM robots will be
discussed in Section IV, followed by conclusions and future
work prospects in Section V.

II. PRELIMINARIES

Throughout this work, we will be using DMPs as motion
representation and REPS as PS algorithm. For clarity of
presentation, we firstly introduce the basic concepts we will
be using throughout this work.

A. Dynamic Movement Primitives

In order to encode robot trajectories, DMPs are widely
used because of their adaptability. DMPs determine the
robot commands in terms of acceleration with the following
equation:

ÿ/τ2 = αz (βz (G− y)− ẏ/τ) + f(x)

f(x) = ΨTω,
(1)

where y is the joint position vector, G the goal/ending joint
position, τ a time constant, x is a transformation of time
verifying ẋ = −αxx/τ . In addition, ω is the parameter
vector of size dNf , Nf being the number of Gaussian kernels
used for each of the d DoF. The parameters ωj , j = 1..d
fitting each joint behavior from an initial move are appended
to obtain ω = [ω1; ...;ωd], and then multiplied by a Gaussian
weights matrix Ψ = Id ⊗ g(x), ⊗ being the Kronecker
product, with the basis functions g(x) defined as:

gi(x) =
φi (x)∑
j φj (x)

x, i = 1..Nf , (2)

where φi (x) = exp
(
−0.5(x− ci)2/di

)
, and ci, di represent

the fixed center and width of the ith Gaussian.
With this motion representation, the robot can be taught

a demonstration movement, to obtain the weights ω of
the motion by using least squares or maximum likelihood
techniques on each joint j separately, with the values of f
isolated from Eq. (1).

B. Learning an initial motion from demonstration

A robot can be taught an initial motion through kines-
thetic teaching. However, in some cases, the robot might
need to learn an initial trajectory distribution from a set of
demonstrations. In that case, similar trajectories need to be
aligned in time. In the case of a single-demonstration, the
user has to provide an arbitrary initial covariance matrix Σω

for the weights distribution with a magnitude providing as
much exploration as possible while keeping robot behavior
stable and safe. In the case of several demonstrations, we
can sample from the parameter distribution, increasing the
covariance values depending on how local we want our
policy search to be.

Given a set of taught trajectories τ1, ..., τNk
, we can obtain

the DMP weights for each one and fit a normal distribution
ω ∼ N (µω,Σω), where Σω encodes the time-dependent
variability of the robot trajectory at the acceleration level.
To reproduce one of the trajectories from the distribution,
the parameter distribution can be sampled, or tracked with
a proper controller that matches the joint time-varying vari-
ance, as in [28].

This DMP representation of a demonstrated motion will
then be used to initialize a RL process, so that after a
certain number of reproductions of the trajectory (rollouts),
a cost/reward function will be evaluated for each of those
trajectories, and a suitable RL algorithm will provide new
parameters that represent a similar trajectory, with a higher
expected reward.

C. Policy search

Along this work, we will be using Relative Entropy Policy
Search (REPS) as PS algorithm. REPS [17], [18] finds the
policy that maximizes the expected reward of a robotic
task, subject to the constraint of a bound on the Kullback-
Leibler Divergence [29] of the new policy with respect to
the previous policy q(ω), to avoid large changes in robotic

tasks policies which could result in dangerous robot motion.
Formally:

π∗ = argmaxπ
∫
π(ω)R(ω)dω

s.t. εKL ≥
∫
π(ω)logπ(ω)

q(ω) dω

1 =
∫
π(ω)dω

(3)

where ω are the parameters of a trajectory, R(ω) their
reward, and π(ω) is the probability, according to the policy
π, of having such parameters. For DMPs, the policy π will
be represented by µω and Σω , generating sample trajectories
ω.

Solving this constrained optimization problem provides a
solution of the form

π∗ ∝ q(ω)exp(R(ω)/η), (4)

where η is the solution of a dual function (see [17] for
details on this derivation). Having the value of η and the
rewards, the exponential part in Eq. (4) acts as a weight
to use with the trajectory samples ωk in order to obtain
the new policy, usually with a Gaussian weighted maximum
likelihood estimation.

Table I shows a list of the parameters and variables
used throughout this paper; those related to the coordination
matrix will be introduced in the following section.

TABLE I: Parameters and variables

θ = {Ω,µωΣω} DMP parameters
Ω Coordination matrix
ω ∼ N (µω ,Σω) DMP weights with mean and covariance
αz , βz , αx, τ DMP fixed parameters
d, r Robot’s DOF and reduced dimensionality
Nf Gaussian basis functions used per DoF
k, Nk Rollout index and number of rollouts per

policy update
t, Nt Time index and number of timesteps
s, Ns Coordination matrix index and number of

coordination matrices
y, x Robot’s joint position vector and end effector’s

Cartesian pose

III. DMP COORDINATION

In this section, we will describe how to efficiently obtain
the joint couplings associated to each task during the learning
process, in order to both reduce the dimensionality of a
problem, as well as obtaining a linear mapping describ-
ing a task. In [30], a coordination framework for DMPs
was presented, where a robot’s movement primitives were
coupled through a coordination matrix, which was learned
with an RL algorithm. Kormushev et al. [31] worked in a
similar direction, using square matrices to couple d primitives
represented as attractor points in the task space domain.

We now propose to use a not necessarily square coordina-
tion matrix in order to decrease the number of actuated DoF
and thus reduce the number of parameters. To this purpose,
in Eq. (1) we can take:

f(xt) = ΩΨT
t ω, (5)

for each timestep t, Ω being a (d × r) matrix, with r ≤ d
a reduced dimensionality, ΨT

t = Ir ⊗ g, similarly as in the

previous section, and ω is an (rNf)-dimensional vector of
motion parameters. Note that this representation is equivalent
to having r movement primitives encoding the d-dimensional
acceleration command vector f(x). Intuitively, the columns
of Ω represent the couplings between the robot’s DoF.

The DR reduction in Eq. (5) is preferable to a DR on
the DMP parameters themselves for numerical reasons. If
such DR would be performed as f(xt) = ΨT

t Ω̂ω, then Ω̂
would be a high-dimensional matrix but, more importantly,
the number of rollouts per policy update performed in PS
algorithms would determine the maximum dimension of the
explored space as a subspace of the parameter space, leaving
the rest of such parameter space with zero value or a small
regularization value at most. In other words, performing DR
in the parameter space requires Nf times more rollouts per
update to provide full information than performing such DR
in the joint space.

In order to learn the coordination matrix Ω, we need an
initial guess and also an algorithm to update it and eliminate
unnecessary degrees of freedom from the DMP, according
to the reward/cost obtained. Within this representation, we
can assume that the probability of having certain excitation
values ft = f(xt) at a timestep given the weights ω is
p(ft|ω) ∼ N (ΩΨT

t ω,Σf), Σf being the system noise. Thus,
if ω ∼ N (µω,Σω), the probability of ft is:

p(ft) = N (ΩΨT
t µω,Σf + ΩΨT

t ΣωΨtΩ
T). (6)

Along this section we will firstly present the initialization
of such coordination matrices in Section III-A, and how they
can be updated with a reward-aware procedure in Section III-
B. Additionally, Section III-C presents ways of eliminating
robot DoF irrelevant for a certain task, and in Section III-
E, we present a multiple coordination matrix framework to
segment a trajectory so as to use more than one projection
matrix. Finally, we consider some numerical issues in Section
III-F and a summary in Section III-G.

A. Obtaining an initial coordination matrix with PCA

In this section, we will explain how to obtain the coordina-
tion motion matrices while learning a robotic task, and how
to update them. A proper initialization for the coordination
matrix Ω is to perform a Principal Component Analysis
(PCA) over the demonstrated values of f (see Eq(1)). Taking
the matrix F of all timesteps ft in Eq. (5), of size (d×Nt),
for the d degrees of freedom and Nt timesteps as:

F =

 f
(1)
de (x0)− f (1)

de ... f
(1)
de (xNt

)− f (1)

de
... ...

f
(d)
de (x0)− f (d)

de ... f
(d)
de (xNt

)− f (d)

de

 , (7)

f de being the average over each joint component of the
DMP excitation function, for the demonstrated motion (de
subindex). Then we can perform Singular Value Decompo-
sition (SVD), obtaining F = Upca · Σpca · V Tpca.

Now having set r < d as a fixed value, we can take the
r eigenvectors with the highest singular values, which will

be the first r columns of Upca = [u1, ...,ur, ...,ud], with
associated singular values σ1 > σ2 > ... > σd and use

Ω = [u1, ...,ur] (8)

as coordination matrix in Eq. (5), having a reduced set
of DoF of dimension r, which activate the robot joints
(dimension d), minimizing the error in the reprojection e =
‖F−Ω·Σ·V Tpca‖2Frob, with Σ the part of Σpca corresponding
to the first r singular values.

Note that this dimensionality reduction does not take any
reward/cost function into consideration, so an alternative
would be to start with a full-rank coordination matrix and
progressively reduce its dimension, according to the costs or
rewards of the rollouts. In the next section, we will explain
the methodology to update such coordination matrix while
also reducing its dimensionality, if necessary.

B. Reward-based Coordination Matrix Update (CMU)

In order to tune the coordination matrix once initialized
as described in Section III-A, we assume we have performed
Nk reproductions of motion, namely rollouts, obtaining an
excitation function f

(j),k
t , for each rollout k = 1..Nk,

timestep t = 1..Nt, and DoF j = 1..d. Now having eval-
uated each of the trajectories performed with a cost/reward
function, we can also associate a relative weight P kt to each
rollout and timestep as it is done in policy search algorithms
such as PI2 or REPS. We can then obtain a new d×Nt matrix
Fco with the excitation function on all timesteps defined as:

Fnewco =

Nk∑
k=1

f
(1),k
1 P k1 ...

Nk∑
k=1

f
(1),k
Nt

P kNt

... ...
Nk∑
k=1

f
(d),k
1 P k1 ...

Nk∑
k=1

f
(d),k
Nt

P kNt

 , (9)

which contains information of the excitation functions,
weighted by their relative importance according to the rollout
result. A new coordination matrix Ω can be obtained by
means of PCA. However, when changing the coordination
matrix, we then need to reevaluate the parameters {µω,Σω}
to make the trajectory representation fit the same trajectory.
To this end, given the old distribution (represented with a hat)
and the one with the new coordination matrix, the excitation
functions distributions, excluding the system noise, are

f̂t ∼ N (Ω̂Ψ̂
T

t µ̂ω, Ω̂Ψ̂
T

t Σ̂ωΨ̂tΩ̂
T

) (10)

ft ∼ N (ΩΨT
t µω,ΩΨT

t ΣωΨtΩ
T). (11)

We then represent the trajectories as a single probability
distribution over f using (6):

F =

 f1
...
fNt

 ∼ N (OΨTµω,OΨTΣωΨOT
)
, (12)

where O = INt
⊗Ω, and

Ψ =

 Ir ⊗ gT1
...

Ir ⊗ gTNt

 , (13)

Algorithm 1 Coordination Matrix Update (CMU)
Input:
Rollout and timestep probabilities P kt , k = 1..Nk, t = 1..Nt.
Excitation function f

(j),k
i , j = 1..d.

Previous update (or initial) excitation function Fco.
Current Ω of dimension d× r.
DoF discarding threshold η.
Current DMP parameters θ = {Ω,µω,Σω}.

1: Compute Fnew
co as in Eq. (9)

2: Filter excitation matrix: Fnew
co = αFnew

co + (1− α)Fco
3: Subtract average as in Eq. (7)
4: Perform PCA and obtain Upca = [u1, ...,ur, ...,ud] (as

detailed in Section III-A)
5: if σ1/σr > η then
6: r = r − 1
7: end if
8: Ωnew = [u1, ...,ur]
9: Recompute: {µω,Σω} as in Eqs. (16)-(17)

while

F̂ =

 f̂1
...

f̂Nt

 ∼ N (ÔΨ̂
T
µ̂ω, ÔΨ̂

T
Σ̂ωΨ̂ÔT

)
, (14)

where Ô = INt
⊗ Ω̂, and Ψ̂ is built in accordance to the

value of r in case the dimension has changed, as it will be
seen later.

To minimize the loss of information when updating the
distribution parameters µω and Σω , given a new coor-
dination matrix, we can minimize the Kullbach-Leibler
(KL) divergence between p̂ ∼ N (µ̂ω, Σ̂ω) and p ∼
N (Mµω,MΣωMT), being M = (ÔΨ̂

T
)†OΨT , and †

representing the Moore-Penrose pseudoinverse operator. This
reformulation is done so that we have two probability distri-
butions with the same dimensions, and taking into account
that the KL divergence is not symmetric, using ft as an
approximation of f̂t.

As the KL divergence for two normal distributions is
known [32], we have

KL(p̂‖p) = log |MΣωMT |
|Σ̂ω|

+ tr
(

(MΣωMT)−1Σ̂ω

)
+(Mµω − µ̂ω)T (MΣωMT)−1(Mµω − µ̂ω)− d

(15)
Now, differentiating wrt. µω and wrt. (MΣωMT)−1, and

setting the derivative to zero to obtain the minimum, we
obtain:

µω = M†µ̂ω (16)

Σω = M†
[
Σ̂ω + (Mµω − µ̂ω)(Mµω − µ̂ω)T

]
(MT)†.

(17)
Minimizing the KL divergence provides the solution with

the least loss of information, in terms of probability distri-
bution on the excitation function.

C. Eliminating irrelevant degrees of freedom

In RL, the task the robot tries to learn does not always
necessarily depend on all the degrees of freedom of the
robot. For example, if we want to track a Cartesian xyz
position with a 7-DoF robot, it is likely that some degrees
of freedom, which mainly alter the end-effector’s orientation,
may not affect the outcome of the task. However, these DoF
are still considered all through the learning process, causing
unnecessary motions which may slow down the learning
process or generate a final solution in which a part of the
motion was not necessary.

For this reason, the authors claim that the main use of a
coordination matrix should be to remove those unnecessary
degrees of freedom, and the coordination matrix, as built
in Section III-B, can easily provide such result. Given a
threshold η for the ratio of the maximum and minimum
singular values of Fnew

co defined in Eq.(9), we can discard
the last column of the coordination matrix if those singular
values verify σ1/σr > η.

In Algorithm 1, we show the process of updating and
reducing the coordination matrix, where the parameter α is
a filtering term, in order to keep information from previous
updates.

D. Dimensionality reduction in the parameter space (pDR-
DMP)

While most approaches found in literature perform DR
in the joint space [27], [25], [26], for comparison purposes
we also derived DR in the parameter space. To do so, the
procedure is equivalent to that of the previous subsections,
with the exception that now the parameter r disappears and
we introduce the parameter Mf ≤ dNf , indicating the total
number of Gaussian parameters used. Then, (5) becomes:

f(xt) = ΨT
t Ωω, (18)

with ΨT
t being a (d × dNf) matrix of Gaussian basis

functions, as detailed in Section II and Ω being a (dNf ×
Mf) matrix with the mappings from a parameter space of
dimension Mf to the whole DMP parameter space. The DMP
weight vector ω now has dimension Mf . In order to initialize
the projection matrix Ω, we have to take the data matrix in
Eq.(7), F, knowing that:

F = [f1, ..., fNt
] = [ΨT

1 Ωω, ...,ΨT
Nt

Ωω], (19)

which can be expressed as a least-squares minimization
problem as:

[Ψ†,T1 f1, ...,Ψ
†,T
Nt

fNt
] ' Ωω, (20)

where † represents the pseudoinverse matrix. We can then
obtain the projection matrix Ω by performing PCA in Eq.
(20). Note that, in order to fit the matrix Ω (dNf ×Mf), we
need at least a number of timesteps Nt > Mf .

E. Multiple Coordination Matrix Update (MCMU)
Using a coordination matrix to translate the robot degrees

of freedom into others more relevant to task performance
may result in a too strong linearization. For this reason,
multiple coordination matrices can be built in order to per-
form a coordination framework that uses different mappings
throughout the trajectory. In order to do so, we will use a
second layer of Ns Gaussians and build a coordination matrix
Ωs for each Gaussian s = 1..Ns, so that at each timestep
the coordination matrix Ωt will be an interpolation between
such constant coordination matrices Ωs. To compute such
an approximation, linear interpolation of projection matrices
does not necessarily yield robust result. For that reason, given
the time t and the constant matrices Ωs, we compute

Ωt = argminX

Ns∑
s=1

ϕts

[
tr(Ω†sX)− d log

(
‖X‖F
‖Ωs‖F

)]
(21)

with
ϕts = ϕs(xt) =

φs(xt)
Ns∑
p=1

φp(xt)

, (22)

where φs, s = 1..Ns are equally distributed Gaussians in
the time domain, and ‖.‖F is the Frobenius norm. A new
Gaussian basis function set is used in order to independently
choose the number of coordination matrices, as the number
of Gaussian kernels for DMPs is usually much larger than
the number needed for linearizing the trajectory in the
robot’s DoF space. Such number Ns can then be freely
set, according to the needs and variability of the trajectory.
The optimization cost is chosen for its similarity with the
covariance terms of the Kullback-Leibler divergence, and if
we use the number of DoF of the robot, d, as a factor in the
equation and the matrices Ωs are all orthonormal, then the
optimal solution is a linear combination of such matrices:

Ωt =

Ns∑
s=1

ϕtsΩs. (23)

Note that ϕts acts as an activator for the different matrices,
but it is also used to distribute the responsibility for the
acceleration commands to different coordination matrices
in the newly-computed matrix Fsco. Then we can proceed
as in the previous section, with the exception that we will
compute each Ωs independently by using the following data
for fitting:

Fsco =

Nk∑
k=1

f
(1),k
1 ϕ1

sP
k
1 ...

Nk∑
k=1

f
(1),k
Nt

ϕs1P
k
Nt

... ...
Nk∑
k=1

f
(d),k
1 ϕNt

s P k1 ...
Nk∑
k=1

f
(d),k
Nt

ϕNt
s P kNt

 ,
(24)

and use the following excitation function in Eq. (1):

f(x) = ΩtΨ
T
t µω,=

(
Ns∑
s=1

ϕtsΩs

)
ΨT
t µω. (25)

Note that, in Eq. (24), Fsco will probably have columns
entirely filled with zeros. We filtered those columns out
before performing PCA, while an alternative is to use ϕ
as weights in a weighted PCA. Both approaches have been
implemented and show a similar behavior in real-case sce-
narios. Now, changing the linear relation between the d
robot’s DoF and the r variables encoding them within a
probability distribution (see Eq. (6)) requires to update the
covariance matrix in order to keep it consistent with the
different coordination matrices. In this case, as Ω is varying,
we can reproject the weights similarly as in Eqs. (10)-(17),
by using:

O =

 Ω1 0 0
0 ... 0

0 0 ΩNt

 , (26)

for the new values of r, Ωs, ∀s, compared to the previous
values (now denoted with a hat). We can then use Eqs. (16)
and (17) to recalculate µω and Σω .

F. Numerical issues of a sum of two coordination matrices

1) Orthogonality of components and locality: When using
Eq. (23) to define the coordination matrix, we are in fact
doing a weighted sum of different coordination matrices Ωs,
obtaining a matrix whose j-th column is the weighted sum
of the j-ths columns of the Ns coordination matrices. This
operation would not necessarily provide a matrix with its
columns pairwise orthonormal, despite all the Ωs having that
property. Nevertheless, such orthonormality property is not
necessary, other than to have an easier-to-compute inverse
matrix. The smaller the differences between consecutive
coupling matrices, the closer to an orthonormal column-wise
matrix we will obtain at each timestep. From this fact, we
conclude that the number of coupling matrices has to be
fitted to the implicit variability of the task, so as to keep
consecutive coordination matrices relatively similar.

2) Eigenvector matching and sign: Another issue that
may arise is that, when computing the singular value decom-
position, some algorithms provide ambiguous representations
in terms of the signs of the columns of the matrix Upca in
Section III-A. This means that it can be the case of two
coordination matrices, Ω1 and Ω2, having similar columns
with opposite signs, the resulting vector being a weighted
difference between them, which will then translate into a
computed coupling matrix Ωt obtained through Eq. (23) with
a column vector that only represents noise, instead of a joint
coupling.

It can also happen that consecutive coordination matrices
Ω1, Ω2 have similar column vectors but, due to similar
eigenvalues coming from the singular value decomposition,
their column order becomes different.

Because of these two facts, a reordering of the coupling
matrices Ωs has to be carried out, as shown in Algorithm 2.
In such algorithm, we use the first coordination matrix Ω1 as
a reference and, for each other s = 2..Ns, we compute the
pairwise column dot product of the reference Ω1 and Ωs. We

Algorithm 2 Reordering of PCA results
Input:
Ωs,∀s = 1..Ns, computed with PCA

1: for is = 2..Ns do
2: Initialize K = 0r×r, the pair-wise dot product matrix
3: Initialize PCAROT = 0r×r, the rotation matrix
4: for i1 = 1..r, i2 = 1..r do
5: K(i1, i2) = dot(Ω1(:, i1),Ωs(:, i2))
6: end for
7: for j = 1..r do
8: vmax = max(|K(:, j)|)
9: imax = argmax(|K(:, j)|)

10: if vmax = max(|K(imax, :)|) then
11: PCAROT(imax, j) = sign(K(imax, j))
12: end if
13: end for
14: if rank(PCAROT) < r then
15: Return to line 7
16: end if
17: end for

then reorder the eigenvectors in Ωs and change their signs
according to the dot products matrices.

G. Variants of the DR-DMP method

To sum up the proposed dimensionality reduction methods
for DMPs (DR-DMP) described in this section, we list their
names and initializations in Tables II and III, which show
their descriptions and usages.

TABLE II: Methods description

DR-DMP0(r) Fixed Ω of dimension (d× r)
DR-DMP0(Ns, r) Fixed multiple Ωs of dimension (d× r)

DR-DMPCMU(r) Recalculated Ω of dimension (d× r)
DR-DMPMCMU(Ns, r) Recalculated multiple Ωs of dimension (d× r)

IDR-DMPCMU Iterative DR while recalculating Ω
IDR-DMPMCMU(Ns) Iterative DR while recalculating multiple Ωs

EM DR-DMP(r) DR with Expectation Maximization as in [27]
pDR-DMP(Mf) DR in the parameter space as in Sec. III-D

TABLE III: Methods initialization and usage

Method Initialization of Ω θ update
DR-DMP0(r) PCA(r) REPS
DR-DMP0(Ns, r) Ns-PCA(r) REPS
DR-DMPCMU (r) PCA(r) REPS+CMU, η =∞
DR-DMPMCMU(Ns, r) Ns-PCA(r) REPS+MCMU, η =∞
IDR-DMPCMU (r) PCA(d) REPS+CMU, η <∞
IDR-DMPMCMU(Ns, r) Ns-PCA(d) REPS+MCMU, η <∞
EM DR-DMP(r) EM(r) REPS
pDR-DMP(Mf) (param) PCA(Mf) REPS+CMU, η =∞

In Table III, PCA(r) represents Principal Component
Analysis (PCA) keeping the r eigenvectors with the largest
singular values (see. Section III-A). Ns−PCA(r) is used to
represent the computation of Ns PCA approximations and
coordination using equally-initialized weights in Eq. (24).
The CMU algorithm is defined in Algorithm 1, and its
MCMU variant in Section III-E. EM DR-DMP(r) represents

the adaptation of the work in [27] to the DMPs. Finally,
IDR-DMP is used to denote the iterative dimensionality
reduction as described in Section III-C, either with one
coordination matrix, IDR-DMPCMU (r), or Ns coordination
matrices, IDR-DMPMCMU(Ns, r).

IV. EXPERIMENTATION

To assess the performance of the different algorithms
presented throughout this work, we performed three experi-
ments. An initial one consisting of a fully-simulated 10-DoF
planar robot (Experiment 1 in Section IV-A), a simulated
experiment with 7-DoF real robot data initialization (Experi-
ment 2 in Section IV-B) and a real-robot experiment with two
coordinated 7-DoF robots (Experiment 3 in Section IV-C).
We set a different reward function for each task, according
to the nature of the problem and based on similar examples
in literature [14]. Different variants of the proposed latent
space DMP representation have been tested, as well as an
EM-based approach [27] adapted to the DMPs. We used
episodic REPS in all the experiments and, therefore, time-
step learning methods like [25] were not included in the
experimentation. The application of the proposed methods
does not depend on the REPS algorithm, as they can be im-
plemented with any PS procedure using Gaussian weighted
maximum likelihood estimation for reevaluating the policy
parameters, such as for example PI2 [19], [20], [21].

A. 10-DoF planar robot arm experiment

As an initial learning problem for testing, we take the
planar arm task used as a benchmark in [20], where a
d-dimensional planar arm robot learns to adapt an initial
trajectory to go through some via-points.

1) Initialization and reward function: Taking d = 10, we
generated a minimum jerk trajectory from an initial position
to a goal position. As a cost function, we used the Cartesian
positioning error on two via-points. The initial motion was a
min-jerk-trajectory for each of the 10 joints of the planar arm
robot, with each link of length 1m, from an initial position
qj(t = 0) = 0 ∀j, to the position qj(t = 1) = 2π/d (see
Fig. 2(a)). Then, to initialize the trajectory variability, we
generated several trajectories for each joint by adding

qj(t) = qj,minjerk(t) +

2∑
a=1

Aaexp
(
−(t− ca)2/d2

a

)
,

where Aa ∼ N (0, 1
4d), and obtained trajectories from a

distribution as those shown for one joint in Fig. 2(b). We
used those trajectories to initialize µω and Σω .

The task to learn is to modify the trajectory so as to go
through Nv = 2 via points along the trajectory. As a reward
function for the experiments, we used R =

∑
t rt, where rt

is the reward at time-step t defined as:

rt = −
Nv∑
v=1

δ(t = tv)(xt − xv)
TCx(xt − xv)

−ẍTt Cuẍt,
(27)

which is a weighted sum of an acceleration command and a
via-points error; xt,xv being the Cartesian trajectory point

and via-point coordinates for each of the 1..Nv via-points.
This cost function penalizes accelerations in the first joints,
which move the whole robot. As algorithmic parameters, we
used a bound on the KL-divergence of 0.5 for REPS, and a
threshold η = 50 for the ratio of the maximum and minimum
singular values for dimensionality reduction in Algorithm 1.

We used REPS for the learning experiment for a fixed
dimension (initially set to a value r = 1..10), and starting
with r = 10 and letting the algorithm reduce the dimension-
ality by itself. We also allowed for an exploration outside
the linear subspace represented by the coordination matrix
(noise added to the d-dimensional acceleration commands in
simulation) following εnoise ∼ N (0, 0.1).

2) Results and discussion: After running the simulations,
we obtained the results detailed in Table IV, where the
mean and its 95% confidence interval variability are shown
(through 20 runs for each case). An example of solution
found can be seen in Fig. 2(c), where the initial trajectory
has been adapted so as to go through the marked via-points.
The learning curves for those DR-DMP variants considered
of most interest in Table IV are also shown in Fig. 2(d).

In Table IV we can observe that:

• Using two coordination matrices yields better results
than using one; except for the case of a fixed dimension
set to 10, where the coupling matrices would not make
sense as they would have full rank.

• Among all the fixed dimensions, the one showing the
best results is r = 2, which is indeed the dimension of
the implicit task in the Cartesian space.

• The variable-dimension iterative method produces the
best results.

B. 7-DoF WAM robot circle-drawing experiment

As a second experiment, we kinesthetically taught a real
robot - a 7-DoF Barrett’s WAM robot - to perform a 3-D
circle motion in space.

1) Initialization and reward function: We stored the real
robot data obtained through such kinesthetic teaching and a
plot of the end-effector’s trajectory together with the closest
circle can be seen in Fig. 3(a).

Using REPS again as PS algorithm with εKL = 0.5, 10
simulated experiments of 200 policy updates consisting of
20 rollouts each were performed, reusing the data of up to
the previous 4 epochs. Using the same REPS parameters,
we ran the learning experiment with Nf = 15 Gaussian
basis per DoF, and one constant coordination matrix Ω and
different dimensions r = 1..7, namely DR-DMP0(r). We
also ran the experiment updating the coordination matrix
of constant dimension after each epoch, DR-DMPCMU (r).
Similarly, we ran the learning experiments with Ns = 3
coordination matrices: With constant coordination matrices
initialized at the first iteration, DR-DMP0

MCMU (3, r), and
updating the coordination matrices at every policy update,
DR-DMPMCMU (3, r). We also ran the iterative dimension-
ality reduction with Ns = 1 coordination matrix, IDR-
DMPCMU , and with Ns = 3 matrices, IDR-DMPMCMU (3).

We then implemented and tested a weighted expectation-
maximization approach for linear DR with an expression
equivalent to that found in [27], where DR was applied
to the forcing term f , with one coordination matrix and a
fixed number for the reduced dimension r, EM DR-DMP(r).
Last, we added to the comparison the pDR-DMP(Mf) variant
described in Section III-D, using Mf = 15 · 1, ..., 6, an
equivalent number of Gaussian kernels as for the DR-
DMP(r) method with r = 1, ..., 6.

As a reward function, we used:

R = −

(
Nt∑
t=1

rtcircle + α‖q̈‖2
)
, (28)

where rcircle is the minimum distance between the circle
and each trajectory point, ‖q̈‖2 is the squared norm of the
acceleration at each trajectory point, and α = 1

5·106 is a
constant so as to keep the relative weight of both terms in
a way the acceleration represents a value between 10% and
20% of the cost function.

2) Results and discussion: The results shown in Table
V have the mean values throughout the 10 experiments,
and their confidence intervals with 95% confidence. Figure
3(b) shows the learning curves for some selected methods.
Using the standard DMP representation as the benchmark for
comparison, with r = 7 as fixed dimension (see first row in
Table V), we can say that:
• Using Ns = 3 coordination matrices yields significantly

better results than using only one. Ns = 3 with a single
dimension results in a final reward of −0.010± 0.008,
the best obtained throughout all experiments.

• It is indeed better to use a coordination matrix update
with automatic dimensionality reduction than to use the
standard DMP representation. Additionally, it provides
information on the true underlying dimensionality of the
task itself. In the considered case, there is a significant
improvement from r = 4 to r = 3, given that the reward
doesn’t take orientation into account and, therefore, the
task itself lies in the 3−dimensional Cartesian space.
Moreover, the results indicate that a 1-dimensional
representation can be enough for the task.

• Fixing the dimension to 1 leads to the best performance
results overall, clearly showing that smaller parameter
dimensionality yields better learning curves. It is to
be expected that, given a 1-dimensional manifold of
the Cartesian space, i.e., a trajectory, there exists a
1-dimensional representation of such trajectory. Our
approach seems to be approaching such representation,
as seen in black in Fig. 3(a).

• Both DR-DMPCMU (r) and DR-DMPMCMU (3, r) pro-
vide a significant improvement over the standard DMP
representation, DR-DMP0(r). This is specially notice-
able for r ≤ 3, where the final reward values are
much better. Additionally, the convergence speed is
also significantly faster for such dimensions, as the 10
updates column shows.

• EM DR-DMP(r) shows a very fast convergence to high-

TABLE IV: Results for the 10-DoF planar arm experiment displaying (−log10(−R)), R being the reward. DR-DMP variants
for several reduced dimensions after the indicated number of updates, using 1 or 2 coordination matrices, were tested.

Dimension 1 update 10 updates 25 updates 50 updates 100 updates 200 updates
DR-DMPCMU (10) 0.698± 0.070 1.244± 0.101 1.713± 0.102 1.897± 0.038 1.934± 0.030 1.949± 0.026
DR-DMPCMU (8) 0.724± 0.073 1.265± 0.155 1.617± 0.135 1.849± 0.079 1.905± 0.072 1.923± 0.075
DR-DMPCMU (5) 0.752± 0.117 1.304± 0.098 1.730± 0.108 1.910± 0.076 1.954± 0.063 1.968± 0.064
DR-DMPCMU (2) 0.677± 0.063 1.211± 0.093 1.786± 0.073 1.977± 0.040 1.993± 0.039 1.997± 0.037
DR-DMPCMU (1) 0.612± 0.057 1.161± 0.103 1.586± 0.071 1.860± 0.056 1.931± 0.041 1.951± 0.042
DR-DMPMCMU (2, 10) 0.738± 0.094 1.304± 0.074 1.666± 0.159 1.848± 0.117 1.893± 0.080 1.919± 0.054
DR-DMPMCMU (2, 8) 0.676± 0.123 1.270± 0.168 1.681± 0.148 1.883± 0.058 1.927± 0.038 1.939± 0.036
DR-DMPMCMU (2, 5) 0.687± 0.052 1.264± 0.113 1.684± 0.130 1.897± 0.091 1.950± 0.056 1.962± 0.054
DR-DMPMCMU (2, 2) 0.704± 0.055 1.258± 0.130 1.749± 0.162 1.976± 0.029 2.000± 0.016 2.006± 0.017
DR-DMPMCMU (2, 1) 0.579± 0.076 1.103± 0.125 1.607± 0.131 1.885± 0.107 1.959± 0.055 1.972± 0.054
IDR-DMPCMU 0.715± 0.140 1.195± 0.091 1.672± 0.121 1.952± 0.040 1.997± 0.034 2.004± 0.030
IDR-DMPMCMU (2) 0.656± 0.058 1.174± 0.158 1.683± 0.169 1.937± 0.067 2.013± 0.030 2.019± 0.028

X-position
-2 0 2 4 6 8 10

Y
-P

o
s
it
io

n

-1

0

1

2

3

4

5

6

7

8

Min-jerk trajectory

(a)

Time
0 0.2 0.4 0.6 0.8 1

J
o
in

t
p
o
s
it
io

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Samples from an initial trajectory distribution for one joint

(b)

X-position
-2 0 2 4 6 8 10

Y
-p

o
s
it
io

n

-1

0

1

2

3

4

5

6

7

8

Initial vs. final trajectory

(c) (d)

Fig. 2: 10-DoF planar robot arm experiment. (a) Joints min-jerk trajectory in the Cartesian XY space. The robot links move
from the initial position (cyan color) to the end position (yellow), while the end-effector’s trajectory is plotted in red. (b)
Data generated to initialize the DMP for a single joint. (c) Initial trajectory (magenta) vs. final trajectory (blue) obtained
with the IDR-DMP algorithm; via points plotted in black. (d) Learning curves showing mean and 95% confidence interval.

(a) (b)

Fig. 3: 7-DoF WAM robot circle-drawing experiment. (a) End-effector’s trajectory (blue) resulting from a human
kinesthetically teaching a WAM robot to track a circle and closest circle in the three-dimensional Cartesian space (green),
which is the ideal trajectory; in black, one of the best solutions obtained through learning using DR-DMP. (b) Learning
curves showing mean and 95% confidence intervals for some of the described methods.

reduced dimension r
0 1 2 3 4 5 6 7 8

fi
n

a
l
re

w
a

rd

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

DR-DMP
0

DR-DMP
0
(N

s
=3)

DR-DMP
CMU

DR-DMP
MCMU

(N
s
=3)

DR-EM

Fig. 4: Final rewards of different methods depending on
chosen latent dimension.

reward values for r = 4, 5, 6 but the results for smaller
dimensions show a premature convergence too far from
optimal reward values.

• All pDR-DMP(Mf) methods display a very similar per-
formance, regardless of the number Mf of parameters
taken. They also present a greedier behavior, in the
sense of reducing the exploration covariance Σω faster
given the difficulties in performing dimensionality re-
duction with limited data on a high-dimensional space.
In order for this alternative to work, Mf must verify
that Mf < Nt and Mf should also be smaller than the
number of samples used for the policy update (note that

a reuse of the previous samples is also performed).

C. 14-DoF dual-arm clothes-folding experiment

As a third experiment, we implemented the same frame-
work on a dual-arm setting consisting of two Barrett’s WAM
robots, aiming to fold a polo shirt as seen in Fig. 1.

1) Initialization and reward function: We kinesthetically
taught both robots to joinly fold a polo shirt, with a relatively
wrong initial attempt as shown in Fig. 5(a). Then we per-
formed 3 runs consisting of 15 policy updates of 12 rollouts
each (totaling 180 real robot dual-arm motion executions for
each run), with a reuse of the previous 12 rollouts for the
PS update. We ran the standard method and the automatic
dimensionality reduction for both Ns = 1 and Ns = 3. This
added up to a total of 540 real robot executions with the
dual-arm setup.

The trajectories were stored in Cartesian coordinates,
using 3 variables for position and 3 more for orientation, to-
taling 12 DoF and, with 20 DMP weights per DoF, adding up
to 240 DMP parameters. Additionally, an inverse kinematics
algorithm was used to convert Cartesian position trajectories
to joint trajectories, which then a computed-torque controller
[33] would compliantly track.

As reward, we used a function that would penalize large
joint accelerations, together with an indicator of how well
the polo shirt was folded. To do so, we used a rooftop-
placed Kinect camera to generate a depth map with which to
evaluate the resulting wrinkleness of the polo. Additionally,
we checked its rectangleness by color-segmenting the polo
on the table and fitting a rectangle with the obtained result

TABLE V: Results for the circle-drawing experiment using real data from a 7-DoF WAM robot. Mean rewards and 95%
confidence intervals for most variants of the DR-DMP methods are reported.

Method 1 update 10 updates 25 updates 50 updates 100 updates 200 updates
DR-DMP0(7) −1.812± 0.076 −0.834± 0.078 −0.355± 0.071 −0.165± 0.034 −0.085± 0.024 −0.054± 0.019
DR-DMP0(6) −1.801± 0.053 −0.836± 0.058 −0.359± 0.058 −0.169± 0.040 −0.093± 0.027 −0.060± 0.021
DR-DMP0(5) −1.810± 0.047 −0.834± 0.058 −0.372± 0.048 −0.164± 0.037 −0.086± 0.028 −0.057± 0.023
DR-DMP0(4) −1.879± 0.054 −0.901± 0.043 −0.405± 0.059 −0.189± 0.037 −0.093± 0.025 −0.061± 0.021
DR-DMP0(3) −1.523± 0.057 −0.765± 0.051 −0.340± 0.052 −0.162± 0.038 −0.096± 0.030 −0.072± 0.025
DR-DMP0(2) −1.833± 0.065 −0.906± 0.074 −0.422± 0.063 −0.230± 0.043 −0.140± 0.029 −0.099± 0.024
DR-DMP0(1) −0.860± 0.030 −0.447± 0.031 −0.195± 0.031 −0.103± 0.022 −0.068± 0.022 −0.052± 0.021
DR-DMPCMU (7) −1.970± 0.080 −0.907± 0.072 −0.386± 0.045 −0.167± 0.040 −0.084± 0.028 −0.053± 0.021
DR-DMPCMU (6) −1.949± 0.071 −0.878± 0.078 −0.367± 0.066 −0.175± 0.046 −0.090± 0.028 −0.060± 0.021
DR-DMPCMU (5) −1.925± 0.073 −0.897± 0.078 −0.410± 0.076 −0.192± 0.042 −0.092± 0.025 −0.056± 0.019
DR-DMPCMU (4) −2.146± 0.085 −1.108± 0.150 −0.386± 0.113 −0.174± 0.055 −0.094± 0.036 −0.067± 0.031
DR-DMPCMU (3) −0.678± 0.274 −0.330± 0.122 −0.141± 0.058 −0.073± 0.033 −0.044± 0.025 −0.030± 0.021
DR-DMPCMU (2) −0.758± 0.329 −0.401± 0.155 −0.173± 0.074 −0.085± 0.045 −0.043± 0.024 −0.027± 0.014
DR-DMPCMU (1) −0.563± 0.108 −0.216± 0.081 −0.094± 0.036 −0.053± 0.022 −0.034± 0.017 −0.025± 0.013
DR-DMPCMU (7) −1.970± 0.080 −0.907± 0.072 −0.386± 0.045 −0.167± 0.040 −0.084± 0.028 −0.053± 0.021
DR-DMPCMU (6) −1.949± 0.071 −0.878± 0.078 −0.367± 0.066 −0.175± 0.046 −0.090± 0.028 −0.060± 0.021
DR-DMPCMU (5) −1.925± 0.073 −0.897± 0.078 −0.410± 0.076 −0.192± 0.042 −0.092± 0.025 −0.056± 0.019
DR-DMPCMU (4) −2.146± 0.085 −1.108± 0.150 −0.386± 0.113 −0.174± 0.055 −0.094± 0.036 −0.067± 0.031
DR-DMPCMU (3) −0.678± 0.274 −0.330± 0.122 −0.141± 0.058 −0.073± 0.033 −0.044± 0.025 −0.030± 0.021
DR-DMPCMU (2) −0.758± 0.329 −0.401± 0.155 −0.173± 0.074 −0.085± 0.045 −0.043± 0.024 −0.027± 0.014
DR-DMPCMU (1) −0.563± 0.108 −0.216± 0.081 −0.094± 0.036 −0.053± 0.022 −0.034± 0.017 −0.025± 0.013
DR-DMP0

MCMU (3, 7) −1.880± 0.080 −0.854± 0.061 −0.384± 0.047 −0.196± 0.041 −0.107± 0.032 −0.070± 0.024
DR-DMP0

MCMU (3, 6) −1.937± 0.064 −0.901± 0.098 −0.371± 0.063 −0.164± 0.041 −0.075± 0.024 −0.046± 0.018
DR-DMP0

MCMU (3, 5) −1.995± 0.087 −0.916± 0.072 −0.363± 0.067 −0.165± 0.039 −0.083± 0.027 −0.055± 0.019
DR-DMP0

MCMU (3, 4) −2.169± 0.054 −1.108± 0.115 −0.355± 0.103 −0.154± 0.058 −0.081± 0.035 −0.053± 0.022
DR-DMP0

MCMU (3, 3) −0.468± 0.016 −0.239± 0.020 −0.104± 0.016 −0.054± 0.011 −0.029± 0.006 −0.017± 0.004
DR-DMP0

MCMU (3, 2) −0.499± 0.016 −0.272± 0.025 −0.117± 0.016 −0.057± 0.010 −0.031± 0.006 −0.021± 0.005
DR-DMP0

MCMU (3, 1) −0.462± 0.033 −0.146± 0.014 −0.061± 0.012 −0.031± 0.008 −0.019± 0.006 −0.012± 0.003
DR-DMPMCMU (3, 7) −1.970± 0.074 −0.872± 0.059 −0.390± 0.045 −0.181± 0.026 −0.086± 0.021 −0.050± 0.016
DR-DMPMCMU (3, 6) −1.981± 0.053 −0.929± 0.117 −0.376± 0.086 −0.181± 0.060 −0.084± 0.036 −0.050± 0.021
DR-DMPMCMU (3, 5) −1.951± 0.058 −0.851± 0.075 −0.320± 0.050 −0.133± 0.025 −0.068± 0.019 −0.045± 0.016
DR-DMPMCMU (3, 4) −2.165± 0.053 −1.090± 0.133 −0.322± 0.107 −0.142± 0.059 −0.075± 0.034 −0.051± 0.022
DR-DMPMCMU (3, 3) −0.456± 0.014 −0.244± 0.021 −0.112± 0.021 −0.057± 0.011 −0.030± 0.009 −0.017± 0.005
DR-DMPMCMU (3, 2) −0.500± 0.019 −0.285± 0.025 −0.134± 0.022 −0.070± 0.016 −0.037± 0.009 −0.022± 0.007
DR-DMPMCMU (3, 1) −0.492± 0.032 −0.150± 0.016 −0.062± 0.015 −0.028± 0.010 −0.014± 0.007 −0.010± 0.005
IDR-DMPCMU −1.826± 0.093 −0.815± 0.089 −0.300± 0.063 −0.137± 0.038 −0.069± 0.024 −0.047± 0.019
IDR-DMPMCMU (3) −1.955± 0.085 −0.807± 0.127 −0.240± 0.054 −0.105± 0.040 −0.050± 0.015 −0.033± 0.011
EM DR-DMP(6) −2.288± 0.021 −0.884± 0.105 −0.180± 0.027 −0.086± 0.012 −0.051± 0.003 −0.043± 0.002
EM DR-DMP(5) −2.274± 0.018 −0.975± 0.175 −0.217± 0.034 −0.094± 0.015 −0.056± 0.006 −0.043± 0.002
EM DR-DMP(4) −2.363± 0.026 −0.926± 0.144 −0.194± 0.026 −0.100± 0.017 −0.059± 0.006 −0.044± 0.002
EM DR-DMP(3) −2.050± 0.027 −1.075± 0.155 −0.231± 0.064 −0.103± 0.018 −0.063± 0.003 −0.049± 0.002
EM DR-DMP(2) −2.271± 0.015 −1.417± 0.100 −0.335± 0.049 −0.203± 0.014 −0.145± 0.009 −0.091± 0.007
EM DR-DMP(1) −1.111± 0.015 −0.653± 0.072 −0.283± 0.028 −0.196± 0.006 −0.182± 0.001 −0.177± 0.001
pDR-DMP(90) −0.826± 0.000 −0.496± 0.029 −0.149± 0.025 −0.048± 0.009 −0.034± 0.003 −0.028± 0.002
pDR-DMP(75) −0.825± 0.000 −0.487± 0.025 −0.132± 0.030 −0.044± 0.010 −0.032± 0.003 −0.026± 0.001
pDR-DMP(60) −0.822± 0.000 −0.501± 0.031 −0.148± 0.026 −0.041± 0.005 −0.031± 0.002 −0.026± 0.002
pDR-DMP(45) −0.972± 0.000 −0.550± 0.029 −0.163± 0.028 −0.053± 0.006 −0.035± 0.003 −0.028± 0.002
pDR-DMP(30) −1.124± 0.000 −0.820± 0.025 −0.305± 0.042 −0.073± 0.010 −0.040± 0.004 −0.028± 0.002
pDR-DMP(15) −0.791± 0.000 −0.587± 0.022 −0.196± 0.044 −0.076± 0.018 −0.048± 0.009 −0.033± 0.003

(see Fig. 5(a)). Therefore, the reward function used was:

R = −Racceleration −Rcolor −Rdepth, (29)

where Racceleration is a term penalizing large acceleration
commands at the joint level, Rcolor has a large penalizing
value if the result after the motion does not have a rectangular

projection on the table (see Fig. 5(a)), expressed as:

Rcolor =
#pix. rectangle

#blue pix. rectangle
[
(a− aref)2 + (b− bref)2

]
,

(30)
where a, b are the measured side lengths of the bounding

rectangle in Fig. 5(a), and aref , bref are their reference val-
ues, given the polo dimensions. Rdepth penalizes the outcome
if the polo shirt presents a too wrinkled configuration after
the motion (see Fig. 5(b)) and it is computed using the code

available from [34].

2) Results and discussion: Despite the efforts of the
authors to reduce the variability of results wrt. environmental
uncertainties, a slightest variation of the setup would change
the outcome. The initial exact configuration of a garment
hanging from two grasping points at the moment of starting
the motion is hard to repeat with precision. We ran the
initial attempt with the same DMP parameters (shown in
Figs. 5(a) and 5(b)) 20 times with no exploration, yielding
a mean and a standard deviation for the vision terms of the
reward function of Rdepth = 0.473 ± 0.029 and Rcolor =
0.799 ± 0.088. This uncertainty increased with exploration,
resulting in slower learning curves than initially expected.
Nonetheless, the resulting learning curves obtained from the
experiments and displayed in Fig. 5(c) show:

• The standard representation of DMPs, with 240 param-
eters, leads to a long transient period of very small
improvement, specially between epochs 4 and 10. This
is due to the large number of parameters wrt. the number
of rollouts performed.

• The automatic dimensionality reduction with Ns = 1 al-
gorithm presents a better and more stable improvement
behavior. Ending with a reduced dimension of r = 6,
reduces the dimensionality in the parameter space down
to 120 parameters which, specially in the early stages,
allows to keep improving over epochs.

• The automatic dimensionality reduction with Ns = 3 al-
gorithm, IDR-DMP(3,12) ending with a dimensionality
of r = 4, meaning 80 DMP weights - a third of those
in the standard method- has a quicker learning at the
early epochs, thanks to being able to quickly eliminate
unnecessary exploration. After a certain number of
iterations, the IDR-DMP(3) algorithm ends with a very
similar result to that of IDR-DMP(1).

A video showing some snapshots of this experiment is
provided in the supplementary material. In such video, we
can also see the complexity of the task itself as some humans
struggle to correctly fold a polo shirt. Our method allows a
dual-arm robot to improve its folding skill from an initial
faulty demonstration.

Additionally, Fig. 5(d) shows a graphical interpretation of
the 3 coordination matrices obtained by the IDR-DMP(3)
method. Darker areas indicate a higher correlation than
lighter ones. Knowing that within each 12 × 4 matrix the
columns on the left are more relevant, some symmetries can
be readily observed. For example, the z component appears
very similar for both robot arms. The x and y components
for the two arms show a barely symmetric pattern, which
could presumably had been stronger if the arms had been
placed in a perfectly symmetric configuration, which was
not the case (see Fig. 1). We see this as a promising avenue
for future research, namely to analyse ways of imposing
symmetry constraints on either the motion of the two arms
or the coordination matrices themselves so as to both speed
up learning and improve solution quality.

V. CONCLUSIONS

Using DMPs as motion characterization for robot learning
leads to a kind of exploration vs. exploitation tradeoff (i.e.,
learning speed vs. solution quality). Such tradeoff meaning
that a good fitting of the initial trajectory yields too many
parameters to effectively perform PS to improve the robot
behavior, while too few parameters allows for faster im-
provements, but limit the optimality of the solution found
after learning.

Throughout this paper, we proposed different ways to per-
form task-oriented linear dimensionality reduction of DMPs
characterizations of motion. Such approaches help reduce the
parameter dimensionality, allowing for faster convergence,
while still keeping good optimality conditions.

We presented an algorithm to update the linear dimen-
sionality reduction projection matrix with a task-related
weighting in Section III-B, so that it better adapts to the
directions expected to provide the most gain in performance
in the following steps. In Section III-C, we showed how to
remove unnecessary parameters from the trajectory represen-
tation, by discovering couplings between the robot’s degrees
of freedom and removing the redundant ones. Both these
approaches were combined and extended to use several pro-
jection matrices in Section III-E, yielding improved behavior.

The results of the experiments performed (the fully-
simulated, the hybrid real-data simulated, and the dual-arm
real-robot experiment) clearly show the advantages of using
dimensionality reduction for improving PS results with DMP
motion characterizations.

In general, when fitting a robot motion with a certain
parametrized movement primitive, it is common to have
some overfitting that might result in meaningless exploration
when learning. Such overfitting might be useful to have a
wider range of exploration in early stages, but quickly elim-
inating it shows a significant improvement in the learning
process of robotic skills.

Additional Expectation-Maximization (EM) derivations
[27] were tested for such linear dimensionality reduction, but
those showed a more greedy behavior in the policy updates,
resulting in premature convergence. Moreover, hand-crafting
a reward function may not always be possible, it is often
unsatisfactory and might lead to unexpected solutions. To
overcome this shortcoming, inverse reinforcement learning
may be used to infer a reward function for a certain task
under some expertise assumptions on the demonstrated mo-
tions to the robot [35], and future developments of this work
will go in this direction. Another direction of future work is
to automatically decide the number of coordination matrices
Ns, defined in Section III-E, which has been arbitrarily set
along this work. A study of the complexity of trajectories and
their piecewise linearity might lead to an accurate estimation
of the number of such matrices. Finally, the analysis of the
obtained coordination matrices Ω for the dual-arm experi-
ment unraveled the possibility of exploiting task symmetries
to both speed up learning and improve solution quality, which
seems also a promising idea to explore.

(a) (b)

(c) (d)

Fig. 5: 14-DoF dual-arm clothes-folding experiment. (a) Color segmentation of the polo shirt after an initial folding attempt.
The blue color (as the polo color) was segmented and the number of blue pixels within the smallest rectangle containing
it was counted. Then the ratio of blue pixels wrt. the total number of pixels within the rectangle was used for the reward
function. (b) Depth image visualization from which the Rdepth component of the reward function was computed. The mean
gradient of the depth was used as a wrinkleness indicator. (c) Learning curves showing mean and standard deviation over
the rollouts for each epoch, for the standard setting and two variants of the DR-DMP method. (d) Graphical representation
of the synergies obtained for the IDR-DMP(3) method; black areas indicate a higher influence (in absolute value), while
white areas represent a small influence.

TABLE VI: Results for the dual-arm real-robot experiment of folding clothes. The rewards for the three tested methods are
shown with the average over rollouts and their standard deviation at each epoch.

method 1 update 2 update 5 update 10 update 15 update
DR-DMP0(12) −2.474± 0.546 −2.424± 0.634 −1.792± 0.447 −1.713± 0.228 −1.140± 0.136
IDR-DMPCMU −2.484± 0.966 −2.261± 0.582 −1.754± 0.641 −1.055± 0.141 −0.911± 0.074
IDR-DMPMCMU (3) −2.565± 0.650 −2.195± 0.354 −1.507± 0.364 −1.108± 0.095 −0.996± 0.086

REFERENCES

[1] N. A. Bernstein, ”The co-ordination and regulation of movements”.
Oxford: Pergamon Press, 1967.

[2] A. J. Ijspeert, J. Nakanishi and S. Schaal, ”Movement Imitation with
Nonlinear Dyamical Systems in Humanoid Robots”. Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA), pp. 1398-1403, 2002.

[3] J. Kober, K. Mülling, O. Krömer, C. H. Lampert and B. Schölkopf,
”Movement Templates for Learning of Hitting and Batting”. Proc.

IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 853 - 858,
2010.

[4] L.Rozo, P. Jiménez and C. Torras, ”Robot Learning from Demonstra-
tion of Force-based Tasks with Multiple Solution Trajectories”, 15th
IEEE Int. Conf. on Advanced Robotics, pp. 124-129, 2011.

[5] L. Rozo, P. Jiménez and C. Torras, ”A robot learning from demonstra-
tion framework to perform force-based manipulation tasks”, Intelligent
Service Robotics, vol. 6, no 1, pp. 33-51, 2013.

[6] L. Rozo, S. Calinon, D. Caldwell, P. Jimenez and C. Torras, ”Learning
Physical Collaborative Robot Behaviors from Human Demonstra-

tions”, IEEE Transactions on Robotics, vol. 32, no. 3, pp. 513-527,
2016.

[7] S. M. Khansari-Zadeh and A. Billard, ”Learning Stable Nonlinear Dy-
namical Systems with Gaussian Mixture Models”. IEEE Transactions
on Robotics , vol. 27, no 5, pp. 943-957, 2011.

[8] A. Billard, S. Calinon, R. Dillmann and S. Schaal, ”Robot Program-
ming by Demonstration.” Springer Handbook of Robotics, part G,
chapter 59.

[9] S. Calinon, F. D’halluin, E.L. Sauser, D.G. Caldwell and A.G. Billard,
”Learning and reproduction of gestures by imitation. An approach
based on Hidden Markov Model and Gaussian Mixture Regression”.
IEEE Robotics and Automation Magazine, vol 17, no. 2, pp. 44-54,
2010.

[10] A. Paraschos, G Neumann, C. Daniel, and J. Peters, “Probabilistic
movement primitives”. In Proc. Neural Information Processing Sys-
tems (NIPS), Cambridge, MA: MIT Press., 2013.

[11] D. Nguyen-Tuong and J. Peters, ”Learning Robot Dynamics for Com-
puted Torque Control Using Local Gaussian Processes Regression”.
ECSIS Symposium on Learning and Adaptive Behaviors for Robotic
Systems, pp. 59-64, 2008.

[12] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal,
”Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviors”. Neural Computation, vol. 25, no. 2, pp. 328-373,
2013.

[13] A. J. Ijspeert, J. Nakanishi and S. Schaal, ”Movement imitation with
nonlinear dyamical systems in humanoid robots.” Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA), pp. 1398-1403, 2002.

[14] M. Deisenroth, G. Neumann and J. Peters, “A Survey on Policy Search
for Robotics”. Foundations and Trends in Robotics, vol. 2, no. 1–2,
pp. 1–142, 2011.

[15] J. Peters, S. Schaal, ”Policy gradient methods for robotics .” Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots (IROS), pp. 2219-2225,
2006.

[16] J. Peters and S. Schaal, ”Reinforcement Learning of Motor Skills with
Policy Gradients”. Journal of Neural Networks, vol. 21, no. 4, pp. 682-
697, 2008.

[17] J. Peters, K. Mülling and Y. Altün, ”Relative Entropy Policy Search”.
24th National Conf. on Articial Intelligence, pp. 182-189, 2011.

[18] C. Daniel, G. Neumann and J. Peters, ”Hierarchical Relative Entropy
Policy Search”. Journal of Machine Learning Research, vol. 17, no.
93, pp. 1-50, 2012.

[19] E. Theodorou, J. Buchli and S. Schaal, ”Reinforcement Learning of
Motor Skills in High Dimensions: A Path Integral Approach”. Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2397 - 2403,
2010.

[20] E. Theodorou, J. Buchli and S. Schaal, ”A Generalized Path Integral
Control Approach to Reinforcement Learning”. Journal of Machine
Learning Research, vol. 11, pp. 3137-3181, 2010.

[21] F. Stulp, E. A. Theodorou, S. Schaal, ”Reinforcement learning with
sequences of motion primitives for robust manipulation” IEEE Trans-
actions on robotics, vol. 28, no. 6, 2012.

[22] S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, ”Learning hand-eye
coordination for robotic grasping with deep learning and large-scale
data collection”, Int. Symposium on Experimental Robotics (ISER),
2016.

[23] S. Bitzer and S. Vijayakumar, ”Latent spaces for dynamic movement
primitives.” IEEE-RAS Int. Conf. on Humanoid Robots, pp. 574 - 581,
2009.

[24] H. Ben Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters,
”Generalization of human grasping for multi-fingered robot hands,”
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots (IROS), pp. 2043-
2050, 2012.

[25] K. S. Luck, G. Neumann, E. Berger, J. Peters, and H. Ben Amor,
”Latent space policy search for robotics.” Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots (IROS), pp. 1434-1440, 2014.

[26] A. Colomé and C. Torras, Dimensionality reduction and motion co-
ordination in learning trajectories with dynamic movement primitives,
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots (IROS), pp. 1414-
1420, 2014.

[27] A. Colomé, G. Neumann, J. Peters and C. Torras, ”Dimensionality
reduction for probabilistic movement primitives”, Proc. IEEE-RAS
Humanoid Robots, pp. 794-800, 2014.

[28] N. Torres Alberto, M. Mistry and F. Stulp, ”Computed Torque Control
with Variable Gains through Gaussian Process Regression”. Proc.
IEEE-RAS Humanoid Robots, pp. 212 - 217, 2014.

[29] S. Kullback and R.A. Leibler, ”On information and sufficiency”.
Annals of Mathematical Statistics, vol. 22 no. 1, pp. 79–86, 1951.

[30] D. Pardo, ”Learning rest-to-rest Motor Coordination in Articulated
Mobile Robots”, Ph.D. Dissertation, 2009.

[31] P. Kormushev, S. Calinon and G. Caldwell, ”Robot Motor Skill Co-
ordination with EM-based Reinforcement Learning”, Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots (IROS), pp. 3232 - 3237, 2010.

[32] M. Toussaint, ”Lecture Notes: Gaussian Identites”, available
on http://ipvs.informatik.uni-stuttgart.de/mlr/
marc/notes/gaussians.pdf, 2011.

[33] A. Colomé, A. Planells and C. Torras, ”A friction-model-based
framework for reinforcement learning of robotic tasks in non-rigid
environments”, Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 5649-5654, 2015.

[34] A. Ramisa, G. Alenyà, F. Moreno-Noguer, and C. Torras. ”A 3D
descriptor to detect task-oriented grasping points in clothing”, Pattern
Recognition, vol. 60, pp. 936-948, 2016.

[35] S. Zhifei and E. Meng Joo, “A survey of inverse reinforcement learning
techniques”, Intelligent Computing and Cybernetics, vol. 5, no. 3, pp.
293-311, 2012.

Adrià Colomé is a Postdoctoral researcher at
the Robotics Institute in Barcelona. He obtained
two B.Sc. degrees in Mathematics and Indus-
trial Engineering in 2009, a M.Sc. degree (2011)
and a PhD (2017) in Automatic Control, from
the Technical University of Catalonia (UPC). Dr.
Colomé has published papers on robot kinematics
and dynamics, and also on movement primitives
and direct policy search reinforcement learning.
His current interests are now on efficient policy
representations and context-dependency of robotic

tasks. For more information: http://www.iri.upc.edu/people/acolome

Carme Torras (M’07, SM’11) is Research Pro-
fessor at the Spanish Scientific Research Council
(CSIC), and Head of the Perception and Manipu-
lation group at the Robotics Institute in Barcelona.
She holds M.Sc. degrees in Mathematics and Com-
puter Science from the University of Barcelona
and the University of Massachusetts, Amherst,
respectively, and a Ph.D. degree in Computer
Science from the Technical University of Catalonia
(UPC). Prof. Torras has published five books and
about three hundred papers in the areas of robot

kinematics, computer vision, geometric reasoning, machine learning and
manipulation planning. She has supervised 18 PhD theses and led 15
European projects, the latest being the Chist-Era project I-DRESS and
the H2020 project IMAGINE. She has been Associate Vice-President for
Publications of the IEEE Robotics and Automation Society (RAS), Editor of
the IEEE Transactions on Robotics, and is currently an elected member of
the Administrative Committee of IEEE RAS. She was awarded the Narcı́s
Monturiol Medal of the Generalitat de Catalunya in 2000, and she became
ECCAI Fellow in 2007, member of Academia Europaea in 2010, and
member of the Royal Academy of Sciences and Arts of Barcelona in 2013.
She has recently been awarded an ERC Advanced Grant with for the project
“CLOTHILDE - CLOTH manIpulation Learning from DEmonstrations”. For
more information: http://www.iri.upc.edu/people/torras

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

	Introduction
	Preliminaries
	Dynamic Movement Primitives
	Learning an initial motion from demonstration
	Policy search

	DMP coordination
	Obtaining an initial coordination matrix with PCA
	Reward-based Coordination Matrix Update (CMU)
	Eliminating irrelevant degrees of freedom
	Dimensionality reduction in the parameter space (pDR-DMP)
	Multiple Coordination Matrix Update (MCMU)
	Numerical issues of a sum of two coordination matrices
	Orthogonality of components and locality
	Eigenvector matching and sign

	Variants of the DR-DMP method

	Experimentation
	10-DoF planar robot arm experiment
	Initialization and reward function
	Results and discussion

	7-DoF WAM robot circle-drawing experiment
	Initialization and reward function
	Results and discussion

	14-DoF dual-arm clothes-folding experiment
	Initialization and reward function
	Results and discussion

	Conclusions
	References
	Biographies
	Adrià Colomé
	Carme Torras

