IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018 1

Graph SLAM sparsification with populated
topologies using factor descent optimization

Joan Vallvé, Joan Sola, Juan Andrade-Cetto

Abstract—Current solutions to the simultaneous localization
and mapping (SLAM) problem approach it as the optimization
of a graph of geometric constraints. Scalability is achieved by
reducing the size of the graph, usually in two phases. First, some
selected nodes in the graph are marginalized and then, the dense
and non-relinearizable result is sparsified. The sparsified network
has a new set of relinearizable factors and is an approximation
to the original dense one. Sparsification is typically approached
as a Kullback-Liebler divergence (KLD) minimization between
the dense marginalization result and the new set of factors. For a
simple topology of the new factors, such as a tree, there is a closed
form optimal solution. However, more populated topologies can
achieve a much better approximation because more information
can be encoded, although in that case iterative optimization is
needed to solve the KLD minimization. Iterative optimization
methods proposed by the state-of-art sparsification require
parameter tuning which strongly affect their convergence. In this
paper, we propose factor descent and non-cyclic factor descent,
two simple algorithms for SLAM sparsification that match the
state-of-art methods without any parameters to be tuned. The
proposed methods are compared against the state of the art with
regards to accuracy and CPU time, in both synthetic and real
world datasets.

Index Terms—SLAM, Mapping, Localization.

I. INTRODUCTION

IMULTANEOUS localization and mapping (SLAM) is
the problem of building a map of the environment whilst
localizing in it. One of its biggest pitfalls is that the problem
grows over time: SLAM suffers from scalability. To tackle
such growing resource demands, efforts have been invested
mainly in two directions: by improving the efficiency of the
algorithms, and by reducing the problem size. Despite recent
improvements in algorithm efficiency [1, 2], the later is still of
concern, as the complexity of the solution is always linked to
the size of the problem. Therefore, methods for reducing the
problem size while keeping as much information as possible
are essential, especially for large SLAM experiments.
Several SLAM methods include mechanisms to limit the
problem size growth. One of the simplest approaches consists
in uniformly limiting the number of poses with respect to
time or distance traveled, or to marginalize new poses close

Manuscript received: September, 10, 2017; Accepted January, 3, 2018.

This paper was recommended for publication by Editor Cyrill Stachniss
upon evaluation of the Associate Editor and Reviewers’ comments.

The authors are with the Institut de Robotica i Informatica In-
dustrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain.
{jvallve, jsola,cetto}@iri.upc.edu.

This work has been supported by the Spanish Ministry of Economy and
Competitiveness under Projects ROBINSTRUCT (TIN2014-58178-R) and
EB-SLAM (DPI2017-89564-P), by the EU H2020 Project LOGIMATIC
(H2020-Galileo-2015-1-687534) and by the Spanish State Research Agency
through the Marfa de Maeztu Seal of Excellence to IRl MDM-2016-0656

Digital Object Identifier (DOI): see top of this page.

Fig. 1: Original (top) and sparsified graph (bottom) with 90% of
node reduction in the Freiburg building dataset.

to old ones, thus growing only with the size of the area being
mapped [3]. Another possibility is to process only the most
informative features, anticipating their visibility and future
contribution to the estimate [4].

Information metrics can also be used to limit the size of
the problem. For instance, Pose SLAM [5] only keeps new
observations and robot poses if their entropy-based informa-
tion content is significant. Vial et al. [6] proposed a con-
servative sparsification based on Kullback-Liebler divergence
(KLD) for a filter-based SLAM. The sparsification is directly
performed over the information matrix instead of creating a
set of new factors. Kretzschmar and Stachniss [7] present an
information-based compression method for laser-based pose
graph SLAM, in which they compute a subset of nodes
containing the scans that maximize the mutual information
of the map for that subset. Chouldhary et al. [8] also propose
to discard some landmarks depending on their information
content using an entropy-based cost function.

Khosoussi et al. face the issue from a different perspective
resorting to graph theory [9]. Under some assumptions, the
weighted number of spanning trees of a graph approximates
the determinant of the state covariance and can be used for
measurement selection and pruning.

Most of the efficient SLAM methods take profit of two
important characteristics of SLAM: sparsity and the capability
of relinearization. Sparsity arises naturally from the fact that
sensor readings establish only a local subset of geometric
constraints between variables, leaving most variables uncon-
nected. Maintaining sparsity is important so that a computa-
tionally efficient solution to the problem can be found. On
the other hand, since SLAM is a non-linear problem that is
typically linearized to solve it, methods with the capability of
relinearization greatly improve the accuracy of the solution.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

In general, node marginalization is the only way of reduc-
ing the problem size without loss of information. However,
marginalization has the disadvantage of causing loss of spar-
sity, increasing computational cost, and does not allow for
relinearization, damping the accuracy.

In the graph-SLAM context, sparsification is the process
of finding the best sparse and relinearizable approximation
to the result of marginalization. The impact of sparsification
can be observed in Fig. 1, where we show the result of
marginalization and sparsification of the Freiburg building
dataset: the sparsified problem (b) has only 10% of the nodes
of the original problem (a), yet it captures almost the same
information, yielding a very accurate solution.

Different approaches pose sparsification as a KLD mini-
mization problem [10]-[12]. The best sparse approximation
is the one with a minimum KLD with respect to the dense
distribution resulting from marginalization. In case of using
the simplest topology, i.e. a spanning tree, there exists a closed
form for the optimal solution of all factors. However, in the
majority of cases a tree topology is too simple to accurately
approximate the dense result of node marginalization [13]. For
richer (more populated) topologies, an iterative optimization
is needed to solve the KLD minimization. This is the focus
of the present paper.

State of the art methods [10]-[12] propose the use of inte-
rior point and projected quasi-Newton optimization methods
to achieve sparsification. Both methods require the tuning of
a set of parameters that strongly affects their convergence and
robustness.

We presented in [13] a new optimization method for sparsi-
fication, named factor descent (FD). FD iteratively optimizes
each of the factors leaving the rest of them fixed. For each
factor, we compute the mean and information matrix that
minimize the KLD given the rest of topology factors. The
main advantage of factor descent is that it is a simple
algorithm that does not require any tuning.

In this paper, we formalize and extend the formulation
of our factor descent in [13], and provide analytic proofs
for all the derivations. We also present a novel non-cyclic
factor descent variant which exhibits faster convergence. Fur-
thermore, in sec. IV we explore a new periodic multi-node
scheme for simultaneously removing sets of connected nodes
that is more efficient in sparse SLAM problems. Our new C++
implementation validates and even enhances our preliminary
results obtained by our Matlab prototype [13], as reported in
the results section V.

II.NODE REMOVAL AND SPARSIFICATION IN GRAPHSLAM

In graph-based SLAM, the problem is represented as a
graph where the nodes refer to the variables and the fac-
tors (or edges) represent the geometrical constraints between
variables. The state x is modeled as a multi-variate Gaussian
distribution, and can include poses of the vehicle along its
trajectory, some map representation or any sensor parameter.
For each factor, we can define an error e as the discrepancy
between a measurement z and its expectation,

e(x) =h(x)—z+v, v~N(0OQ) (D

(a)
(b)

(©)
Fig. 2: Example of marginalization and sparsification of a node
(gray). Triangle factors are the sparsification result.

being h(x) the sensor measurement model and €2 the infor-
mation matrix of the measurement Gaussian noise v.

The maximum a posteriori estimation is obtained by it-
eratively minimizing the Mahalanobis squared norm of all
linearized errors

Ax* = argginzk: i (x) — z + JkAx\\g;1 2)

being x the state estimate at the current iteration, and Jy the
Jacobian of the k-th measurement!. Until convergence, the
optimal step Ax* is used to update the expectations hy(x)
and the Jacobians J; and (2) is solved again. Current methods
use Cholesky [2, 15] or QR [1, 16] matrix factorizations to
solve for Ax*. Incremental methods [1, 2], update the problem
directly on the factorized matrix obtaining important speed-
ups. However, linearization errors are accumulated and the
problem should be often rebuilt partially or completely.

Usually, reducing the SLAM problem size is approached
in two different steps: node marginalization and sparsification
(see fig. 2). These two processes can be decoupled, postponing
the second one depending on the available computational
resources [11].

The whole process is faced locally. Once a node is selected
for removal, the local problem is constrained over the im-
mediate surroundings to that node, i.e., the node’s Markov
blanket (all nodes at distance 1) and all its intra-factors (the
factors involving only nodes in the Markov blanket) as shown
in fig. 2 (a). Optionally, this cropped problem can be solved
using (2). Then, the new solution can be used henceforth,
yielding slightly better results especially in on-line cases [12].
The selected node is marginalized via Schur complement,
generating a dense information matrix A, as in fig. 2 (b).

The aim of the sparsification process is to approximate
the dense distribution p(x) ~ N(u, X = A~1), resulting
from node marginalization, with a sparse distribution g(x) ~
N (@, 5]) defined by a new set of factors as in fig. 2 (c).
Sparsification is also split in two phases: building a topology,
i.e., defining a set of new factors with their measurement
model; and factor recovery, i.e., computing their mean and
information.

In case of manifolds, (1) and the squared Mahalanobis norm in (2) become
e(x) =h(x)©z® v and ||hg(x) Oz + JkAxH?rl, respectively, with

k
Ji = O(hg(x) © zg)/OA%. The @ and © are the addition and subtraction
operators on the manifold, as described in [14].

VALLVE ef al.: GRAPH SLAM SPARSIFICATION WITH POPULATED TOPOLOGIES USING FACTOR DESCENT 3

A. Topology

As most of SLAM graphs, the topology is usually made
up of factors with relative measurements between pairs of
nodes. The simplest topology using relative measurements is
a spanning tree. The tree that encodes the most information
from the dense distribution is the Chow-Liu Tree (CLT). It
is obtained from the tree with factors between the nodes
with most mutual information. However, a tree topology is
generally too sparse to approximate the original distribution.

More populated topologies can be built departing from
the CLT and adding more factors, also based on the mutual
information between nodes. This is sometimes called a sub-
graph (SG) topology, as in [12]. Alternatively, departing from
the CLT again, the cliquey topology [12] converts pairs of
independent factors into one single factor by correlating them.
In order to gather density, while SG adds more sparse factors,
a cliquey topology densifies the existing ones.

Apart from CLT-based methods, a topology can be com-
puted using a ¢;-regularized KLD minimization [11].

B. Factor recovery through KLD minimization

Factor recovery computes the means z; and information
Q. of all new factors of a given topology. We want those
values that minimize the KLD between the dense p(x) and
sparse ¢(x) distributions,

1/, v o
Dicr =5 ((A2) - |AZ|+ i - ul}, —d). @

where (-,-) denotes the matrix inner product.

Setting the expected measurement z; considering the dense
distribution mean z;, = h(w), the Mahalanobis norm term
[l — [,I,va\ becomes null. The rest of the expression can be
simplified as follows. The dimension d of both distributions
is constant. The log term is decomposed as In|AX| =
In|A| + In|X|, whose second term is also constant w.r.t.
all measurements information matrices ﬁk. The information
matrix of the approximate distribution can be expressed as
A = J7QF = 3,3 QJ;, being Q the block diago-
nal matrix containing all new factors’ information matrices,
Q = diag($2y...€,...), and J = [J7 .30 .7 all new
factors’ Jacobians stacked. With all these considerations, the
factors’ information that minimizes (3) can be written as the
constrained problem

Q= argmin(JTQJ, 2) — In|JTQJ|
O
st. Q=diag(y......),2=0. &

In some cases such as original problems containing only
relative measurements, the dense problem has a rank-deficient
information matrix A, so the covariance matrix X is not
defined. In such case, a projection A = UDUT such that
D is invertible can be applied. Then, the KLD minimization
in (4) in the reduced space can be performed by substituting

J—Ju, =D 5)

To obtain the projection, one can re-parametrize the problem
to relative poses w.r.t an arbitrarily chosen node [10, 11] or
use a rank-revealing eigen decomposition [12].

C. Factor recovery in closed form

According to [12], when the stacked Jacobian J is in-
vertible, the solution to (4) is obtained by imposing a null
derivative w.r.t. all factor information matrices,

Q= (3, =3])~L (6)

This is the case, for instance, of the CLT topology in SLAM of
relative measurements after applying the projection (5). How-
ever, and as has been said, the CLT topology can be too sparse
to accurately approximate the exact dense distribution. The
closed form (6) can also be used for the case of the cliquey
topology. However, the cliquey breaks the homogeneity of
measurement models, which is valuable in many cases.

D. Factor recovery via iterative optimization

Other more populated topologies do not admit a closed form
solution for all factors, and (4) has to be solved using iterative
optimization. The state-of-the-art literature [10]-[12] proposes
two different optimization methods for the factor recovery
problem: Interior Point (IP) and Limited-memory Projected
Quasi-Newton (PQN) [17].

In IP, the constraint of positive definiteness of the solution
is included in the cost function as a log barrier,

(JTQJ, =) —In|JTQI| — pln|Q. (7)

A stricter constraint can be applied instead of the log barrier
term to also guarantee conservativeness: pln |A—J T QJ| [11].
The IP method consists of two nested loops. For each value
of the log barrier parameter p;, the resulting problem (7) is
solved in the inner loop. After inner loop convergence, the
outer loop decreases the log barrier parameter, p; 11 = ap;.
The outer loop ends when p; is ‘close enough’ to 0. The inner
loop can be solved with Newton’s method using the gradient
and Hessian of (7) provided in [12].

The IP tuning parameters « and pg, together with the inner
loop’s end conditions, strongly affect its convergence and
robustness. To ensure that the positive definite constraint is
satisfied, the contributions to the gradient and the Hessian
of the KLD and the log barrier terms have to be balanced.
Relaxing the inner loop end conditions or enhancing the
decrease factor « lead to a lower contribution of the log
barrier. This speeds up the method but may converge to a
non positive definite result. In other words, tuning the IP
parameters is a trade off between convergence velocity and
robustness to divergence. This tuning is oftentimes problem-
dependent.

In PQN, the positive definiteness constraint is accomplished
through the projection along the line search onto the positive
semi-definite subspace, by setting all negative eigenvalues to
zero. PQN does not require the computation and inversion
of the Hessian, but it evaluates the cost function in (4)
several times at each iteration. Since the Markov Blanket is
of small size, the evaluation of (4) is as costly as the Hessian
computation, and IP greatly outperforms PQN both in time
and convergence. Our preliminary results already showed it
in terms of optimization iterations [13].

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

Algorithm 1 Factor descent sparsification

Input: Dense mean p and covariance 3, topology Z
Output: All factors’ mean z; and information flk
// Precompute constant variables
for z;, € Z do
Ji + evaluateJacobian(p)
P — (jkzjg)_l
zy < hi(p)
end for
while not endConditions() do
// k-th factor descent
k < nextFactor()
Y Do 2k J TQ J;

if 37, ' then

Qk — P — (jkiglj;—)_l
else

flk — by — L_T(QL(‘i‘]c

~Y1QJ(QYxQg) 'QoY;) Q) L~

end if
// Ensure positive definite solution
if €2, < 0 then

V.« eigenDecomposz’tion(flk)

Q< Vdiag(maz(e,\))VT // ¢is a small positive
end if

end while

An initial guess for relative measurements was proposed in
[18] based on the off-diagonal blocks of the dense information
matrix. Such initial guess is better than the identity matrix
often used by default. Moreover, and contrary to what is stated
in [12], it can be used for IP with the appropriate initial p.

The gradient of (7) can be split in two terms, the KLD term
and the positive definite constraint term, V = Vi p+pVpp.
To balance their respective contributions we take a weighted
ratio between both terms’ norms, obtaining a warm start py =
w||ViLoll/[IVepll.

III. FACTOR RECOVERY WITH FACTOR DESCENT

Our proposed method Factor Descent (FD) is a sparsi-
fication optimization approach for solving (4) inspired in
the coordinate descent optimization method: FD is a block-
coordinate descent method. Each step consists in solving for
a block of variables (those defining one factor’s information
matrix Qk) while fixing the rest. So, at each step, (4) becomes
— 1H|Yk +jgﬁkjk|

Q= argmin(Yy + J} .3, %)
Q

st. Q=0 ®)

where Y, is the information matrix considering only the rest
of the factors in the topology,

=> 3.)

ik
Descent of the KLLD cost is achieved factor by factor, and
hence the Factor Descent name. When all factors other than &
are unchanged, the optimal €2, can be computed analytically
by finding the null derivative of (8). This can be done in

different manners depending on the particular properties of
Y and Jj. Consider the following propositions (see proofs
in the Appendix).

Proposition 1. If A is invertible and Jy, is full rank, the
derivative of (8) is null in
Q. =W 2I)) T -L7 QL (T
~YiQq (QYxQ)) 'QuYK)QLLTT (10)

being the LQ-decomposition of Ji = LQ= [L } {85}
Proposition 2. If Y, is invertible and Jy is full rank, the
derivative of (8) is null in

Q= (23— (3,) (11)

Furthermore, (11) can be computed efficiently by using the
Cholesky decomposition of T=R'R

Q= (3,23t —(@r")7! (12)
where T' = J,R ! is directly obtained by back substitution.

Prop. 1 applies to all cases if one takes care to project
the subgraph with (5), but its computation is expensive. It
complements and generalizes our previous formulation [13].
Prop. 2 applies to the cases where the subgraph with the
current k factor removed would still be full rank. Cases where
Prop. 2 does not apply, and therefore we must resort to Prop. 1,
include e.g landmarks observed from two monocular views
(removing one view’s factor renders the landmark’s depth
unobservable) or constrained IMU motion factors (removing
the constraining factors renders the IMU biases unobservable).

The method is described in Alg. 1. Since the first term of
both (10) and (12) does not depend on the rest of factors, it
can be computed only once. This term can be interpreted as
the projection, onto the k-th factor’s measurement space, of
the information of the dense distribution resulting of the node
marginalization. Analogously, the second term in both cases is
the projection, onto the measurement space of the k-th factor,
of the information of the rest of the factors.

The projection (5) can be applied in case of a rank-deficient
A as well (note that the rest of new factor’s information
matrix Y;, must be projected too). In this case, assuming A
is invertible is equivalent to assuming that the rank has not
decreased, 7k(A) = rk(A). Also, a full rank Jacobian J, only
implies linear independence of all measurement elements.
With these considerations, we can ensure that all assumptions
are taken without loss of generality.

A. Closed form factors

In some cases, the second term of (10) is null, yielding the
same closed form solution (6) presented in Sec. II-C.

Proposition 3. If A s invertible, Iy is full rank and
nul(Xy) = rank(Jy), the derivative of (8) is null in (6).

Prop. 3 applies to those factors whose Jacobians Ji are
linearly independent of all the rest of factors’ Jacobians of the
topology. The closed form (6) introduced in [12] is then the

VALLVE ef al.: GRAPH SLAM SPARSIFICATION WITH POPULATED TOPOLOGIES USING FACTOR DESCENT 5

Fig. 3: Example of sequential (top) and multi-node (bottom)
schemes for removing and sparsifiying nodes A and B.

optimal solution. This happens, for instance, for a factor such
that without it the topology becomes disconnected. Trivially,
this is the case for tree topologies as described in [12]. For
general topologies, (6) is applicable to those factors that fulfill
the condition, and the optimization is only needed to solve
for the rest. Therefore, we want to emphasize that (10) is a
generalization of the closed form solution in [12].

The presented formulation amends our prior work [13]
where we applied Prop. 3 in case of not invertible Y. This
is only true in pose-graph SLAM with factors with strictly
positive definite information.

B. Positive-definiteness

The solutions (10) and (12) are based on the KLD deriva-
tives, and no positive definiteness constraint is applied. Then,
the result can be a non positive definite solution if the second
term of (10) or (12) is larger than the first term, that is, if
the projection of the information of the rest of factors has
a larger information content than the projection of the dense
distribution. In other words, when the approximation made by
the rest of factors 'i'k is not conservative in some direction,
the optimal k-factor would subtract this excess of information,
leading to a negative eigenvalue of €2, In this case, we set
all negative eigenvalues to a small positive value.

C. Non-cyclic Factor Descent

Factor Descent iterates over all factors cyclically. Clearly,
the order in which the factors are optimized can be altered
to our benefit. To improve convergence, we propose selecting
at each step the factor that will decrease the KLD the most.
To find it we compute the gradient of the KLD w.r.t. each
non-zero element of €2. Each factor’s information ﬁk has its
corresponding gradient segment. We select the one with the
largest norm as the one that would reduce the KLD the most.

IV. MULTI-NODE MARGINALIZATION AND
SPARSIFICATION

Typically, the marginalization and sparsification is done
sequentially, node by node. The sequential scheme is the only
possible alternative for online marginalization and sparsifi-
cation. However, if the marginalization and sparsification of
the selected nodes is made periodically, different alternative
schemes appear.

TABLE I: Amount of sparsification problems solved (#) and Markov
blanket mean size (n) in sequential and multi-node schemes.

*q;, 2 ? qé Node reduction
,g E E % 66.6% 75% 80% 90%
_RIRIE| =« # n # n # n # n
g 5 Seq. | 2332 2.46 (2624 2.42|2799 2413149 2.33
S1%R O [Muli | 1177 291 | 909 3.18 | 734 3.45| 384 4.21
§ o 1) Seq. | 2332 2.71 (2624 2.77|2799 2903149 3.10
= A\ Multi | 1177 291|909 321 | 734 3.48| 384 429
5 Seq. | 818 2.23| 920 2.25| 981 2261104 2.27
s 51O | Multi | 413 241 319 257|258 2.75| 135 3.19
=l o Seq. | 818 229 920 2.34| 981 2421104 2.64
A\ Multi | 413 241 319 258|258 2.76| 135 3.25
= Seq. | 658 2.22| 741 2.20| 790 2.20| 889 2.20
g QIO | Multi | 332 233 | 256 237|207 242| 108 2.65
% o o Seq. | 658 2.26| 741 2.27| 790 2.29| 889 2.36
A Multi | 332 2.33| 256 2.38| 207 242| 108 2.67
= Seq. | 538 2.02| 605 2.04| 645 2.04| 726 2.07
§ Q1O | Multi | 271 2.04| 210 2.08| 170 2.08| 89 2.19
E E) Seq. | 538 2.02| 605 2.05| 645 2.06| 726 2.12
|\ Multi | 271 2.04| 210 2.08| 170 2.08| 89 2.20

Multi-node marginalization and sparsification would also
be possible, considering groups of nodes at a time —for
instance, those connected by one single factor. In the multi-
node scheme, neither the procedure for marginalization nor
sparsification suffer any changes. Taking as the Markov blan-
ket the union of all removed nodes’ Markov blankets, the
marginalization of the group of nodes leads to a dense problem
in the exact same way as if removing a single node.

When applicable, this is better than proceeding sequen-
tially, since the sequential procedure generates accumulation
of approximations given that some factors resulting from a
sparsification become intra-factors of the next node to be
removed. Fig. 3 depicts a toy example of the two schemes for
the removal of two nodes connected by a factor. Note how in
the sequential scheme, three factors (marked with a grey area)
resulting from the first sparsification become intra-factors in
the second one.

Normally, connected nodes share most of their Markov
blankets, and the multi-node Markov blankets are only slightly
larger than the individual ones, depending on the sparsity of
the graph. This derives in faster computation of the multinode
scheme, since the process is executed once for the entire group
of nodes instead of sequentially one by one.

The resulting topology in the multi-node scheme is usually
different than that of the sequential method. While the first
is designed considering all the connected nodes’ Markov
Blankets, the second one is an accumulation of locally de-
signed topologies. For example, when sparsifying with tree
topologies such as CLT, the resulting topology in multi-node is
indeed a tree, while the accumulation of trees in the sequential
scheme usually yields a denser topology. For this reason,
the multi-node scheme not always produces more accurate
approximations in terms of KLD.

V. RESULTS

Our preliminary results in [13] were based on the number
of optimization iterations instead of CPU computation time.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

—— FD
ncFD

KLD

06 [
04
02 |

0 0.2 0.4 0.6 0.8 1
t (ms)

—— FD
ncFD

01 L

0 10 20 30 40 50
t (ms)

Fig. 4: Mean KLD evolution of the compared methods, for all problems of Markov blanket size 3 (left) and 8 (right) in the Manhattan
experiment with 80% of node removal. Note the different KLD and time scales.

This is because that implementation was unoptimized and
in Matlab, and therefore CPU time measurements were not
reliable. In order to rigorously test the performance of our
proposed methods, we re-implemented factor descent and
Interior Point in C++. The novel non-cyclic factor descent
and the multi-node scheme were also implemented. We use
our own non-linear least squares SLAM implementation based
on Ceres [19]. Due to the bad convergence rates and compu-
tational costs obtained in [13] for PQN, it has been discarded
as a suitable method for sparsification.

A. Convergence

In a first test, we evaluate the convergence in CPU time
of the three iterative sparsification methods: factor descent
(FD), non-cyclic factor descent (ncFD) and interior point (IP).
To guarantee equal conditions for all the methods under test,
we executed a SLAM for the Manhattan M3500 dataset [20]
with 80% of node removal and stored all sparsification prob-
lems after each node marginalization. Afterwards, all stored
problems were solved by the three methods to compare their
convergence rates.

The parameters for the IP method are explained in Sec. II-D,
and were set as a result of a delicate tuning process. Specifi-
cally, we set the p decrease parameter a = 0.5. The balance
weight w = 0.1 is used for setting the initial value pq.
Also, we imposed a relaxed end condition for the inner loop
when the norm of the KLD gradient becomes lower than
1. Conversely, neither factor descent nor non-cyclic factor
descent have any internal parameter to be tuned.

Figure 4 shows the mean KLD evolution of each sparsifica-
tion method for all problems of Markov blanket size 3 and 8.
The initialization based on the dense information off-diagonal
blocks is closer to the optimal solution for small problems
than for bigger ones. Likewise, all methods converge faster
for small problems since IP has smaller Hessian and FD and
ncFD have less factors to iterate over. The convergence of FD
and ncFD are comparable to IP’s. Additionally, the benefits of
the non-cyclic strategy are clear, specially in bigger problems.

B. Application

Our second battery of tests is made with the purpose of
evaluating the performance of each method and the multi-

node scheme in a real application.

We tested each method using both sequential and the multi-
node scheme on four different datasets [20] with different
node reduction levels. Since node selection is out of the
scope of this paper, we applied the simple strategy of keeping
one node every N. The typology of the chosen datasets is
very different. The Manhattan M3500 sequence is large and
dense (i.e. highly connected), which means large Markov
blankets. On the contrary, the Killian Court dataset has few
loop closures leading to small Markov blankets. The Freiburg
Building (FR079) and Intel Research Lab sequences are a
compromise between the other two datasets. Much denser
datasets such as the citylOk constitute a challenge for our
and the other methods, and are considered for future work.

We compare four sparsification methods. First, CLT with
closed form sparsification. Second, an SG topology with twice
as factors as CLT as described in Sec.II-A. Three iterative
optimization methods are compared using SG: IP, FD and
ncFD. For these, we apply the same end condition: when all
elements of the KLD gradient become lower than 1073, Also
a maximum time condition is set to 50ms.

An independent experiment is ran for each method. Node
marginalization and sparsification is performed every 100
nodes. Then, each experiment accumulates the sparsification
approximations along the whole dataset. The original SLAM
graph without removing any node is taken as a baseline.
The global KLD between each method and the baseline is
computed using (3), but this time evaluating for the whole
SLAM problem. As in [12], factors involving previously
removed nodes were redirected to the closest existing node.
In order not to distort the KLD results, this was also done
for the baseline graph. The SLAM problem is relinearized
continuously to prevent linearization errors to be confused
with sparsification inaccuracy.

Table I contains the amount of sparsification problems
solved and the Markov blanket mean size using sequential
and multi-node schemes for all datasets-node reduction com-
binations. As can be observed, the multi-node scheme reduces
significantly the amount of sparsifications performed —in
exchange, there is an increase in the Markov blanket mean
size, particularly for highly connected cases.

Table II includes the final global KL.D values after applying

VALLVE ef al.: GRAPH SLAM SPARSIFICATION WITH POPULATED TOPOLOGIES USING FACTOR DESCENT 7

TABLE II: Comparison of final global KLD and CPU time for all methods, different datasets and node reduction levels.

‘4;, g Node reduction
,g 2 | Method 66.6% 75% 80% 90%
ala KLD RMSE Total time | KLD RMSE Total time | KLD RMSE Total time | KLD RMSE Total time
CLT 59.39 0.297 023 s 4579 0.607 0.26 s 3233 0.113 0.28 s 17.32 0.258 0.28 s
o P 372 0.037 8.49 s 2.58 0.026 1141 s 293 0.036 14.77 s 3.17 0.138 25.51 s
S @ FD 3,53 0.044 3.30 s 244 0.024 491 s 2.69 0.048 7.02 s 273 0.148 16.25 s
ﬁ ncFD 3.56 0.046 2.38 s 246 0.024 297 s 2.69 0.035 3.90 s 275 0.136 13.52' s
:'% CLT 60.39 0.245 0.17 s 46.73 0.495 0.16 s 42.07 0.168 0.16 s 36.68 0.096 0.13 s
= % 1P 372 0.017 6.12 s 2.76 0.028 6.70 s 354 0.038 771 s 480 0.093 13.00 s
s FD 3.70 0.015 3.11s 278 0.033 424 s 354 0.037 592 s 471 0.094 20.30 s
ncFD 376 0.029 215 s 2.76 0.030 229 s 345 0.030 3.46 s 475 0.091 16.49 s
CLT 28.77 0.094 0.07 s 29.00 0.048 0.08 s 29.16 0.066 0.09 s 1747 0.118 0.09 s
o 1P 6.04 0.022 193 s 5.66 0.044 221s 542 0.022 285 s 251 0.022 4.69 s
A FD 545 0.024 1.68 s 6.79 0.049 1.81s 5.04 0.023 2.20 s 2.04 0.023 2.55 s
= ncFD 546 0.024 133 s 5.87 0.046 1.35s 5.15 0.024 1.62 s 2.14 0.023 1.59 s
= CLT 25.33 0.115 0.04 s 21.90 0.079 0.04 s 22.59 0.043 0.04 s 1042 0.157 0.02 s
% 1P 591 0.023 1.46 s 4.78 0.028 1.37 s 5.61 0.015 1.50 s 1.99 0.018 1.31 s
s FD 527 0.021 143 s 4.81 0.032 1.38 s 5.59 0.016 1.53 s 1.93 0.018 149 s
ncFD 5.34 0.022 1.11s 5.16 0.030 1.00 s 5.55 0.016 0.96 s 2.05 0.018 0.92 s
CLT 1293 0.024 0.05 s 13.73 0.015 0.06 s 12.92 0.028 0.07 s 10.11 0.025 0.07 s
o P 2.63 0.008 191 s 227 0.005 2.15 s 1.66 0.003 271 s 1.16 0.009 375 s
@ FD 2.64 0.008 1.81 s 233 0.004 2.05s 1.63 0.004 2.54's 098 0.010 329 s
E ncFD 2.68 0.008 1.52's 2.31 0.005 1.59 s 1.71 0.003 2.11s 0.99 0.009 2.63 s
E CLT 14.81 0.022 0.03 s 13.05 0.014 0.03 s 10.04 0.018 0.02 s 594 0.012 0.01 s
% 1P 3.08 0.009 1.18 s 2.14 0.003 0.97 s 1.70 0.005 1.20 s 097 0.017 092 s
s FD 3.10 0.009 1.18 s 2.16 0.003 1.01 s 1.70 0.006 1.16 s 1.15 0.016 1.11s
ncFD 3.17 0.010 0.92 s 222 0.003 0.78 s 1.75 0.005 095 s 1.29 0.018 0.98 s
CLT 248 0.520 0.03 s 6.43 0.290 0.04 s 792 1.048 0.04 s 9.51 2.887 0.05 s
o 1P 037 0.230 0.10 s 043 0.181 0.22 s 2.18 0.580 0.26 s 041 0473 1.24 s
- A FD 0.37 0.230 0.05 s 045 0.192 0.07 s 2.19 0571 0.08 s 041 0459 0.26 s
8 ncFD 037 0.229 0.04 s 042 0.182 0.07 s 2.18 0.569 0.08 s 041 0.385 0.26 s
E CLT 2.15 0.266 0.02 s 14.83 0.236 0.01 s 339 1.337 0.01 s 339 2402 0.01 s
% 1P 0.08 0.053 0.07 s 0.36 0.181 0.11 s 042 0.262 0.09 s 0.28 0.327 0.32s
s FD 0.08 0.053 0.03 s 0.38 0.191 0.04 s 041 0.265 0.04 s 028 0.352 0.13 s
ncFD 0.08 0.053 0.03 s 0.36 0.185 0.03 s 041 0.255 0.03 s 028 0.304 0.10 s

each method in both sequential and multi-node schemes in the
different datasets for different node reduction ratios.

All methods using SG topology achieve similar KLD and
RMSE values in all experiments. However, the approximation
of CLT is significantly worse. As stated before, the tree
topology is too sparse to explain the dense distribution.

The optimal parameters of IP are not the same for all
datasets and node reduction levels, and a significant effort
on tuning was needed to achieve the optimal KLD reduction
with as less computational cost as possible. Conversely, the
simplicity of the algorithm and the absence of parameters are
the main advantages of FD and ncFD. Furthermore, both FD
and ncFD outperform IP in computational time in almost all
the experiments.

A part from CLT, ncFD is faster than IP and FD in almost
all experiments. As pointed out before, ncFD convergence
improvements w.r.t. FD are specially relevant for the case of
big Markov blankets. For this reason, the computation time
benefits are more significant for the denser datasets. While in
the Manhattan dataset the total time spent by ncFD is lower
than the cyclic version, in the Killian dataset it is similar.

The multi-node scheme speeds up all methods by reducing
the amount of sparsification problems to be solved. How-
ever, the Markov blanket growth may explain the different
performance in KLD and RMSE depending on the dataset.
In the Killian dataset, the multi-node scheme produces more

accurate approximations than the sequential scheme for all
methods and reduction levels. However, in the FR079 and
Intel datasets, using multi-node instead of sequential is not
beneficial in any of the cases regarding to KLD and RMSE.
The Markov blanket growth in the Manhattan dataset is strong,
undermining the approximation accuracy, especially for high
node reduction levels.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Factor Descent and Non-Cyclic Factor
Descent, two optimization methods for the sparsification of
populated topologies in large-scale graph-based SLAM. Our
results show that both methods compete with the most popular
state-of-art method (interior point) both in accuracy and
computational time and even outperform it in most cases.
At the same time, the simplicity of the algorithm makes FD
and its non-cyclic version ncFD appealing approaches when
compared with the interior point method, since they do not
require the tuning of parameters. We demonstrated conver-
gence improvements of our novel non-cyclic version ncFD,
especially in highly connected problems. We also introduced
the new multi-node scheme for periodic marginalization and
sparsification that is more efficient in moderately connected
problems.

In the course of our investigations we have encountered
some convergence difficulties to treat much denser datasets

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

such as the citylOk. These have been observed with all the
methods (FD, IP and PQN) and therefore this type of problems
represents still an open challenge. We suspect the issues might
be related to numerical stability, since the information content
of all factors is very uneven, with differences of several orders
of magnitude. We are currently investigating the causes for
this poor performance in such larger datasets in order to
propose new solutions.

Also for future work we consider the application of our
FD methods for SLAM sessions that include heterogeneous
measurement sources such as image projection of 3D points
or IMU measurements, including their biases.

APPENDIX

Proposition 1. If A is invertible and Jy, is full rank, the
derivative of (8) is null in

Qk :(jkEjZ)‘l—L‘TQL (Yk

~T1QJ (QuYrQg) 'QoYx)QL L™ (13)

being the LQ-decomposition of J,=LQ= [L O] [%L}
0
Proof: The derivative of (8) w.r.t flk is
oD oy . e v o
KL — 3,23 = T (X + I 0.d,) 1)
Qp
Applying the decomposition into the second term:
jk(Yk + j;ﬁkjk)_lj;—
=LQ(Y) +Q LT LQ)'Q'LT
=L(QY,Q" +LTQ,L)"'LT

(14)

o 9 9 —1
—[L 0] LTQL + Q.Y.Q] QL?ng] {LT}
Qo Y:QL Qo Y:QJ 0
=L(LTSuL+QrY1Q]

— QL YQ) (QeYxQ)) ' QTQL) LT
=% + L7 (Q Yk Q]

—QuYQ) (QuYrQ)) ' QTkQL)L)

Substituting in (14) and imposing null derivative leads to

(13). Since Q is orthogonal and QOAQJ = QuY1QJ . then
JA = H(QOAQJ)_l = H(QOTkQJ)_l .

Proposition 2. If Y}, is invertible and J}, is Sfull rank, the
derivative of (8) is null in

Q= (12— (37T

s

(16)

Proof: If Y, is invertible, applying the Woodbury matrix
identity forwards and backwards to the second term of (14)

Je(Tr + I di) 1]
= JR(0 = X T + Y
=3 YT - TN+
= (T +)
Substituting in (14) arvld imposing null derivative leads to (16).

Proposition 3. If A is invertible, Ji s Sfull rank and
nul(Yy) = rk(Jy), the derivative of (8) is null in (6).

Proof: Consider Ji€ RmX",'i' € R™ "™ n >m. Since Ji is
full rank, 7k(Jy) = m. According to Prop. 1, 3(Qo Y Qg) !
and 7k(QoYrQJ) = n — m. Since Q is orthogonal,
rk(QY QT =rk(Yy) = n—nul(Y¥) =n—rk(J}) = n—m.
According to the Schur complement rank additivity formula

rk(QYrQ") = rk(Qo Y Qq)
+7E(QLYrQ; — QrYTrQg (Qo Y Qf) 1 QuTLQ)),

then Q. TxQ) — QLY Q] (QYrQ)) 'QYxQ] = 0
since its rank is null. Then, (10) becomes (6).

REFERENCES

[1] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
bayes tree,” Int. J. Robotics Res., vol. 31, no. 2, pp. 216-235, 2011.

[2] V. Ila, L. Polok, M. Solony, and P. Svoboda, “SLAM++-A highly
efficient and temporally scalable incremental SLAM framework,” Int.
J. Robotics Res., vol. 36, no. 2, pp. 210-230, 2017.

[3] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in Proc. IEEE Int.
Conf. Robotics Autom., Karlsruhe, May 2013, pp. 54-61.

[4] L. Carlone and K. Sertac, “Attention and anticipation in fast visual-
inertial navigation,” pp. 3886-3893.

[5] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
Pose SLAM,” IEEE Trans. Robotics, vol. 26, no. 1, pp. 78-93, 2010.

[6] J. Vial, H. Durrant-Whyte, and T. Bailey, “Conservative sparsification
for efficient and consistent approximate estimation,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., San Francisco, Sep. 2011, pp. 886-893.

[71 H. Kretzschmar and C. Stachniss, “Information-theoretic compression
of pose graphs for laser-based SLAM,” Int. J. Robotics Res., vol. 31,
no. 11, pp. 1219-1230, 2012.

[8] S. Choudhary, V. Indelman, H. Christensen, and F. Dellaert,
“Information-based reduced landmark SLAM,” in Proc. IEEE Int. Conf.
Robotics Autom., Seattle, May 2015, pp. 4620-4627.

[9]1 K. Khosoussi, G. S. Sukhatme, S. Huang, and G. Dissanayake, ‘“De-
signing sparse reliable pose-graph slam: A graph-theoretic approach,”
arXiv preprint arXiv:1611.00889, 2016.

[10] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice, “Generic node
removal for factor-graph SLAM,” IEEE Trans. Robotics, vol. 30, no. 6,
pp. 1371-1385, 2014.

[11] K. Eckenhoff, L. Paull, and G. Huang, “Decoupled, consistent node
removal and edge sparsification for graph-based SLAM,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Daejeon, pp. 3275-3282.

[12] M. Mazuran, W. Burgard, and G. D. Tipaldi, “Nonlinear factor recovery
for long-term SLAM,” Int. J. Robotics Res., vol. 35, no. 1-3, pp. 50-72,
2016.

[13] J. Vallvé, J. Sola, and J. Andrade-Cetto, “Factor descent optimization
for sparsification in graph SLAM,” in Proc. Eur. Conf. Mobile Robots,
Paris, Sep. 2017, p. to appear.

[14] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, 1990, pp. 167—
193.

[15] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g“0: A general framework for graph optimization,” in Proc. IEEE Int.
Conf. Robotics Autom., Shanghai, May 2011, pp. 3607-3613.

[16] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robotics
Res., vol. 25, no. 12, pp. 1181-1204, 2006.

[17] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, “Optimizing
costly functions with simple constraints: A limited-memory projected
quasi-Newton algorithm,” in Artificial Intelligence and Statistics, 2009,
pp. 456-463.

[18] M. Mazuran, G. D. Tipaldi, L. Spinello, and W. Burgard, “Nonlinear
graph sparsification for SLAM,” in Robotics: Science and Systems,
Berkeley, Jul. 2014, pp. 1-8.

[19] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[20] L. Carlone, http://www.lucacarlone.com/index.php/resources/datasets.

