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Abstract This chapter presents a sensor placement method for the classifier-based
approaches for leak localization in water distribution networks introduced in the
previous chapter. The proposed approach formulates the sensor placement problem
as a binary optimization problem. Because of the complexity of the resulting opti-
mization problem, it is solved by means of Genetic Algorithms. In order to reduce
the number of sensor configurations to test, a binary matrix that identifies pairs of
sensors providing the same information is added as a constraint. The sensors are
placed in an optimal way maximizing the accuracy of the leak localization. The
proposed approach is first illustrated by means of the application to an academic
example based on the Hanoi network. Then, a more realistic case study is proposed
based on the Limassol district metered area.

1 Introduction

As already discussed in the previous chapter, leak detection and localization in Wa-
ter Drinking Networks (WDN) is a subject of major concern for water companies.
In the case of complex urban WDN, this is not an easy task to deal with. In order
to manage the leak problem and other problems as pressure control, modern urban
WDN are usually divided in District Metered Areas (DMA), where the flow and the
pressure at the input are measured [7, 13]. Leakages increase the flow and decrease
the pressure measurements at the DMA entrance. However, leak detection and lo-
calization are not trivial tasks due to unpredictable variations in consumer demands
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and measurement noise, as well as long-term trends and seasonal effects. Leak de-
tection can be implemented by means of the analysis of the DMA minimum night
flow that can also provide an estimation of the leakage level [13]. However, leak
localization usually requires the analysis of more than one measured variable and
it is a more complex problem. Regarding the type of sensors, although the use of
flow measurements is feasible in large water supply networks, this is not the case in
WDN where there is a dense mesh of pipes with only flow measurements at the en-
trance of each DMA. In this case, water companies consider as a feasible approach
the possibility of installing some pressure sensors inside the DMAs, because they
are cheaper and easier to install and maintain.

In the previous chapter, a classifier-based leak localization architecture and an
associated methodology applicable to WDNs is proposed. In a first stage of the
proposed architecture, residuals are obtained by comparing available pressure mea-
surements with the estimations provided by a WDN hydraulic model. In a second
stage, a classifier is applied to the residuals with the aim of determining the leak
location. The classifier is trained with data generated by simulation of the WDN
under different leak scenarios and uncertainty conditions. Several classification ap-
proaches were considered and compared. As discussed in previous chapter, in the
last years, several techniques have been proposed for leak localization purposes such
as transient analysis, parameter estimation techniques, leak sensitivity analysis and
artificial intelligence methods. Among them, artificial intelligence methods relying
on classifiers seem to be a suitable option to deal with the problem of the uncertainty
in WDN.

The problem of optimal sensor placement in WDN was first studied for con-
taminant detection [1, 16]. In recent years, some optimal pressure sensor place-
ment algorithms have been developed to determine which pressure sensors have to
be installed inside the DMA such that, with minimum economical costs (number
of sensors), a suitable performance regarding leak localization is guaranteed. The
main problem of optimal pressure sensor placement is that it leads to a combinatory
optimization problem being unfeasible to solve it by evaluating all possible sensor
locations. In order to deal with this combinatory problem, the use of Genetic Algo-
rithms (GA) has been proposed by [12] considering a binary leak sensitivity matrix.
In [4], GA are used to solve an integer optimization problem based on projections
between residuals and the non-binarized leak sensitivity matrix. In [5], the approach
of [4] was extended to consider a relaxed isolation index that takes into account an
acceptable isolation distance. More recently, the method proposed in [4] has been
extended in [18] considering uncertainty.

Alternatively, the use of clustering analysis to group sensors with similar be-
haviour and reduce the number of combinations to be evaluated is proposed by [15]
combined with an efficient branch and bound search. In [3] the model uncertainties
are considered in the selection. In [9] the sensor placement has the aim of reduc-
ing the isolation error distance. More recently, in [11] the optimal sensor placement
problem for the leak localization in WDNs is formulated as a minimum test cover
problem.



Sensor Placement for Classifier-Based Leak Localization in WDNs 3

In this chapter, a sensor placement method for the classifier-based approaches
for leak localization in WDNs introduced in previous chapter is presented. Given
a number of pressure sensors to be installed in the demand nodes of a DMA, the
proposed approach provides the locations of the sensors that maximize the accuracy
of a leak localization method that combines the use of pressure models with classi-
fiers (see [17] and previous chapter). The proposed method requires data generated
in extensive network simulations. These simulations consider leaks with different
magnitudes in all the nodes of the network, differences between the estimated and
real consumer water demands, and noise in pressure sensors for all the operating
points. Therefore, the presence of model uncertainty is considered in the sensor
placement method. Every sensor configuration determines the data that will be used
to train the classifier used for the leak localization task. In order to tackle the combi-
natorial number of sensor configurations to consider, the use of Genetic Algorithms
in combination with a sensor distance matrix constraint is proposed to obtain the
optimal placement.

2 Background

2.1 Leak Localization using Pressure Residuals and Classifiers

In the previous chapter, an on-line leak localization method based on computing
pressure residuals r and analyzing them by a classifier (see Figure 1) is proposed.
Residuals are computed as differences between pressure measurements p̃ provided
by pressure sensors installed inside the DMA and pressure estimations p̂0 provided
by a hydraulic model simulated under leak-free conditions. It is assumed that the
network has nn nodes and that only limited number of sensors can be installed ac-
cording to budget constraints such that ns << nn. The WDN model is built using a
hydraulic simulator such as Epanet and it is assumed to be able to represent accu-
rately the WDN behavior after the corresponding calibration process using real data.
However, it must be noticed that the model is fed with estimated water demands
(typically obtained by the total measured DMA demand d̃WDN and distributed at
nodal level according to historical consumption records) in the nodes (d̂1, · · · , d̂nn )
since in practice real nodal demands (d1, · · · ,dnn ) are not measured (except for
some particular consumers where automatic metering readers, AMRs, are avail-
able). Hence, the residuals are not only sensitive to leaks but also to the differences
between the real demands and their estimated values. Additionally, pressure mea-
surements are subject to the effect of sensor noise v and this also affects the resid-
uals. Taking all these effects into account, the classifier must be able to locate the
real leak present in the DMA, that can be in any node and with any (unknown) mag-
nitude, while being robust to the demand uncertainty and the measurement noise.
Finally, it must be noticed that the operation of the network is constrained by some
boundary conditions (for instance, the position of internal valves and reservoir pres-
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sures) that are known (measured). These conditions are taken into account in the
simulation and can also be used as inputs for the classifier.
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Fig. 1 Leak localization scheme

2.2 Data Generation

The application of the architecture described above (Figure 1) relies on an off-line
work whose main goal is to train and validate a classifier able to distinguish the
potential leaks under the described uncertainty conditions. In this process, the data
generation stage is critical. Since the data that can be obtained from the real moni-
tored WDN can be really limited, the way to obtain a complete training data set is
by using the hydraulic simulator. Hence, training (and also validation and testing)
data is generated by applying the scheme depicted in Figure 2, similar to the one
presented in Figure 1 but with the main difference of substituting the real WDN by
a model that allows to simulate the WDN not only in absence but also in presence
of faults.

The presented scheme is used to:

• Generate data for all possible leak locations, i.e. for all the different nodes in the
WDN ( f̄i, i = 1,2, ...,nn).

• For each possible leak location, generate data for different leak magnitudes inside
a given range ( f̄i ∈ [ f−i , f+i ]).

• Generate sequences of demands (d̄1, ..., d̄nn) and boundary conditions ĉi that cor-
respond to realistic typical daily evolution in each node.
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Fig. 2 Data generation scheme

• Simulate differences between the real demands and the estimations computed by
the demand estimation module

(
(d̄1, ..., d̄nn) 6= (d̂1, ..., d̂nn)

)
.

• Take into account the measurement noise in pressure sensors, by generating syn-
thetic Gaussian noise (ν̄).

It must be highlighted that the model computes the internal pressures in all the
network nodes and that the presented data generation scheme allows generating a
complete data set that can be analyzed to determine which pressure measurements
are more useful for leak localization purposes.

2.3 Classifier Evaluation

As in the previous chapter, to evaluate the trained classifier for a given sensor con-
figuration, the confusion matrix Γ can be computed, which summarizes the results
obtained when the classifier is applied to a validation data set. We should recall
that when applied to the leak localization problem, the confusion matrix is a square
matrix with as many rows and columns as nodes in the network (potential leak lo-
cations), where each coefficient Γi, j indicates how many times a leak in node i is
recognized as a leak in node j (see Table 1).

In case of a perfect classification, the confusion matrix should be diagonal, with
Γi,i =m, for all i = 1, · · · ,nn being m the size of the validation (or testing) data set. In
practice, non-zero coefficients will appear outside the main diagonal. For a leak in
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Table 1 Confusion matrix Γ

f̂1 · · · f̂i · · · f̂nn

f1 Γ1,1 · · · Γ1,i · · · Γ1,nn

...
...

...
...

...
...

fi Γi,1 · · · Γi,i · · · Γi,nn

...
...

...
...

...
...

fnn Γnn,1 · · · Γnn,i · · · Γnn,nn

node i, the coefficient Γi,i indicates the number of times that the leak f̂i is correctly
identified as f̂i, while ∑

nn
j=1 Γi, j−Γi,i indicates the number of times that is wrongly

classified. The overall accuracy (Ac) of the classifier is defined as:

Ac =
∑

nn
i=1 Γi,i

∑
nn
i=1 ∑

nn
j=1 Γi, j

. (1)

3 Problem Solution

3.1 Problem Formulation

As already discussed, the objective of this chapter is to develop an approach to
place a given number of sensors, ns, in a DMA of a WDN in order to obtain a sensor
configuration with a maximized leak isolability performance when using the leak
localization method scheme presented in the previous section. This problem can be
recast into the feature selection (also known as variable or attribute selection) prob-
lem [19]. The solution of this problem aims at selecting a subset of relevant features
(variables, in this case the sensor locations) for use in the classifier construction to
maximize their performance. A feature selection algorithm combines a search tech-
nique for proposing new feature subsets, along with an evaluation measure which
scores the different feature subsets to bring the best subset of features. The simplest
algorithm is to test each possible subset of features finding the one which minimizes
the error rate. However, this is an exhaustive search of the space that is computa-
tionally intractable except for small feature sets.

To select a configuration with ns sensors, the following binary vector is defined

q =
[

q1, · · · , qnn

]
, (2)

where qi = 1 if the pressure in the node i is measured, and qi = 0 otherwise (i.e. the
vector q denotes which sensors are installed).

In order to evaluate the quality of a sensor configuration regarding its ability
to locate a leak at node i ∈ {1, · · · ,nn}, and assuming the case of a single leak, a
performance index based on the classified accuracy (1) is proposed.
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This performance index depends on the configuration of sensors considered that
is parameterized in terms of the binary variable q to determine the best selection

Ac(q) =
∑

nn
i=1 Γi,i(q)

∑
nn
i=1 ∑

nn
j=1 Γi, j(q)

. (3)

Note that for a given sensor configuration q, 100Ac(q) is the percentage of cor-
rectly located leaks.

Based on the vector q and the performance index Ac(q) the sensor placement
problem can be translated into an optimization problem formulated as follows

max
q

Ac(q) (4)

s.t.

nn
∑

i=1
qi = ns,

where q ∈ {0,1} is defined in (2) and ns ∈ {1, . . . ,nn} is the number of sensors that
we want to place.

3.2 Sensor Placement using Genetic Algorithms

The optimal sensor placement problem, formulated as the classifier feature selec-
tion problem described in previous section, is solved using genetic algorithms and
implemented using the Genetic Algorithm (GA) Toolbox of MATLAB.

The overall procedure can be seen in the Figure 3, where the “Nominal Sensitivity
Matrix” is a data set containing only residuals without uncertainties.

3.2.1 Sensor Distance Matrix

In order to reduce the amount of sensor configurations to be tested in the GA heuris-
tic search, sensor configurations (defined by q) that have at least a pair of sensors
with similar behavior in the residual space can be discarded. In order to measure
the different behavior of a pair of sensors in the residual space, the leak sensitivity
matrix defined in previous chapter can be approximately generated in simulation for
a given operating point defined by a nominal network inflow (unique value of water
consumption), nominal demand distribution (fixed nodal demand consumption, in
this case the d̄ is used) and nominal leak size ( f 0) [2], approximating the sensitivity
components Ωi, j by

Ω
0
i, j =

p̂0
i, f j
− p̂0

i,0

f 0 , (5)
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where superscript 0 denotes the nominal conditions mentioned before.
A criterion that can be used for determining the similarity between sensors is

based on comparing the rows of the sensitivity matrix as proposed by [14]. If we
consider a nominal approximated sensitivity matrix

Ω
0 =

 s0
1
...

s0
nn

 , (6)

where s0
i i = 1, ...,nn are row vectors

s0
i =

(
Ω

0
i,1, ...,Ω

0
i,nn

)
, (7)

with components computed using (5), a sensor distance matrix Φ can be defined as

Φi, j = ‖s0
i − s0

j‖1 ∀i = 1, ...,nn and j = 1, ...,nn. (8)

Φ is a symmetric square matrix of dimension nn and diagonal 0. A threshold σ

can be determined in order to decide whether two sensors have a different behavior
in the residual space or not. Then, a binary matrix Φ (B) that collects the information
of which pairs of sensor combinations are suitable to be in a sensor configuration or
not according to their dissimilarity can be computed as

Φ
(B)
i, j =

{
0, if

∣∣Φi, j
∣∣< σ

1, if
∣∣Φi, j

∣∣≥ σ
. (9)
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3.2.2 Sensor Placement Algorithm

The optimization problem (4) solved by the genetic algorithms has as objective func-
tion to be optimized the accuracy defined in (1). The accuracy will be assessed after
the classifier training process has ended by using a validation data set as described
in Section 2. A training matrix MT and a validation matrix MV with data from all the
candidate sensors to be installed will be provided to the sensor placement algorithm.
For every sensor placement solution, the accuracy obtained using the training and
validation data corresponding with the selected sensors will be evaluated.

The training matrix MT has nn+ l+1 columns where the first nn columns are the
node measurements, the next l columns are the l added attributes (e.g., the measure-
ment of the total water inflow) used by the classifier, and the last column corresponds
to the label where each data scenario belongs; the number of rows corresponds to
the total number of data scenarios used to train the classifier. The validation matrix
MV has the same column format (nn + l + 1), and the number of rows corresponds
to the total number of data scenarios used for validation purposes.

The pseudo-code of the algorithm is shown in Algorithm 1. First, we initialize
the variables of the GA (line 1) including the bit string type population, the toler-
ance, the population size p and the elite count in order to save part of the previous
analyzed results. Then, we declare the search constraints (line 2) being ns the con-
straint of the set of possible solutions for each variable and the number of sensors.
Then, in the optimization process (lines 4 to 24), an initial matrix with random sen-
sor positions is delivered by the GA (line 6). Before to proceed with the objective
function optimization, it is checked (with the function GetUsed() in line 9) if the
sensor configuration has already been considered (as proposed by [10]). The stored
value is retrieved with the function GetAc (line 20). If not yet considered, the sensor
configuration is considered to be tested. If the new sensor configuration is not tested,
and if all the sensor pairs are suitable to be in a sensor configuration according the
binary sensor distance matrix (9) and the function CheckCombinations() (which re-
turns 1 if the configuration is allowed (line 10)), the sensor placement configuration
is tested evaluating the objective function (line 13) and the combination is stored as
used with the function SetUsed (line 14). Then, the Ac value obtained is also stored
with the function SetAc (line 15). If there is at least one forbidden pair of sensors in
the sensor configuration, the configuration is discarded and a zero value is assigned
to the objective function (line 17). The binary vector q allows the selection of the
adequate columns of the matrices MT and MV in order to train (line 11), validate
(line 12) and compute Ac (line 13) for the classifier according the selected nodes to
be measured. Once the Ac value has been obtained for all members of the matrix I,
we look for the maximum value (line 23). Then, the optimization is finished and the
sensor placement selected is the one that provide the best Ac value.
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Algorithm 1 Sensor placement based on Genetic Algorithms
Require: A training matrix MT and a validation matrix MV . The number of features to select ns,

the number of nodes nn, the population size p and the binarized matrix Φ (B).
Ensure: A near-optimal sensors configuration q with error index Acmax.
1: init← InitVarGA()
2: constraint← SetConstraints()
3: Inputs: init, constraint, MT , MV , p, nn, Φ (B).
4: while An optimization criterion is not reached do
5: GA based search:
6: Generate I matrix of size (p×nn) where each row is a member of a generation.
7: for k = 1, · · · , p do
8: q(k)← I(k)
9: if GetUsed(q(k)) = 0 then

10: if CheckCombinations(Φ (B),q(k)) = 1 then
11: C(q(k))← Train(MT (q(k)))
12: Γ (q(k))← Validate(C(q(k)),MV (q(k)))

13: Ac(q(k))← ∑
nn
i=1 Γii(q(k))

∑
nn
i=1 ∑

nn
j=1 Γi j(q(k))

14: SetUsed(q(k))
15: SetAc(Ac(q(k),q(k))
16: else
17: Ac(q(k)) = 0
18: end if
19: else
20: Ac(q(k)) = GetAc(q(k))
21: end if
22: end for
23: Find {q,Acmax} such that Acmax = max

q
(Ac(q(1), ...,Ac(q(p))).

24: end while

4 Case Studies and Results

The proposed sensor placement approach is tested in two different networks. On
the one hand, a small size network (Hanoi) is used since it allows to compare the
proposed approach to the results obtained using the exhaustive search method. On
the other hand, a medium size network (Limassol) shows the performance in a more
realistic scenario.

All the results have been obtained using a PC with an INTEL(R) CORE(TM)
i7-4720HQ CPU @ 2.60 [GHz], 8 [GB] of memory RAM, a Windows 10 Home
64 bits operative system and using the MATLAB 2015a software [8]. The sensor
placement approach follows Algorithm 1 and uses MATLAB GA Toolbox that, for
the considered case studies, has been used considering the following parameters:

• Tolerance of 10−6.
• Population size p = 5.
• Elite count of 0.05p, but at least one survives (which is the case given the p

selected).
• The maximum number of generations is 50.
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4.1 Hanoi Case Study

The Hanoi (Vietnam) network, presented in Figure 4, is a simplified network of the
real one, and consists of 1 reservoir, 31 consumer nodes and 36 pipes. The water
consumption has a daily pattern similar to the one depicted in Figure 5 (all the wa-
ter consumption patterns have been generated from an unique pattern distribution
obtained from the average values of five days adding an uncertainty of ± 12.5 %).
Given the size of the network, it is considered the placement of only two pressure
sensors as presented by [4]. These sensors, and the flow sensor at the inlet are con-
sidered to operate with a sampling time of 10 minutes.
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Fig. 4 Hanoi topological network

To generate the data sets, three different uncertainty sources (as proposed by [6])
are considered in the following way:

• The demand uncertainty source has a magnitude of ± 10 % of the nominal node
consumption value.

• The leak size varies from 25 to 75 [l/s].
• The measurement noise magnitude is considered as the of ± 5 % of the average

value of all pressure residuals.
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Fig. 5 Example of a daily flow consumption in the Hanoi network

Using all of these uncertainty levels, ten complete data sets (in order to have a
large enough number of different scenarios to avoid outliers or strange cases) have
been created simulating the pressure measurements at each possible position (class)
where data are generated every ten minutes. Then, the hourly average value has
been computed (with the aim to reduce the uncertainty and remove outliers). Thus,
each complete data set is composed of a training data set with five days of data (120
samples for each class) and a validation data set with one day of data (24 samples
for each class). Finally a unique testing data set with ten days of data (240 samples
per class) is generated. For the normalized sensitivity matrix (5), one instance is
generated for each class and sensor (complete sensitivity matrix) with a value of
total consumption of water of 2991.1 l/s and leak size of 50 l/s.

Classifiers use as attributes the flow measurement at the inlet, and the two pres-
sure residuals from the node where the sensor configuration is assessed. The pro-
posed sensor placement method using GA and with/without the Φ (B) matrix (where
it is used a σ value of the average value of all the Φ except the diagonal) is compared
to the exhaustive search. The results for the k-NN classifier (for a k value equal to
one, since the election of a proper k value must be done when the sensor placement
is fixed) are summarized in Table 2, and for the case of the Bayesian classifier (with
variable dependent Gaussian PDFs) in Table 3. The genetic algorithms are designed
to store only the best member of each generation, and each generation (population
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size) is fixed to have five members. To compute the Ac value in both tables, the same
testing data set is computed for each sensor placement obtained (with their respec-
tive training data set). The time units in the tables are seconds, and the Ac values are
in %. The best configurations (highest accuracy performance over the testing data
set) obtained are highlighted in bold for each method.

Table 2 Sensor placement results in the Hanoi network for the k-NN classifier

Data set Exhaustive search Genetic algorithm Genetic algorithm + Φ (B)

Sensors Time Ac Sensors Time Ac Sensors Time filter Time GA Ac
1 14, 27 474 39.11 9, 15 71 31.19 14, 27 0.06 63 39.11
2 14, 29 471 38.14 14, 29 70 38.14 14, 29 0.06 38 38.68
3 14, 28 470 38.68 14, 28 47 38.68 14, 31 0.06 19 34.34
4 14, 28 499 41.06 14, 28 44 41.06 14, 28 0.06 33 41.06
5 14, 28 472 39.03 1, 30 14 16.80 14, 28 0.06 46 39.03
6 14, 27 473 38.02 10, 15 45 32.58 14, 27 0.06 36 36.07
7 15, 28 473 38.52 15, 28 55 38.52 15, 28 0.06 43 38.52
8 15, 28 477 38.02 26, 28 29 35.55 15, 28 0.06 23 38.02
9 14, 27 469 38.89 5, 14 50 31.16 14, 29 0.06 36 37.56
10 14, 28 474 38.91 15, 29 51 36.88 4, 15 0.06 15 29.04

Average - 475 38.83 - 47 34.05 - 0.06 35 37.14

Table 3 Sensor placement results in the Hanoi network for the Bayesian classifier

Data set Exhaustive search Genetic algorithm Genetic algorithm + Φ (B)

Sensors Time Ac Sensors Time Ac Sensors Time filter Time GA Ac
1 14, 28 537 51.57 9, 15 71 42.00 14, 28 0.06 47 51.57
2 14, 28 535 51.65 14, 29 69 51.65 14, 28 0.06 57 51.65
3 14, 28 544 52.01 14, 28 47 52.01 14, 28 0.06 55 52.01
4 14, 28 545 52.55 14, 28 44 52.55 14, 28 0.06 51 52.55
5 14, 28 578 51.41 1, 30 13 46.47 4, 13 0.06 29 35.53
6 26, 27 583 46.72 10, 15 44 43.99 7, 28 0.06 32 40.13
7 14, 28 537 52.12 14, 28 85 52.12 14, 29 0.06 72 50.73
8 13, 28 536 47.33 13, 28 55 47.33 13, 28 0.06 62 47.33
9 14, 28 599 52.37 5, 14 50 43.56 14, 28 0.06 53 52.37
10 15, 28 535 46.92 6, 26 40 37.29 15, 30 0.06 50 46.57

Average - 553 50.46 - 58 46.90 - 0.06 51 48.04

From these results, it can be seen that both methods present an important im-
provement in terms of computational time when GA are used, and the GA stan-
dalone method and GA plus Φ (B) are able to avoid the local minima and find the
global optima in some cases (the best sensor placements obtained). Moreover, no-
tice that in average the introduction of the Φ (B) matrix not only reduces significantly
the computational time compared to the purely GA method but also increases the
accuracy. Finally, compared to the k-NN classifier, the Bayesian classifier is more
time demanding but its accuracy is better. This is probably due to the fact that the
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allowed combinations are better (i.e., the criteria used to select the permitted pairs
of sensor configurations works better) for this classifier than for the k-NN classifier.

To decide the best sensor configuration, the one with highest accuracy value is
chosen. So, for the technique of the genetic algorithms plus the use of Φ (B) matrix,
in case of k-NN classifier, the best sensor placement obtained is at nodes 14 and 28.
On the other hand, for the Bayesian classifier case, the best sensor placement is also
at the nodes 14 and 28. In both cases, the accuracy is assessed using a time horizon
scheme (see previous Chapter) in Figure 6 for the k-NN classifier (with k = 1) and
in Figure 7 for the Bayesian classifier, both using the training data corresponding to
the first data set and using as testing data set of all the remaining data sets. The term
“node relaxation” refers to the number of nodes in topological distance between the
node with the real leak and the node where the classifier predicts the leak for which
the diagnosis is still considered correct.
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Fig. 6 Accuracy curves for the k-NN classifier in the Hanoi network with sensor placement at
nodes 14 and 28

The average topological distance, which is the average value of the minimum
distance in nodes between the node predicted by the classifier and the real node
with leak, is depicted in Figure 8 for both classifiers.

The results in this network show that the best performance is achieved with the
Bayesian classifier being in agreement with the results presented in previous chapter.
The sensor placement result can be seen in Figure 9.
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Fig. 7 Accuracy curves for the Bayesian classifier in the Hanoi network with sensor placement at
nodes 14 and 28

4.2 Limassol Case Study

The Limassol (Cyprus) network (presented in Figure 10) has a medium size with
1 reservoir, 197 consumer nodes and 236 pipes. The consumption of water has a
pattern (depicted in Figure 11) generated as in the previous case (with different
scale). For this network, it is decided to place three pressure sensors.

The data sets are generated considering similar uncertainties (in this case the leak
varies from 2 to 6 [l/s]) as the Hanoi case, same sampling time (and computing the
hourly average value) and the same number of examples for each class. The classi-
fiers are build like the Hanoi case, but using four attributes: the flow measurement at
the inlet, and the three pressure residuals. For the sensitivity matrix the considered
values are 492.2 [l/s] for the total water consumption, and 4 [l/s] for the leak size.

The results are summarized in the Table 4.2 for the case of the k-NN classifier
(k = 1 as in the Hanoi case), and in the Table 4.2 for the Bayesian classifier. In this
case, the σ value is equal to the mean values of the Φ matrix except the diagonal.
The best configurations are highlighted in bold for each method.

In this network, as in the Hanoi case, the use of the Φ (B) matrix reduces the
computation time in most cases and in the average value. In this network, the com-
putational time reduction is similar, but the degradation of the accuracy value is
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Fig. 8 Average topological distance for both classifiers classifier in the Hanoi network

Table 4 Sensor placement results in the Limassol network for the k-NN classifier

Data set Genetic algorithm Genetic algorithm + Φ (B)

Sensors Time Ac Sensors Time filter Time GA Ac
1 15, 46, 113 8628 11.03 1, 7, 195 6.4 7348 9.04
2 1, 7, 11 8602 10.89 8, 102, 182 7.5 16154 10.19
3 8, 183, 195 14906 9.84 52, 128, 133 6.8 8020 9.66
4 124, 183, 185 13957 8.09 7, 195, 197 6.2 6580 9.66
5 3, 7, 8 5508 9.66 1, 7, 195 7.1 1595 8.80
6 6, 8, 11 13652 10.72 104, 183, 195 6.8 5909 8.36
7 129, 185, 190 15308 8.03 1, 2, 197 6.3 479 5.38
8 1, 3, 7 2010 9.07 13, 40, 167 6.3 8294 10.37
9 87, 124, 128 12434 9.55 104, 124, 167 8.0 10551 10.37
10 3, 166, 181 4995 7.11 5, 11, 124 6.2 13304 10.39

Average - 9690 9.39 - 6.7 7793 9.22
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Fig. 9 Sensor placement for the k-NN and Bayesian classifiers in Hanoi network

Table 5 Sensor placement results in the Limassol network for the Bayesian classifier

Data set Genetic algorithm Genetic algorithm + Φ (B)

Sensors Time Ac Sensors Time filter Time GA Ac
1 39, 77, 133 21348 17.35 11, 46, 133 6.3 21255 18.90
2 7, 19, 23 18701 19.28 17, 166, 181 6.3 17845 19.60
3 45, 110, 185 16696 16.40 40, 75, 156 6.8 14742 15.74
4 7, 11, 110 47590 19.34 17, 46, 181 6.7 25515 19.63
5 11, 91, 186 28032 17.43 91, 188, 190 6.5 20117 15.67
6 39, 48, 485 28106 19.13 39, 93, 189 6.7 15775 17.23
7 94, 133, 166 7730 19.22 100, 124, 183 6.9 15765 18.90
8 124, 189, 192 29217 16.61 14, 167, 185 6.4 13200 17.93
9 13, 22, 100 21904 18.86 93, 188, 190 6.4 11453 15.97
10 40, 66, 104 15221 20.10 13, 22, 190 6.5 6416 17.63

Average - 23454 18.37 - 6.5 16208 17.72
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Fig. 10 Limassol network

worse. This is probably due to the low value of the population size compared with
the total number of combinations possible. The best result obtained for the k-NN
classifier is to place the sensors at nodes 5, 11 and 124, and for the Bayesian classi-
fier is to place the sensors at nodes 17, 46 and 181. The accuracy curves (using the
first training data set and the testing data set) for both sensor placements is depicted
in Figure 12 and Figure 13, respectively.

The average topological distance for k-NN and Bayesian classifiers for the sensor
placements obtained can be seen in Figure 14.

Finally, the resulting sensor placement for the last proposed method (Genetic
algorithm + Φ (B)) for both classifiers is depicted in Figure 15.

5 Conclusions

In this paper, an optimal sensor placement method for placing a given number ns
of pressure sensors in WDNs to be used for leak localization has been presented.
The obtained sensor configuration is optimal in the sense that it maximizes the leak
isolability when using a classifier-based leak localization method. In order to tackle
the complexity of the optimal sensor placement, the use of Genetic Algorithms and
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Fig. 11 Example of a daily flow consumption in the Limassol network

a method to reduce that number of sensor configurations to test has been proposed.
The performance of the proposed method has been illustrated by means of the ap-
plication to the Hanoi and Limassol networks. The simulation results show that the
Genetic Algorithm provides in average a similar performance index to the Exhaus-
tive Search Algorithm whereas the computation load decreases significantly. Thus,
this method becomes suitable for networks of growing complexity. Additionally, the
use of classifiers allows the direct introduction of different sources of uncertainty
and leads to good isolability results.

6 Acknowledgment

This work has been partially funded by the Spanish Government (MINECO) through
the project CICYT ECOCIS (ref. DPI2013-48243-C2-1-R), by MINECO and FEDER
through the project CICYT HARCRICS (ref. DPI2014-58104-R), by MINECO
through the grant IJCI-2014-2081, by EFFINET grant FP7-ICT-2012-318556 of the
European Commission, by the DGR of Generalitat de Catalunya (SAC group Ref.
2014/SGR/374) and by the AGAUR of Generalitat de Catalunya through the grants
FI-DGR 2015 (ref. 2015 FI_B 00591) and 2014PDJ00102.



20 Soldevila, Blesa, Tornil-Sin, Fernandez-Canti, and Puig.

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

Fig. 12 Accuracy curves for the k-NN classifier in the Limassol network with sensor placement at
nodes 5, 11 and 124
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Fig. 15 Sensor placement for the k-NN and Bayesian classifiers in the Limassol network


