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Abstract—Inland navigation networks are composed of several
artificial canals that are characterized by no slope. These canals
are particularly subject to resonance phenomena, which can
create waves such that the navigation condition might not be
guaranteed. It is therefore required to ensure dealing with free-
fault measured data and actuators. In this work, a fault detection
and isolation method based on the Integrator Delay Zero model
(IDZ) is designed for flat navigation canals. The proposed method
is dedicated to the detection and isolation of sensor and actuator
faults. Finally, it is tested by considering the Cuinchy-Fontinettes
canal located in the north of France.

I. INTRODUCTION

Inland navigation systems are large-scale networks com-
posed of natural rivers and artificial canals. Natural rivers
are usually canalized, and just like artificial canals, they are
equipped with locks that enable the navigation. A navigation
reach is defined as a portion of a canal between two locks,
whose operation can cause high magnitude waves that reflect
from downstream to upstream during several hours, which is
known as the resonance phenomena. This situation is espe-
cially critical for those reaches that are characterized by no
slope (otherwise known as flat reaches).

The dynamics of a navigation reach can be accurately
modeled by the Saint-Venant partial differential equations [1].
However, these equations have no known analytical solution,
which is one of the reasons why simplified models have been
developed [2]. The Integrator Delay model proposed by [3]
was adapted by using an additional zero in the model leading
to the Integrator Delay Zero model (IDZ) [4]. The Integrator
Resonance model (IR) developed by [5] is dedicated to free-
surface water systems whose dynamics are characterized by
the resonance phenomena. Finally, gray-box models have been
proposed in [6], [7] to deal with navigation reaches for which
the physical parameters are not well known. Among these
different options, the IDZ model was used in [8] to diagnose
sensor faults in the Cuinchy-Fontinettes reach (CFr), which is
located in the north of France. Fault diagnosis is an important
issue for inland navigation systems because an error provided
by a level sensor could lead to navigation stoppage [?]. Indeed,
navigation is allowed only if the level of each navigation
reach is inside a navigation rectangle, which is defined by
two boundaries of several centimeters around the Normal
Navigation Level (NNL). If the water level crosses one of these
boundaries, the navigation has to be stopped.

In [9], the diagnosis approach based on IDZ was combined

with a pattern recognition method with the objective to benefit
from both methods. The IDZ model (which corresponds to
the nominal model) and the intervals outputs provided by
the interval model are used as features for the classification
algorithm. The combination of these two approaches allows
the detection and isolation of sensor faults. A similar approach
based on gray-box models was proposed in [10].

In this paper, a sensor and actuator fault diagnosis method
based on an IDZ model is proposed. The modeling step leading
to the estimation of the IDZ parameters is achieved by con-
sidering specific characteristics of navigation reaches without
slope. Hence, only the backwater dynamics are considered.
Then, a fault diagnosis approach is designed to detect and
isolate sensors and actuator faults. The proposed methodology
is illustrated by the case study.

The structure of this paper is as follows: the case study,
the management objectives and the constraints on navigation
conditions are presented in Section 2. The IDZ modeling step
is described in Section 3. Section 4 is dedicated to the presenta-
tion of the fault diagnosis method. Finally, faulty scenarios are
simulated using the case study to highlight the performance of
the proposed sensor and actuator fault diagnosis methodology.

II. PROBLEM STATEMENT

The inland navigation network in the north of France is
the largest in the country. It is composed of more than 50
navigation reaches connected through locks. Some of these
navigation reaches are artificial canals, which is the case of
the CFr.

This navigation reach is equipped with the lock of Cuinchy
at the upstream end and with the lock of Fontinettes at the
downstream end. A lock operation in Cuinchy corresponds
to an exchanged water volume of 3,700 m3, whereas a lock
operation in Fontinettes entails 25,000 m3. In order to balance
the exchanged water volumes during navigation periods, the
CFr has been equipped with a controlled gate in Cuinchy,
which is used to supply the CFr. The daily period of navigation
corresponds to 14 hours, starting from 6 a.m.

The CFr is characterized by no slope, a length of 42, 3
km, a width of 52 m and a complex geometry, which can be
simplified by considering an average rectangular profile (see
Fig. 1).

The management of the CFr consists in maintaining the
water level within 3.8 (i.e. the NNL) ± 0.05 m. These



Fig. 1: Schematic view of the CFr.

boundaries correspond to the navigation rectangle. If the water
level crosses the navigation rectangle, the navigation has to be
stopped. These strong constraints on the water levels require
the implementation of efficient control algorithms and fault
diagnosis methodologies.

Thus, a fault diagnosis method is designed to detect and
isolate faults that can occur on the Cuinchy and Fontinettes
level sensors and on the Cuinchy gate. This method is based
on the IDZ model of the CFr. The modeling step of free-surface
water systems without slope is presented in the next section.

III. MODELING OF FLAT NAVIGATION CANALS

As it has already been stated, several simplified models
can be used to describe the dynamics of flat canals. Among
all the existing options, the IDZ model is used in this work due
to its simplicity and its capability to characterize the system
dynamics with high accuracy in all regimes. It consists of
an integrator, a delay and a zero: while the two first terms
reproduce the low frequencies behavior, the zero accounts for
the high frequencies. Its structure is as follows:

pij(s) =
αs+ 1

As
e−τs, (1)

where α represents the inverse of the zero, A the integrator
gain and τ the propagation time delay. The exact values of
these parameters cannot be obtained, but they can be precisely
approximated as shown in [4]. As the used parameters are an
estimation of the theoretical ones, the notation p̂ij replaces pij
hereinafter.

The integrator gain represents how the volume changes
depending on the variation of the water level. The time delay
constitutes the minimum time that a perturbation needs to
travel from its origin to the measurement points. Two different
time delays have to be computed, one for the propagation
from upstream to downstream of the pool and another one
from downstream to upstream. Finally, the zero approximates
through a constant gain the oscillatory phenomena that occurs
in high frequencies.

These parameters are computed for both the upstream
uniform and the downstream backwater part of the canal, and
they are then merged into the so-called equivalent parameters,
which describe the whole pool.

Finally, the transfer function matrix that links the measured
water depths and the discharges at the ends of a canal is given
by:

[
y(0, s)

y(L, s)

]
=

[
p̂11(s) p̂12(s)

p̂21(s) p̂22(s)

]
︸ ︷︷ ︸

P(s)

[
q(0, s)

q(L, s)

]
, (2)

where 0 and L are the abscissas for the initial and final ends of
the canal; y(0, s) and y(L, s), the upstream and downstream
water levels; q(0, s) and q(L, s), the upstream inflow and
downstream outflow; and p̂ij , the different IDZ terms presented
in (1), respectively.

The CFr is a flat navigation canal, which means that it
is completely under backwater flow. Therefore, the equivalent
parameters are not computed but the backwater parameters are
used to describe the whole canal, yielding the following IDZ
transfer functions:

p̂11 =
6928s+ 1

2.2 · 106s (3a)

p̂12 =
−9544s− 1

2.2 · 106s e−6930s (3b)

p̂21 =
9544s+ 1

2.2 · 106s e
−6920s (3c)

p̂22 =
−6928s− 1

2.2 · 106s (3d)

These transfer functions are obtained by considering an
average discharge of 0.6 m3/s and a Manning coefficient equal
to 0.035.

These results are compared with a reference model that
comes from the solution provided by thye hydraulic simulator
SICˆ2 1 [11]. The obtained IDZ model predicts the correct
downstream water level, but it is not the case for the upstream
water level. This mismatch in the estimation of the upstream
water level is corrected by means of the following calibration
strategy:

p̂
′
ij(s) =

k · αs+ 1

As
e−τs, (4)

where k is the calibration coefficient. Notice that only the zeros
are calibrated: indeed, the mismatch between the reference and
the IDZ model mainly affects the peak response, for which the
zero accounts. Therefore, this calibration aims at reproducing
the peak magnitude with more accuracy.

The models are calibrated for the Fontinettes lock opera-
tion, as it involves the largest water volume exchange between
reaches. The calibrated IDZ model for the upstream water level
is:

p̂
′
11(s) =

5995s+ 1

2.2 · 106s (5a)

p̂
′
12(s) =

−7003s− 1

2.2 · 106s e−6930s (5b)

In addition, p̂
′
21(s) = p̂21(s) and p̂22(s) = p̂

′
22(s).

1http://sic.g-eau.net/



Figure 2 shows the evolution of the water level at the
upstream and downstream ends for the reference, the original
uncalibrated IDZ model (3) and the calibrated IDZ model (5).
It can be seen that the calibration strategy enables a more
accurate prediction of the upstream water level.

Fig. 2: Evolution of the water levels for the Fontinettes lock
operation.

IV. FAULT DIAGNOSIS

A. Fault detection

The principle of model-based fault detection is to test
whether the measured inputs and outputs from the system
lie within the behavior described by a model of the faultless
system. If the measurements are inconsistent with the model
of the faultless system, the existence of a fault is proved. A
deep knowledge of the physical principles that take part in
the system is required to compute a model that represents the
normal behavior of the plant. This model can describe the
behavior of the system in any non-faulty scenario and in the
faulty scenarios where the fault can be modeled by a change
of model parameters or variables. This does not happen in data
driven approaches, where their applicability is restricted by the
available non-faulty and faulty data.

In general, two different types of models can be distin-
guished: qualitative and quantitative models. Quantitative mod-
els are used in the Systems Dynamics and Control Engineering
community [12], [13], [14] known as FDI (Fault Detection and
Isolation) community. Quantitative models are mathematical
models that can be described in time or frequency domain.
Most of the fault detection techniques based on this kind
of models use a temporal residual r(t) that describes the
consistency check between the predicted ŷ(t) (given by the
model) and the real behavior y(t) measured by a sensor.

r(t) = y(t)− ŷ(t) (6)

This fault detection approach is based on analytical redun-
dancy.

Ideally, in quantitative model-based fault detection meth-
ods, residuals should only be affected by the faults. However,
the presence of disturbances, noise and modeling errors causes
residuals to become nonzero in the absence of faults and

thus interfering with the fault detection. Therefore, the fault
detection procedure must be robust against these undesired
effects [15].

One of the most developed robust FDI approaches, called
active, is based on generating residuals which are insensitive
to uncertainty and at the same time sensitive to faults [15]. For
instance, designing a filter Gf (s) in such a way{

Gf (s)R(s) = 0 in a fault-free scenario

Gf (s)R(s) �= 0 in a faulty scenario
(7)

where R(s) = L {r(t)} and L {} is the Laplace transform.

In practice, the perfect decoupling is not possible and
Gf (s)R(s) can become nonzero even in the absence of faults.
On the other hand, in passive robust approaches the model
errors are propagated to the residuals, and if the observed
residual is not consistent with the model uncertainty, a fault is
determined. One way of implementing the passive robust fault
detection is to compute the maximum positive and negative
deviations (bounds σ and σ) of the residual r(t) in the time
domain from zero in a fault-free scenario; therefore, the values
of the bounds are directly linked to the accuracy of the model.
Then, the following fault detection test can be formulated:{

r(t) ∈ [σ, σ] ⇒ No Fault (φ(t) = 0)

r(t) /∈ [σ, σ] ⇒ Fault (φ(t) = 1)
(8)

On the other hand, faults that produce a residual deviation
smaller than the threshold will not be detected (missed alarms),
which means that a minimum fault magnitude is necessary to
guarantee the fault detection. According to [12], the minimum
detectable fault corresponds to a fault that brings a residual to
its threshold (triggering limit), assuming that no other faults
and nuisance inputs are present.

B. Fault isolation

Detecting faults is possible with only one residual sensitive
to all faults. However, fault isolation usually requires the
evaluation of a set of fault signals φ1, . . . , φnr

computed by
means of (8) applied to a set of residuals r1, . . . , rnr

. The
fault isolation module used in this paper derives from the ones
proposed in [16] and [17] (see Fig. 3). The first component
is a memory that stores information about the fault signal
occurrence history and the fault detection module updates it
cyclically. The pattern comparison component compares the
memory contents with the stored fault patterns. The standard
Boolean fault signature matrix concept [12] is generalized
taking into account more fault signal properties. The last
component represents the decision logic part of the method
which aim is to propose the most probable fault candidate.

Memory component

The memory component consists of a table in which events
in the residual history are stored. For each row, the first column
stores the event occurrence time t0 and the second one stores
the maximum activation value φi,max

φi,max = max
t∈[to,to+Tw]

|φi(t)| (9)

for every fault signal φi i = 1, ..., nr . Using this strategy, the
effect of noise and non-persistent fault indicators are filtered
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Fig. 3: Components of the interface and fault isolation mod-
ules.

because just the activation peaks are stored. If the fault detec-
tion component detects a new residual event (i.e. φi(t) = 1),
the memory component table is updated by adding a new row
that contains all previous event information. The problem of
different time instant appearance of fault signals φi(t) is solved
by not indicating the isolation decision until a prefixed waiting
time Tw has elapsed from the first fault signal appearance.
This Tw is calculated from the largest transient time response
Tlt from non-faulty situation to any faulty situation. After this
time has elapsed, a diagnosis is proposed and the memory
component is reset, being ready to start the diagnosis of a new
fault. Inside this diagnosis window, the maximum activation
value of the memory-table φi,max corresponding to residual i
only changes if the current activation value φi(t0) is superior
to the previous ones according to (9).

Pattern comparison component

The pattern comparison component compares the mem-
ory contents with the stored fault patterns. Given a set
of residuals r1, . . . , rnr and the considered set of faults
f1, f2, ..., fj , ..., fm, each ri is affected by a subset of these
faults. The fault patterns are organized according to a theoret-
ical fault signature matrix named FSM. An element FSMij of
the matrix contains the pattern if fj is expected to affect ri,
otherwise it is equal to 0. This interpretation assumes that the
occurrence of fj is observable in ri, hypothesis known as fault
exoneration or no compensation, and that fj is the only fault
affecting the monitored system. Three different fault signature
matrices are considered in the evaluation task: Boolean fault
signal activation (FSM01) that contains information about
the incidence or no incidence of faults an residuals, fault
signal occurrence order (FSMorder) that contains information
about the expected order of theoretical incidence of a fault in
the different residuals and time (FSMtime) that contains the
information of the delay between the the first residual fault
activation and the following residual fault activations. These
matrices can be obtained from a fault sensitivity analysis of

residuals.

C. Fault diagnosis in the CFr system

In the CFr system described in Section II, two different
residuals rC(t) and rF (t) can be generated from the difference
between the available level measurements in Cuinchy and
Fontinettes (yC(t) and yF (t)) and the level estimations (ŷC(t)
and ŷF (t)) that can be computed using model (2) with

ŷC(t) = L −1{y(0, s)} and ŷF (t) = L −1{y(L, s)} (10)

and considering

q(0, s) = L {qC(t)} and q(L, s) = L {qF (t)}, (11)

where qC(t) and qF (t) are the flows in Cuinchy and
Fontinettes, respectively. They can be computed with the
known lock operation profiles qlockC(t) and qlockF (t) and
the control gate flow in Cuinchy uC(t) (known control input).

The possible faults that have been considered in this work
are sensor faults in both level sensors fyC

and fyF
and actuator

faults in the Cuinchy control gate fuC
. The effect of the

considered faults in the different variables involved in the two
residual computations is:

yC(t) = y0C(t) + fyC
(t)

yF (t) = y0F (t) + fyF
(t)

qC(t) = qlockC(t) + uC(t) = qlockC(t) + u0
C(t) + fuC

(t)

qF (t) = qlockF (t)

where y0C(t), y
0
F (t) and u0

C(t) denote actual values of levels
and control gate flow, respectively.

Then, considering the effect of the three faults in the two
residuals, matrices FSM01 (Table I), FSMorder (Table II) and
FSMtime (Table III) can be obtained. Level sensor faults fyC

and fyF
only affect the associated level residual. So FSMorder

matrix does not provide any additional information to the
FSM01 matrix and neither does the FSMtime matrix, where
[-1,-1] denotes no influence of a fault in a residual as proposed
in [17]. On the other hand, fuC

affects the two level residuals,
first rC and later rF . The time values τ2,3 and τ2,3 denote
the minimum and maximum delays from the activation of the
fault signal in rC to the activation of rF in the presence of
an actuator fault in the Cuinchy control gate fuC

. Therefore,
when the fault signal associated to the Cuinchy level residual
is activated, a waiting time Tw = τ2,3 has to be considered in
(9) to distinguish between a fault in the Cuinchy level sensor
(fyC

) and an actuator fault in the Cuinchy control gate (fuC
).

The values of τ2,3 and τ2,3 will be around the delay of the

transfer function p̂
′
12(s) (i.e. 6930 s).

fyC fyF fuC

rC 1 0 1
rF 0 1 1

TABLE I: FSM01 matrix in the CFr system

fyC fyF fuC

rC 1 0 1
rF 0 1 2

TABLE II: FSMorder matrix in the CFr system



fyC fyF fQC

rC 0 [-1,-1] 0
rF [-1,-1] 0 [τ2,3, τ2,3]

TABLE III: FSMtime matrix in the CFr system

V. RESULTS

The IDZ models given in (5) are used to compute the
results.

On the other hand, in order to cope with errors due to
uncertainty in transport delays that are present in open-flow
canal systems [18], following the ideas in [19], [20], the
discrete residual has been computed as

r(t) = y(t)− ŷ(t−Δτ0), (13)

where

Δτ0 = arg min
Δτ∈[−λτ ,λτ ]

|y(t)− ŷ(t−Δτ)|, (14)

with λτ the maximum deviation from the nominal time delay.

Uncertainties in time delay produce important instanta-
neous errors in level estimations. Figure 4 shows the evolution
of residuals computed directly with (6) and applying (13) in
a realistic scenario. Maximum and minimum residual values
in fault free scenarios have been chosen as residual bounds σ
and σ used in the fault detection procedure (8). The residual
bounds for the two residuals computed directly and applying
(13) considering λτ = 120 s in (14) are summarized in Table
IV.
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Fig. 4: Level residuals rC(t) and rF (t) in a 24-hour fault-free
scenario.

Directly Applying Δτ
σ σ σ σ

rC [m] -0.062 0.052 -0.05 0.042
rF [m] -0.096 0.096 -0.032 0.013

TABLE IV: Residual fault detection thresholds

Different realistic fault scenarios have been generated in
order to study the performance of the proposed fault diagnosis
method considering FSM01 (Table I), FSMorder (Table II) and
FSMtime (Table III) with τ2,3 = 5900 s and τ2,3 = 7900 s.

With the purpose of avoiding that uncertainty and modeling
errors compensate the fault effects, when a fault is detected
using (8), the residual is computed using (13) by considering
Δτ0 computed with (14), but changing min by max. In the
following, the results of two fault scenarios are explained in
detail.

Fault scenario 1: Additive fault in the Fontinettes level
sensor

An additive fault of 6 cm is simulated at the Fontinettes
level sensor at t ≥ 500 min, which emulates a fall of 6 cm
of an ultrasonic sensor from its support arm. Figure 5 shows
the evolution of the two residuals: rC(t) is activated when the
fault is produced (at t = 500 min). Then, according to Tables
I and II, the Fontinettes sensor fault is correctly isolated.
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Fig. 5: Water level residuals rC(t) and rF (t) in a sensor fault
scenario: Fontinettes level fault fyF

(t) = 6 cm at t ≥ 500
min

Fault scenario 2: Additive fault in Cuinchy control gate

An additive fault of −4 m3/s is simulated at the Cuinchy
control gate at t ≥ 300 min that emulates a partial obstruction
in this gate. Figures 6 and 7 show the residuals and the fault
signals evolution, respectively. The first fault signal φC(t) is
activated at t = 342 min (42 min after the gate is partially
blocked). Later, at t = 442 min, the fault signal φF (t)
is activated. Then, during 100 min (from t = 342 min
to t = 442 min) there are two fault candidates (fyC

and
fuC

), according to Table I. However, after the activation of
φF (t), only fuC

is consistent with the observed fault signals,
according to Table II. The fault diagnosis procedure works
despite the signal faults are intermittently activated, thanks to
the memory component (9) and Table III.

VI. CONCLUSION

A diagnosis method was proposed in this paper to detect
and isolate sensor and actuator faults that can occur in flat
navigation canals. Fault diagnosis in these systems is required
to avoid the navigation stoppage. Indeed, the navigation is
allowed only if the water level of each canal is inside a
navigation rectangle of some centimeters around the Nor-
mal Navigation Level. The proposed diagnosis method was
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Fig. 6: Level residuals rC(t) and rF (t) in an actuator fault
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Fig. 7: Instantaneous activation signals φC(t) and φF (t) in an
actuator fault in Cuinchy (fuC

(t) = −4 m3/s at t ≥ 300 min)

designed based on the Integrator Delay Zero model, which
is able to reproduce the peaks introduced by the significant
lock operations. The Cuinchy-Fontinettes navigation reach that
is located in the north of France was considered to test
the proposed modeling and fault diagnosis approaches. Two
fault scenarios based on realistic operating conditions were
built to highlight the performance of the proposed diagnosis
approach, and faults on sensors and actuators were correctly
detected. In future works, multiple fault occurrences will be
considered. In addition, the proposed diagnosis approach will
be improved to deal with strong disturbances that characterize
real environmental systems.
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