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Abstract—Inland navigation networks are composed of in-
terconnected navigation reaches. Some of them are flat and
thus especially subject to resonance phenomena: lock operations
create waves that can travel back and forth during several hours
before their attenuation. The objective of this paper is to propose
a model dedicated to this phenomenon, which is called multiple
Integrator Delay Zero (mIDZ) model. It is based on the well
known IDZ model, which is particularly suitable to reproduce
the dynamics of free-surface water systems. However, since it
is a first order model, it can only reproduce the effect of the
first peak and not the effect of the subsequent, attenuated peaks
that are observed in the response. The proposed model exploits
the performance of the IDZ model in order to reproduce the
effect of the following peaks. Its design requires the classical
IDZ parameter identification followed by a frequency study to
determine the attenuation and the periodicity of the signal. This
thorough study aims at obtaining an accurate model that can be
used for fault diagnosis and/or fault-tolerant control purposes.
The proposed approach is illustrated by considering the Cuinchy-
Fontinettes navigation reach located in the north of France.

Index Terms—Free-surface water systems, resonance, model-
ing, multi-model, frequency analysis.

1 INTRODUCTION

Inland navigation networks are composed of artificial
reaches, some of which are characterized by no slope. These
reaches are particularly impacted by resonance phenomena.
When a lock operation is performed, waves are created
and travel from the upstream to the downstream end (resp.
from downstream to upstream). Once they reach one end
of the reach, they reflect back in the other direction. This
phenomenon may take several hours before it attenuates
completely. A correct understanding and modeling of this
behavior is required to facilitate the design of control or fault-
tolerant control strategies. Hence, models of canals without
slope have to be proposed. The partial derivative equations
of Saint-Venant [1] remain to this day as the most accurate
model for these systems. However, the use of these equations
for the design of control strategies is difficult. This is the
reason why alternative solutions based on a simplification
and a linearization of the Saint-Venant equations around an
operating point have been proposed in the literature. The ID
(Integrator Delay) model was proposed by [6]. This model is
suitable to reproduce the low-frequency dynamics by taking

into account time delays. It is therefore not suitable for
water systems that are characterized by waves and resonance
phenomena, i.e. high-frequency dynamics. The IDZ (Integrator
Delay Zero) model [3] improved the ID model by considering
an additional zero in the model. Thus, it allowed reproducing
high-frequency dynamics, but not the resonance phenomena.
The IR (Integrator Resonance) model was conceived to design
control laws for free-surface water systems whose dynamics
are characterized by the resonance phenomena [8]. However, it
is a frequency-based model that cannot be easily used to design
continuous-time model. Finally, data-based models have been
proposed to deal with water systems for which the physical
parameters are not well known, such as gray-box [2] and
black-box [9] models. These approaches require accurate data
that characterize all the operating range of the water systems.

The objective of this work is to propose a model based
on physical parameters that can reproduce the high-frequency
dynamics and the resonance phenomena. The measured water
levels show that the peak that characterizes the high-frequency
dynamics is repeated some time after, but attenuated. The first
peak can be captured by the original IDZ model, but not
the subsequent peaks. Therefore, the multiple IDZ (mIDZ)
model is conceived as several IDZ models in cascade, each of
them reproducing one of the peaks. The mIDZ model takes
advantage of the well-known design methodology of the IDZ
model, and extends it in order to be able to predict multiple
peaks.

This paper is structured as follows: the description of the
IDZ model is given in Section II. Section III is dedicated to the
presentation of the mIDZ model and its tuning step. Section
IV describes the Cuinchy-Fontinettes reach (north of France),
which is used to design and test the proposed approach. The
numerical expressions of the IDZ and the mIDZ models are
determined according to the physical parameters and then
tuned by means of single lock operation scenarios in a 24-
hour period. Section V presents the testing of the tuned mIDZ
models by considering a low navigation demand scenario (3
lock operations in a 24-hour period) and a high navigation
demand scenario (13 lock operations in a 24-hour period).
The advantages and limits of the mIDZ models compared to
the original IDZ model are discussed. The conclusions and



perspectives of this work are given in Section VI.

2 INTEGRATOR DELAY ZERO MODEL

The general IDZ input-output expression that links the
discharges and the water depths at the boundaries of a reach
can be expressed by means of:[

y(0, s)
y(L, s)

]
=

[
p11(s) p12(s)
p21(s) p22(s)

] [
q(0, s)
q(L, s)

]
, (1)

where 0 and L are the abscissas for the initial and final ends of
the canal; y(0, s) and y(L, s), the upstream and downstream
water levels; q(0, s) and q(L, s), the upstream inflow and
downstream outflow; and pij(s), the different terms of the IDZ
model. These terms consist of an integrator, a delay and a zero.
The two first terms reproduce the low frequencies behavior,
while the zero accounts for the high frequencies. Its structure
is as follows:

pij(s) =
zij · s+ 1

Aij · s
e−τij ·s, (2)

where z represents the inverse of the zero, A the integrator
gain and τ the propagation time delay. The integrator gain
represents the change in volume according to the variation of
the water level. The time delay constitutes the required time
for a wave to travel from its origin to the measurement points
(therefore τ11 = τ22 = 0). Finally, the zero approximates
through a constant gain the oscillatory phenomena that occurs
in high frequencies.

It can be considered that the dynamics of a canal are
composed of a uniform part and a backwater part. It is
necessary to compute these parameters for each part, and
then merge them to obtain the equivalent parameters, which
describe the whole pool. However, when the bed slope is equal
to zero (flat canal), there is no uniform flow [1]. Therefore,
the parameters must only be computed for the backwater part
(using the total length of the reach), and no merging formulas
are needed afterward [7].

3 MULTIPLE INTEGRATOR DELAY ZERO MODEL

3.1 Structure

The multiple IDZ (mIDZ) model consists in considering the
nominal IDZ model and m attenuated and delayed replicas of
this nominal model. Its structure is defined as follows:[

y(0, s)
y(L, s)

]
=

[
P11(s) P12(s)
P21(s) P22(s)

]
︸ ︷︷ ︸

P(s)

[
q(0, s)
q(L, s)

]
, (3)

where

Pij(s) =

m−1∑
k=0

pkij(s) (4)

and

pkij(s) =
m · ξk · zij · s+ 1

m · Aij · s
e−(τij+2k·τij+δ)s,∀k ∈ {0,m− 1}

(5)

with m the number of considered multimodels, k the index
of the kth multimodel, ξk the damping coefficient and δ a
delay calibration coefficient. For m = 1, it is immediate
that Pij(s) = p0ij(s) = pij(s). The periodicity of the wave
reflection is determined according to the delays of the IDZ
model. However, it is necessary to determine the damping
coefficients ξk as well as a calibration factor δ that accounts
for the calibration of the period. The first possibility is to use
a frequency analysis.

3.2 Frequency analysis

A frequency analysis of open-surface water systems is
proposed in [4]. This analysis is based on the Saint-Venant
equations by considering the physical characteristics of the
water systems. Moreover, it allows to draw Bode plots and to
determine the number of peaks, their periodicity and the gain
differences between peaks. The multiple IDZ model can be
tuned according to these coefficients.

3.3 Parameter optimization

The frequency analysis gives some information about the
resonance phenomenon. However, it is often still necessary to
calibrate the parameters of each transfer function pkij(s). One
possibility consists in simulating a step response; in the case of
inland navigation reaches, it corresponds to an upstream lock
operation to tune the transfer functions pk11(s) and pk21(s), and
one downstream lock operation to tune pk12(s) and pk22(s).

4 CASE STUDY: THE CUINCHY-FONTINETTES REACH

4.1 Description of the system

The Cuinchy-Fontinettes reach (CFr) belongs to the inland
navigation network in the north of France. It is one of the
longest reaches of this network, with an approximate length
of 42300 m. Its geometry is complex, with more than 600
section profiles. However, it can be accurately approximated
by considering a rectangular cross section of dimensions 52
m (top width) by 3.8 m (average water depth). It is equipped
with a lock and a controlled gate at the upstream end of
Cuinchy, and with a lock at the downstream end of Fontinettes.
This reach is characterized by a bed slope equal to 0 (flat
canal), which is the reason why it is particularly impacted
by resonance phenomena, due mainly to the operations of the
Fontinettes lock. Indeed, each lock operation in Fontinettes
creates a wave of more than 15 cm of magnitude that travels
back and forth during several hours. The lock operations lead
to water volume exchanges (with the adjacent reaches) of
3000 m3 (lock of Cuinchy, input volume) and 25000 m3

(lock of Fontinettes, output volume). Each lock operation
lasts 15 min in average. In addition, in order to determine
the parameters of the IDZ and mIDZ models, the values of
the Manning coefficient (n = 0.035) and the daily average
discharge (q = 0.6 m3/s) are required.



4.2 Numerical results

4.2.1 IDZ model: The computation of the IDZ model
based on the procedure described in [3] yields the following
numerical results:

p̂11 =
6928s+ 1

2.2 · 106s
p̂12 =

−9544s− 1

2.2 · 106s
e−6930s

p̂21 =
9544s+ 1

2.2 · 106s
e−6920s p̂22 =

−6928s− 1

2.2 · 106s

(6)

4.2.2 Multiple IDZ model: The mIDZ model is based on
the identified IDZ model given in (6). Taking it as a starting
point, a frequency analysis is performed. It leads to the Bode
plot depicted in Fig. 1 for p12(s) and p22(s). It is possible
to determine, according to this plot, the gain of each peak,
which leads to the damping coefficients. As an example, Table
I summarizes the results for the case of an mIDZ model
composed of 4 models, i.e. m = 4. This table allows to
compute the Pij expressions given in (4) and (5), which are not
given here due to lack of space. With respect to the distance
between two consecutive peaks, it is assumed that it is equal
to 2τij . The Bode plots provide the same values.

The damping coefficients of the mIDZ models should be
modified according to the step response that corresponds to
a Fontinettes lock operation (see Fig. 2), such as those given
in Table I. In addition, the resonance period is calibrated by
considering δ = 700 s more than the initial period (relative
error smaller than 10%). The same calibration step is per-
formed for p11(s) and p21(s) (but not depicted in this paper)
by means of a lock operation in Cuinchy. Finally, according
to the calibration step, the accuracy of the mIDZ models can
be improved.

Fig. 1. Bode plot of p12(s) and p22(s).

5 SIMULATION RESULTS

In order to test the proposed approach, several scenarios
are considered. The first step involves simulating individual
lock operations, first in Cuinchy and after in Fontinettes. In
general, linearized models like the IDZ offer an acceptable

Fig. 2. (a) Cuinchy water level. (b) Fontinettes water level. Reference water
level: blue solid line; mIDZ model (m=4) from frequency analysis: magenta
dotted line; mIDZ model (m=4) from optimization: red dashed line.

TABLE I
CALIBRATION OF THE DAMPING COEFFICIENTS

ξ0 ξ1 ξ2 ξ3

P12

Frequency analysis 1 0.3 0.29 0.28
Optimization 0.75 0.32 0.18 0.1

P22

Frequency analysis 1 0.3 0.29 0.27
Optimization 1.12 0.48 0.25 0.13

performance, but they still need to be fitted with respect to the
measured reference. Once the predictive power of the model
has been improved, a 24-hour realistic profile of the navigation
condition in the CFr is simulated. Four different models are
tested, the original IDZ model and three mIDZ models with
m={2, 4, 6}. For the sake of brevity, they will be referred to
as IDZ, 2IDZ, 4IDZ and 6IDZ hereinafter.

In order to ensure a more quantitative comparison, the
following fit coefficients are computed:

• Pearson product-moment correlation coefficient: linear
dependence measure between two variables and is defined
in the following way:

r =

T∑
t=1

(
Yo(t)− Yo

) (
Ym(t)− Ym

)
√

T∑
t=1

(
Yo(t)− Yo

)2√ T∑
t=1

(
Ym(t)− Ym

)2 (7)

with T the horizon for which the data have been acquired,
Yo(t) the observed water depth at time t, Ym(t) the
predicted water depth at time t and Yo and Ym the mean
value of observed and modeled water depths, respectively.
The bounds of this coefficient are +1 (total positive linear
correlation) and -1 (total negative linear correlation), and
0 implies no linear correlation.

• Nash-Sutcliffe model efficiency coefficient: assesses the
predictive power of hydrological models as follows [5]:



E = 1−

T∑
t=1

(Yo(t)− Ym(t))
2

T∑
t=1

(
Yo(t)− Yo

)2 (8)

E can range from 1 to −∞, where 1 indicates a perfect
match of modeled and observed values, 0 corresponds to
the case in which the model predictions are as accurate
as the mean of observed data and E < 0 means that
the model predictions are less accurate than the mean of
observed data.

• Maximum difference between the modeled and observed
data as a measure of the magnitude of the maximum
error. It is computed as:

∆ = max
1≤t≤T

|Yo(t)− Ym(t)| (9)

5.1 Individual lock operations

5.1.1 Cuinchy lock operation: The operation of the lock
of Cuinchy at t = 1 h is simulated. Below, the reference
water level (blue solid line) and the predicted water levels by
using IDZ, 2IDZ, 4IDZ and 6IDZ models (red dotted line),
respectively, are depicted in Fig. 3 and 4. All models are
calibrated according to the previous tuning description.

Fig. 3. Water levels in Cuinchy for a lock operation in Cuinchy. (a) IDZ
model. (b) 2IDZ model. (c) 4IDZ model. (d) 6IDZ model.

TABLE II
FIT COEFFICIENTS FOR A CUINCHY LOCK OPERATION

IDZ 2IDZ 4IDZ 6IDZ

C
E 0.21 0.52 0.72 0.76
r 0.47 0.72 0.85 0.89

∆ [m] 0.0123 0.0082 0.0077 0.0078

F
E 0.20 0.59 0.72 0.75
r 0.49 0.77 0.86 0.88

∆ [m] 0.014 0.0078 0.0078 0.0079

This individual lock operation is the only disturbance that
affects the water level. Therefore, the wave created by the
lock operation is immediately measured upstream (since the

Fig. 4. Water levels in Fontinettes for a lock operation in Cuinchy. (a) IDZ
model. (b) 2IDZ model. (c) 4IDZ model. (d) 6IDZ model.

lock and the water level sensor can be considered to be in the
same spatial point). Then, the wave is measured downstream
after the corresponding time delay has elapsed from the lock
operation, and finally it travels back to the upstream end,
where it is measured again with an attenuated magnitude. This
behavior is repeated in time until a complete attenuation of this
phenomenon.

Table II summarizes the fit coefficients for this scenario. Of
course, as the number of used IDZ models increases, so do
the Nash and the correlation coefficients, because the number
of predicted peaks increases. However, it is interesting to
note that these indicators grow faster in the beginning (when
switching from IDZ to 2IDZ) and more steadily after. This
is due to the fact that the magnitude of the peaks attenuates.
Therefore, the relative improvement in the prediction accuracy
of two consecutive models will be larger in the beginning. The
same trend is observed in the case of the maximum absolute
difference: this value is reduced much more in the beginning,
but it soon reaches a minimum value that can no longer be
improved.

5.1.2 Fontinettes lock operation: A similar simulation is
presented for the case of a Fontinettes lock operation, which
also takes place at t = 1 h. Figures 5 and 6 and Table III
illustrate the obtained results.

TABLE III
FIT COEFFICIENTS FOR A FONTINETTES LOCK OPERATION

IDZ 2IDZ 4IDZ 6IDZ

C
E -0.13 0.67 0.57 0.41
r 0.53 0.83 0.81 0.81

∆ [m] 0.084 0.040 0.040 0.040

F
E 0.71 0.81 0.77 0.67
r 0.85 0.90 0.90 0.90

∆ [m] 0.035 0.032 0.037 0.039

In contrast to the previous scenario, the model that offers
the best performance is the 2IDZ model, according to the fit
coefficients in Table III. A thorough analysis of Fig. 5 and 6
reveals that after the second peak (t ≥ 5 h) of the reference



Fig. 5. Water levels in Cuinchy for a lock operation in Fontinettes. (a) IDZ
model. (b) 2IDZ model. (c) 4IDZ model. (d) 6IDZ model.

Fig. 6. Water levels in Fontinettes for a lock operation in Fontinettes. (a) IDZ
model. (b) 2IDZ model. (c) 4IDZ model. (d) 6IDZ model.

(blue solid line), the 2IDZ model (red dotted line) converges
faster to the reference than 4IDZ and 6IDZ. It is true that the
two last models are able to predict more peaks than 2IDZ, but
their magnitude is such that their prediction does not yield
better fit coefficients.

5.2 Realistic scenarios

After the simulation of individual lock operation scenarios,
all the considered models are calibrated with respect to the
reference. Two realistic scenarios are simulated, one with
low navigation demand and another one with high navigation
demand (see Fig. 7). Below, the predicted water levels and the
fit coefficients are presented for each scenario.

5.2.1 Low navigation demand: The upstream and down-
stream water levels corresponding to this scenario (see Fig.
7(a) are depicted in Fig. 8 and 9, respectively. The fit coeffi-
cients for this scenario are summarized in Table IV.

In this low navigation demand scenario, the 2IDZ model
yields the best performance according to Table IV. This model
offers a trade-off between settling time (IDZ is the fastest

Fig. 7. (a) Low navigation demand scenario. (b) High navigation demand
scenario. Upstream discharge: blue solid line; downstream discharge: red
dotted line.

Fig. 8. Water level in Cuinchy for a low navigation demand scenario. (a)
IDZ model. (b) 2IDZ model. (c) 4IDZ model. (d) 6IDZ model.

model) and the prediction of multiple peaks (the more models
are used, the more peaks can be predicted). Indeed, 4IDZ and
6IDZ overestimate their prediction of the water levels at the
beginning and gradually converge to the measured water level.
In this way, they need more time to react to changes coming
from water volume displacements.

5.2.2 High navigation demand: The upstream and down-
stream water levels corresponding to this scenario (see Fig.
7(b) are depicted in Fig. 10 and 11, respectively. The fit
coefficients for this scenario are summarized in Table V.

In this high navigation demand profile, the water levels
do not stay close to the initial level, unlike the previous
scenario. This is a consequence of the water exchange with
other reaches. This scenario considers 13 lock operations in
Cuinchy and 10 in Fontinettes (the balance is -211000 m3).
The final water level decrease (after attenuation of the resonant
waves) is the result of this emptying.

The 2IDZ model again attains the best performance of the
four models, for the same reasons given before.



Fig. 9. Water level in Fontinettes for a low navigation demand scenario. (a)
IDZ model. (b) 2IDZ model. (c) 4IDZ model. (d) 6IDZ model.

TABLE IV
FIT COEFFICIENTS FOR A LOW NAVIGATION PROFILE SCENARIO

IDZ 2IDZ 4IDZ 6IDZ

C
E 0.09 0.74 0.69 0.58
r 0.60 0.86 0.86 0.84

∆ [m] 0.08 0.04 0.04 0.04

F
E 0.75 0.86 0.83 0.76
r 0.86 0.93 0.93 0.91

∆ [m] 0.030 0.032 0.037 0.039

6 CONCLUSIONS AND FUTURE WORK

This work was dedicated to the development of a multiple
Integrator Delay Zero model, which stems from the well
known IDZ model. Since it is a first-order model, it is not
able to characterize the subsequent peaks that are consequence
of resonance phenomena. This behavior is especially critical
for flat canals. The mIDZ model makes use of the IDZ model
to consider attenuated and delayed replicas and therefore be
more precise in the prediction, which is shown in Section V.

The scope of this work was to propose an accurate model
that can describe faithfully the dynamics of flat canals. As a
future work, with this model it will be easier to detect and
diagnose faults that affect these systems, and also to design
fault-tolerant control strategies. Therefore, this model has been
conceived as a first step towards FDI and FTC of flat reaches.
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