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Introduction

Viability theory [1] is a promising area of research for the design of
reliable control systems in the presence of uncertainties and faults. In
this work, following the ideas presented in [2], we propose a method
to compute the inner and outer approximation of the viability kernel
using interval analysis and guaranteed integration techniques.

Basic properties

Following the notation in [1] we will consider a dynamic system S
defined by

ẋ(t) = f(x(t), u(t))

u(t) ∈ U
(1)



where x(t) ∈ Rn, U is a compact subset of Rm, u ∈ U = u : R+ 7−→ U,
f : Rn×U 7−→ Rn being f a continuous and locally Lipschitzian func-
tion bounded in Rn×U and ϕ is the flow map of S that computes the
reached state ϕ(t, x0, u) given an initial state x0 = x(t) and a control
function u(t).

Then, the viability kernel [1] in [2] is defined as
Definition 1 Let S a system defined by Eq. (1) and let K ⊆ Rn be a
compact set. The viability kernel of K under S, is the set V iabS(K)
of initial states x ∈ K from which at least one evolution does not leave
K for all t ≥ 0. We have

V iabS(K) = {x0 ∈ K|∃u ∈ U ,∀t ≥ 0, ϕ(t, x, u) ∈ K},
with the purpose of computing an inner approximation of the viability
kernel using interval analysis we propose:

Proposition 1. Given a system S defined by Eq. (1), an unknown
initial state x0 bounded by a box [x0] (i.e. x0 ∈ [x0]), an interval time
horizon tH and a control vector u in the time horizon tH ; the evolution
of the state x of the system S can be bounded by a tube TS([x0], t, u)
such that

ϕ(t, x0, u) ∈ TS([x0], t, u) ∀x0 ∈ [x0] ∀t ∈ [0, tH ].

This Tube can be computed by discretizing Eq. (1) and using guaran-
teed integration techniques.

Proposition 2. From the Tube TS([x0], t, u) a boundary set BS([x0], tH , u)
can be obtained, by using the final points of the tube at tH (i.e. TS([x0], tH , u)).

The Tube TS([x0], t, u) and the Boundary BS([x0], tH , u) satisfy the
following conditions:

ϕ(t, x0, u) ∩ TS([x0], t, u) = ∅, (2)

ϕ(t, x0, u) ∩ BS([x0], tH , u) 6= ∅. (3)



For a R2 system this can be depicted as the line segment between
the two final points of the tube in Figure 1

Figure 1: Integration Tube.

Proposition 3. Given that the set Vinner is non-convex, if there exists
a set V′ ⊂ K generated by the tube TS([x], tH , u) and the set Vinner,
then the set V′ ⊂ Vinner.

Proof. Lets suppose:

ϕ(t, x, u) ∩ (Vinner ∪ TS([x], t, u)) = ∅, ∀x ∈ V′ (4)

Taking into account the properties of the system and proposition 2,
∀x ∈ V′



ϕ(t, x, u) ∩ Vinner 6= ∅, , (5)

or ϕ(t, x, u) ∩ TS([x], t, u)) 6= ∅, , (6)

or ϕ(t, x, u) ∩ V′ 6= ∅. (7)

Where Eq. (5) and Eq. (6) contradicts Eq. (4), Eq. (7) states the
posibility of an equilibrium point inside the set V′. Therefore, V′ ⊂
Vinner. Figure 2 depicts a graphical illustration for proposition 3 in a
R2 system. �

Figure 2: Case defined in Proposition 3.

Main results

Given an initial inner approximation of the viability kernel Vinner, the
tube TS([x0], t, u) and its boundary set BS([x0], tH , u) defined in pre-
vious Section can be used to compute an inner approximation of the
viability kernel V iabS(K) by means of algorithm 1 that follows the
ideas proposed in [2]. Figures 4 and 3 depict the two different cases
presented in algorithm 1.



Algorithm 1 Computation of an inner approximation of V iabS(K)
Require: S,U ,K, tH and initial set Vinner

1: H = ∅ and S = K \ Vinner

2: while S 6= ∅ do
3: for [xi] ∈ S do
4: Choose u ∈ U
5: if TS([xi], tH , u) ⊆ K and BS([xi], tH , u) ⊆ Vinner then
6: Vinner := Vinner ∪ [xi], S := S \ [xi]
7: Compute VT = (TS([xi], tH , u) ∩ S)inner
8: Vinner := Vinner ∪ VT , S := S \ VT

9: end if
10: end for
11: Bisect boxes of S
12: end while
13: return Vinner and H



Figure 3: Box evolving towards the Viable Set



Figure 4: Box evolving towards the Non Viable Set
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