
Chapter 14
Stochastic Model Predictive Control for Water
Transport Networks with Demand Forecast
Uncertainty

Abstract Two formulations of the stochastic model predictive control (SMPC) prob-
lem for the control of large-scale drinking water networks are presented in this
chapter. The first approach, named chance-constrained MPC, makes use of the as-
sumption that the uncertain future water demands follows some known continuous
probability distribution while at the same time certain risk (probability) for the state
constraints to be violated is allocated. The second approach, named tree-based MPC,
does not require any assumptions on the probability distribution of the demand esti-
mates, but brings about a complexity that is harder to handle by conventional com-
putational tools and calls for more elaborate algorithms and the possible utilization
of sophisticated devices.

14.1 Introduction

One of the challenges in water systems management is the existence of different
sources of uncertainty. The availability of historical data allows to accurately pre-
dict the behaviour of the system disturbances over large horizons but still a mean-
ingful degree of uncertainty is present. In previous chapters, the use of MPC to
tackle the complex multi-variable interactions and large-scale nature of drinking
water network control is proposed. There are several examples of MPC applied to
water systems in the literature, see, e.g., [2, 7, 10, 16, 29, 30] and references therein.

In a DWN, the main management purpose is the achievement of the highest level
of consumer satisfaction and service quality in line with the prevailing regulatory
framework, whilst making best use of available resources. Hence, networks must be
reliable and resilient while being subject to constraints and to continuously varying
conditions with both deterministic and probabilistic nature. Customers behaviour
determines the transport and storage operations within the network, and flow de-
mands can vary in both the long and the short term, often presenting time-based
patterns in some applications. Therefore, a better understanding and forecasting of
demands will improve both modelling and control of DWNs.
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While Chapters 12 and 13 deal with the uncertainty in the classical way of feed-
forward action, this chapter focuses on the way that uncertainty can be faced by
using stochastic-based approaches. The simplest way to do this is by ignoring the
explicit influence of disturbances or using their expected value as done in previous
chapters. However, dealing with the demand uncertainty explicitly in the control
model is expected to produce more robust control strategies. In [12], a reliability-
based MPC was proposed to handle demand uncertainty by means of a (heuristic)
safety stock allocation policy, which takes into account short-term demand predic-
tions but without propagating uncertainty along the prediction horizon.

As discussed in [5], alternative approaches of MPC for stochastic systems are
based on min-max MPC, tube-based MPC, and stochastic MPC. The first two con-
sider disturbances to be unmeasured but bounded in a predefined set. The control
strategies are conservative, because they consider worst-case demand deviations
from their expected value, limiting the control performance. On the other hand,
stochastic MPC considers a more realistic description of uncertainty, which leads to
less conservative control approaches at the expense of a more complex modelling
of the disturbances. The stochastic approach is a mature theory in the field of opti-
misation [3], but a renewed attention has been given to the stochastic programming
techniques as powerful tools for control design, see, e.g., [4] and references therein.

From the wide range of stochastic MPC methods, this chapter specialises on sce-
nario tree-based MPC (TB-MPC) and chance-constrained MPC (CC-MPC). Re-
garding TB-MPC, see, e.g., [24] and [17], uncertainty is addressed by considering
simultaneously a set of possible disturbance scenarios modelled as a rooted tree,
which branches along the prediction horizon.

On the other hand, CC-MPC [28] is a stochastic control strategy that describes ro-
bustness in terms of probabilistic (chance) constraints, which require that the prob-
ability of violation of any operational requirement or physical constraint is below
a prescribed value, representing the notion of reliability or risk of the system. By
setting this value properly, the operator/user can trade conservatism against perfor-
mance. Relevant works that address the CC-MPC approach in water systems can
be found in [8, 22] and references therein. Therefore, this chapter is focused on
the design and assessment of CC-MPC and TB-MPC controllers for the operational
management of transport water networks, which may be described using only flow
equations, discussing their advantages and weakness in the sense of applicability
and performance. The particular case study is related to the Barcelona DWN de-
scribed in [19] and presented in Chapter 2.

14.2 Problem formulation

Consider the MPC problem associated to the flow control problem in a DWN (see
[20]). In general, a DWN consists in a set of water storage (dynamic) nodes, pipe
junction (static) nodes, source nodes and sink nodes, which are interconnected in
such a way that the water can be transported from source nodes to sink nodes when
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demanded. In order to derive a control-oriented model, define the state vector x ∈
Rn

x to represent the storage at dynamic nodes. Similarly, define the vector u ∈ Rm

of controlled inputs as the collection of the flow rate through the actuators of the
network, and the vector d ∈ Rp of uncontrolled inputs (demands) as the collection
of flow rate required by the consumers at sink nodes. Following flow/mass balance
principles, a discrete-time model based on linear difference-algebraic equations can
be formulated for a given DWN as follows:

{x(k + 1) = Ax(k) + Bu(k) + Bdd(k),
0 = Euu(k) + Edd(k),

(14.1a)
(14.1b)

where k ∈ Z+ is the current time instant and A, B, Bd , Eu and Ed are matrices
of compatible dimensions dictated by the network topology. Specifically, (14.1a)
represents the balance at dynamic nodes while (14.1b) represents the balance at
static nodes. The system is subject to state and input constraints considered here in
the form of convex polyhedra defined as

x(k) ∈ X := {x ∈ Rnx |Gx≤ g}, (14.2a)
u(k) ∈ U := {u ∈ Rnu |Hu≤ h}, (14.2b)

for all k, where G ∈ Rrx×nx , g ∈ Rrx , H ∈ Rru×nu , h ∈ Rru are matrices/vectors col-
lecting the system constraints, being rx ∈ Z+ and ru ∈ Z+ the number of state and
input constraints, respectively.

Regarding the operation of the generalised flow-based networks, the following
assumptions are considered in this chapter.

Assumption 1 The pair (A,B) is controllable and (14.1b) is reachable6, i.e., m≤ nu
with rank(Eu) = m.

Assumption 2 The states in x and the demands in d are measured at any time in-
stant k ∈ Z+. Future demands d(k + i) are unknown for all i ∈ Z+ but forecasted
information of their first two moments (i.e., expected value and variance) is avail-
able for a given prediction horizon Hp ∈ Z≥1.

Assumption 3 The realisation of demands at any time instant k ∈ Z+ can be de-
composed as

d(k) = d̄(k) + e(k), (14.3)

where d̄(k) ∈ Rnd is the vector of expected disturbances, and e(k) ∈ Rnd is the vec-
tor of forecasting errors with non-stationary uncertainty and a known (or approxi-
mated) quasi-concave probability distributionD(0,Σ(e( j)(k)). The stochastic nature
of each j-th row of d(k) is described by d( j)(k)∼Di(d̄( j)(k),Σ(e( j)(k)), where d̄( j)(k)
denotes its mean, and Σ(e( j)(k) its variance.

6 If m < nu, then multiple solutions exist, so u should be selected by means of an optimisation
problem. Equation (14.1b) implies the possible existence of uncontrollable flows d at the junction
nodes. Therefore, a subset of the control inputs will be restricted by the domain of some flow
demands.
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Notice in (14.1b) that a subset of controlled flows are directly related with a sub-
set of uncontrolled flows. Hence, it is clear that u does not take values in Rnu but
in a linear variety. This latter observation, in addition to Assumptions 1 and 2, can
be exploited to develop an affine parametrisation of control variables in terms of a
minimum set of disturbances as shown in [12, Appendix A], mapping control prob-
lems to an input space with a smaller decision vector and with less computational
burden due to the elimination of the equality constraints. Thus, the system (14.1)
can be rewritten as

x(k + 1) = Ax(k) + B̃ũ(k) + B̃dd(k), (14.4)

and the input constraint (14.2b) replaced with a time-varying restricted set defined
as

Ũ(k) := {ũ ∈ Rnu−m |HP̃M̃1ũ≤ h − HP̃M̃2d(k)}. (14.5)

The control goal is considered here as to minimise a convex (possibly multi-
objective) stage cost J(k,x, ũ) : Z+×X× Ũ(k)→ R+, which might bear any func-
tional relationship to the economics of the system operation. Let x(k) ∈ X be the
current state and let d(k) be the disturbances. The sequence of disturbances should
be known over the considered prediction horizon Hp. The first element of this se-
quence is measured, while the rest of the elements are estimates of future distur-
bances computed by an exogenous forecasting system and available at each time
instant k ∈ Z+. Hence, the MPC controller design is based on the solution of the
following finite horizon optimisation problem (FHOP):

min
ũ(k)={ũ(k+i|k)}i∈Z[0,Hp−1]

Hp−1∑
i=0

J(k + i,x(k + i|k), ũ(k + i|k)), (14.6a)

subject to:

x(k + i + 1|k) = Ax(k + i|k) + B̃ũ(k + i|k) + B̃dd(k + i), ∀i ∈ Z[0,Hp−1] (14.6b)

x(k + i|k) ∈ X , ∀i ∈ Z[1,Hp] (14.6c)

ũ(k + i|k) ∈ Ũ(k + i), ∀i ∈ Z[0,Hp−1] (14.6d)

x(k|k) = x(k). (14.6e)

Assuming that (14.6) is feasible, i.e., there exists a non-empty solution given by
the optimal sequence of control inputs ũ?k = {ũ?(k + i|k)}i∈Z[0,Hp−1]

, then the receding
horizon philosophy commands to apply the control action

u(k) := ũ∗(k|k). (14.7)

and disregards the rest of the sequence of the predicted manipulated variables. At the
next time instant k, the FHOP (14.6) is solved again using the current measurements
of states and disturbances and the most recent forecast of these latter over the next
future horizon.
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Due to the stochastic nature of future disturbances, the prediction model (14.6b)
involves exogenous additive uncertainty, which might cause that the compliance of
state constraints for a given control input cannot be ensured. Therefore, uncertainty
has to be represented in such a way that their effect on present decision making
can properly be taken into account. To do so, stochastic modelling based on data
analysis, probability distributions, disturbance scenarios, among others, and the use
of stochastic programming may allow to establish a trade-off between robustness
and performance. In the sequel, two stochastic MPC strategies are proposed for
their application to network flow control.

14.3 Proposed approach

This section presents and discusses the proposed approaches into this chapter: the
chance-constrained MPC and the tree-based MPC.

14.3.1 Chance-Constrained MPC

Since the optimal solution to (14.6) does not always imply feasibility of the real
system, it is appropriate to relax the original constraints in (14.6c) with probabilis-
tic statements in the form of the so-called chance constraints. In this way, state
constraints are required to be satisfied with a predefined probability to manage the
reliability of the system. Considering the form of the state constraint set X , there
are two types of chance constraints according to the definitions below.

Definition 14.1 (Joint chance constraint). A (linear) state joint chance constraint
is of the form

P[G( j)x≤ g( j) , ∀ j ∈ Z[1,rx]]≥ 1 − δx, (14.8)

where P denotes the probability operator, δx ∈ (0,1) is the risk acceptability level
of constraint violation for the states, and G( j) and g( j) denote the j-th row of G
and g, respectively. This requires that all rows j have to be jointly fulfilled with the
probability 1 − δx.

Definition 14.2 (Individual chance constraint). A (linear) state individual chance
constraint is of the form

P[G( j)x≤ g( j)]≥ 1 − δx, j, ∀ j ∈ Z[1,rx], (14.9)

which requires that each j-th row of the inequality has to be fulfilled individually
with the respective probability 1 − δx, j, where δx, j ∈ (0,1).

Both forms of constraints are useful to measure risks, hence, their selection depends
on the application. All chance-constrained models require prior knowledge of the
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acceptable risk δx associated with the constraints. A lower risk acceptability implies
a harder constraint. This chapter is concerned with the use of joint chance con-
straints since they can express better the management of the overall reliability in a
DWN. In general, joint chance constraints lack from analytic expressions due to the
involved multivariate probability distribution. Nevertheless, sampling-based meth-
ods, numeric integration, and convex analytic approximations exists, see e.g., [3]
and references therein. Here, (14.8) is approximated following the results in [18, 23]
by upper bounding the joint constraint and assuming a uniform distribution of the
joint risk among a set of individual chance constraints that are later transformed
into equivalent deterministic constraints under Assumption 4.

Assumption 4 Each demand in d ∈ Rnd follows a log-concave univariate distribu-
tion, which stochastic description is known.

Given the dynamic model in (14.4), the stochastic nature of the demand vec-
tor d makes the state vector x ∈ Rnx to be also a stochastic variable. Then, let the
cumulative distribution function of the constraint be denoted as

FGx(g) := P
[{

G(1)x≤ g(1), . . . ,G(rx)x≤ g(rx)
}]
. (14.10)

Defining the events C j :=
{

G( j)x≤ g( j)
}

for all j ∈ Z[1,rx], and denoting their com-
plements as Cc

j :=
{

G( j)x> g( j)
}

, then it follows that

FGx(g) = P
[
C1∩ . . .∩Crx

]
(14.11a)

= P
[
(Cc

1∪ . . .∪Cc
rx

)c] (14.11b)

= 1 −P
[
(Cc

1∪ . . .∪Cc
rx

)
]
≥ 1 − δx. (14.11c)

Taking advantage of the union bound, the Boole’s inequality allows to bound the
probability of the second term in the left-hand side of (14.11c), stating that for a
countable set of events, the probability that at least one event happens is not higher
than the sum of the individual probabilities [23]. This yields

P

 rx⋃
j=1

Cc
j

≤ rx∑
j=1

P
[
Cc

j
]
. (14.12)

Applying (14.12) to the inequality in (14.11c), it follows that

rx∑
j=1

P
[
Cc

j
]
≤ δx⇔

rx∑
j=1

(
1 −P

[
C j
])
≤ δx. (14.13)

At this point, a set of constraints arise from previous result as sufficient conditions to
enforce the joint chance constraint (14.8), by allocating the joint risk δx in separate
individual risks denoted by δx, j, j ∈ Z[1,rx]. These constraints are:

P
[
C j
]
≥ 1 − δx, j, ∀ j ∈ Z[1,rx], (14.14)
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rx∑
j=1

δx, j ≤ δx, (14.15)

0≤ δx, j ≤ 1, (14.16)

where (14.14) forms the set of rx resultant individual chance constraints, which
bounds the probability that each inequality of the receding horizon problem may
fail; and (14.15) and (14.16) are conditions imposed to bound the new single risks
in such a way that the joint risk bound is not violated. Any solution that satisfies the
above constraints, is guaranteed to satisfy (14.8). As done in [18], assigning, e.g.,
a fixed and equal value of risk to each individual constraint, i.e., δx, j = δx/rx for all
j ∈ Z[1,rx], then (14.15) and (14.16) are satisfied.

Remark 14.1. The single risks δx, j, j ∈ Z[1,rx], might be considered as new decision
variables to be optimised, see e.g., [21]. This should improve the performance but
at the cost of more computational burden due to the greater complexity and dimen-
sionality of the optimisation task. Therefore, as generalised flow-based networks
are often large-scale systems, the uniform risk allocation policy is adopted to avoid
overloading of the optimisation problem. ♦

After decomposing the joint constraints into a set of individual constraints, the
deterministic equivalent of each separate constraint may be used given that the
probabilistic statements are not suitable for algebraic solution. Such deterministic
equivalents might be obtained following the results in [6]. Assuming a known (or
approximated) quasi-concave probabilistic distribution function for the effect of the
stochastic disturbance in the dynamic model (14.4), it follows that

P
[
G( j)x(k + 1)≤ g( j)

]
≥ 1 − δx, j ⇔ FG( j)B̃d d(k)(g( j) − G( j)(Ax(k) + B̃ũ(k))≥ 1 − δx, j

⇔ G( j)(Ax(k) + B̃ũ(k)≤ g( j) − F−1
G( j)B̃d d(k)(1 − δx, j), (14.17)

for all j ∈ Z[1,rx], where FG( j)B̃d d(k)(·) and F−1
G( j)B̃d d(k)(·) are the cumulative distribution

and the left-quantile function of G( j)B̃dd(k), respectively. Hence, the original state
constraint set X is contracted by the effect of the rx deterministic equivalents in
(14.17) and replaced by the stochastic feasibility set given by

Xs,k := {x(k) ∈ Rnx |∃ũ(k) ∈ Ū(k), such that

G( j)(Ax(k) + B̃ũ(k)≤ g( j) − F−1
G( j)B̃d d(k)(1 − δx, j), ∀ j ∈ Z[1,rx]},

for all k ∈ Z+. From convexity of G( j)x(k + 1) ≤ g( j) and Assumption 4, it follows
that the set Xs,k is convex when non-empty for all δx, j ∈ (0,1) in most distribution
functions [14]. For some particular distributions, e.g., Gaussian, convexity is retain
for δx, j ∈ (0,0.5]

In this way, the reformulated predictive controller solves the following determin-
istic equivalent optimisation problem for the expectation E[·] of the cost function in
(14.6a):
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min
ũ(k)

Hp−1∑
i=0

E[J(k + i,x(k + i|k), ũ(k + i|k))], (14.18a)

subject to:

x(k + i + 1|k) = Ax(k + i|k) + B̃ũ(k + i|k) + B̃d d̄(k + i),∀i ∈ Z[0,Hp−1], (14.18b)

G( j)(Ax(k + i|k) + B̃ũ(k + i|k))≤ g( j) − zk, j(δx), ∀i ∈ Z[0,Hp−1], ∀ j ∈ Z[1,rx],

(14.18c)

ũ(k + i|k) ∈ Ũ(k + i), ∀i ∈ Z[0,Hp−1], (14.18d)

x(k|k) = x(k), (14.18e)

where ũk = {ũ(k + i|k)}i∈Z[0,Hp−1]
is the sequence of controlled flows, d̄(k + i), is

the expected future demands computed at time instant k ∈ Z+ for i-steps ahead,
i ∈ Z[0,Hp−1], nc ∈ Z≥1 is the number of total individual state constraints along the

prediction horizon, i.e., nc = rxHp and zk, j(δx) := F−1
G( j)B̃d d(k+i)

(
1 −

δx
nc

)
. Since nc de-

pends not only on the number of state constraints rx but also on the value of Hp,
the decomposition of the original joint chance constraint within the MPC algorithm
could lead to a large number of constraints. This fact reinforces the use of a fixed risk
distribution policy for generalised flow-based network control problems, in order to
avoid the addition of a large number of new decision variables to be optimised.

Remark 14.2. It turns out that most (not all) probability distribution functions used
in different applications, e.g., uniform, Gaussian, logistic, Chi-squared, Gamma,
Beta, log-normal, Weibull, Dirichlet, Wishart, among others, share the property of
being log-concave. Then, their corresponding quantile function can be computed
off-line for a given risk acceptability level and used within the MPC convex optimi-
sation. ♦

14.3.2 Tree-based MPC

The deterministic equivalent CC-MPC proposed before might be still conservative
if the probabilistic distributions of the stochastic variables are not well characterised
or do not lie in a log-concave form. Therefore, this section presents the TB-MPC
strategy that relies on scenario-trees to approximate the original problem, dropping
Assumption 4. The approach followed by the TB-MPC is based on modelling the
possible scenarios of the disturbances as a rooted tree (see Figure 14.1 right). This
means that all the scenarios start from the same measured disturbance value. From
that point, the scenarios must remain equal until the point in which they diverge
from each other, which is called a bifurcation point. Each node of the tree has a
unique parent and can have many children. The total number of children at the last
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Fig. 14.1 Reduction of a disturbance fan (left) of equally probable scenarios into a rooted scenario-
tree (right).

stage corresponds to the total number of scenarios. The probability of a scenario is
the product of probabilities of each node in that scenario.

Notice that before a bifurcation point, the evolution followed by the disturbance
cannot be anticipated because different evolutions are possible. For this reason, the
controller has to calculate control actions that are valid for all the scenarios in the
branch. Once the bifurcation point has been reached, the uncertainty is solved and
the controller can calculate specific control actions for the scenarios in each of the
new branches. Hence, the outcome of TB-MPC is not a single sequence of control
actions, but a tree with the same structure of that of the disturbances. As in standard
MPC, only the first element of this tree is applied (the root) and the problem is
repeated in a receding horizon fashion.

In generalised flow-based networks the uncertainty is generally introduced by the
unpredictable behaviour of consumers. Therefore, a proper demand modelling is re-
quired to achieve an acceptable supply service level. For the case study considered
in this chapter, the reader is referred to [26], where the authors presented a detailed
comparison of different forecasting models. Once a model is selected, it has to be
calibrated and then used to generate a large number of possible demand scenarios by
Monte Carlo sampling for a given prediction horizon Hp ∈ Z≥1. For the CC-MPC
approach, the mean demand path is used, while for the TB-MPC approach a set of
scenarios is selected. The size of this set is here computed following the bound pro-
posed in [27], which takes into account the desired risk acceptability level. A large
number of scenarios might improve the robustness of the TB-MPC approach but
at the cost of additional computational burden and economic performance losses.
Hence, a trade-off must be achieved between performance and computational bur-
den. To this end, a representative subset of scenarios may be chosen using scenario
reduction algorithms. In this chapter, the backward reduction algorithm proposed in
[13] is used to reduce a specified initial fan of Ns ∈ Z≥1 equally probable scenar-
ios into a rooted tree of Nr << Ns scenarios, where Nr is the number of considered
scenarios while Ns is the total number of scenarios, see Figure 14.1.
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The easiest way to understand the optimisation problem that has to be solved
in TB-MPC is to solve as many instances of Problem (14.6) as the number Nr of
considered scenarios, but formally it is a multi-stage stochastic program and solved
as a big optimisation for all the scenarios. Due to the increasing uncertainty, it is
necessary to include non-anticipativity constraints [25] in the MPC formulation so
that the calculated input sequence is always ready to face any possible future bi-
furcation in the tree. More specifically, if da

k = {da(k|k),da(k + 1|k), . . . ,da(k + N|k)}
and db

k = {db(k|k),db(k + 1|k), . . . ,db(k + N|k)} are two disturbance sequences cor-
responding respectively to certain forecast scenarios a,b ∈ Z[1,Nr], then the non-
anticipativity constraint ũa(k + i|k) = ũb(k + i|k) has to be satisfied for any i ∈ Z[0,Hp]

whenever da(k + i|k) = db(k + i|k) in order to guarantee that for all j ∈ Z[1,Nr] the in-
put sequences ũ j = {ũ j

k+i|k}i∈Z[0,Hp−1]
form a tree with the same structure of that of the

disturbances.
In this way, the TB-MPC controller has to solve the following optimisation prob-

lem at each time instant k ∈ Z+, accounting for the Nr demand scenarios, each with
probability p j ∈ (0,1] satisfying

∑Nr
j=1 p j = 1:

min
ũ j

k

Nr∑
j=1

p j

Hp−1∑
i=0

J(k + i,x(k + i|k), ũ(k + i|k))

 , (14.19a)

subject to:

x(k + i + 1|k) j = Ax(k + i|k) j
+ B̃ũ(k + i|k) j

+ B̃dd(k + i) j, ∀i ∈ Z[0,Hp−1],∀ j ∈ Z[1,Nr],

(14.19b)

x(k + i + 1|k) j ∈ X , ∀i ∈ Z[0,Hp−1],∀ j ∈ Z[1,Nr],

(14.19c)

ũ(k + i|k) j ∈ Ũ(k + i) j, ∀i ∈ Z[0,Hp−1],∀ j ∈ Z[1,Nr],

(14.19d)

x(k|k) j = x(k), d j(k|k) = d(k), ∀ j ∈ Z[1,Nr], (14.19e)

ũa(k + i|k) = ũb(k + i|k) if da(k + i|k) = db(k + i|k), ∀i ∈ Z[0,Hp−1],∀a,b ∈ Z[1,Nr],

(14.19f)

where Ũ(k + i) j := {ũ j ∈ Rnu−m |HP̃M̃1ũ j ≤ h − HP̃M̃2d(k + i) j}.
Remark 14.3. The number of scenarios used to build the rooted tree should be de-
termined regarding the computational capacity and the probability of risk that the
manager is willing to accept. ♦



291

14.4 Numerical results

In this section, the performance of the proposed stochastic MPC approaches is as-
sessed with a case study consisting in a large-scale real system reported in [19],
specifically the Barcelona WTN already described in Section 2.3 in Chapter 2.
The general role of this system is the spatial and temporal re-allocation of water
resources from both superficial (i.e., rivers) and underground water sources (i.e.,
wells) to distribution nodes located all over the city. The directed graph of this net-
work can be obtained from the layout shown in Figure 2.2 of Chapter 2 and its model
in the form of (14.1) can be derived by setting the state x(k) ∈ R63 as the volume
(in m3) of water stored in tanks at time instant k, the control input u(k) ∈ R114 as
the flow rate through all network actuators (expressed in m3/s) and the measured
disturbance d(k) ∈ R88 as the flow rate of customer demands (expressed in m3/s).
This network is currently managed by Aguas de Barcelona that manages the drink-
ing water transport and distribution in Barcelona (Spain). and it supplies potable
water to the Metropolitan Area of Barcelona (Catalunya, Spain). The main control
task for the managers is to economically optimise the network flows while satisfy-
ing customer demands. These demands are characterised by patterns of water usage
and can be forecasted by different methods, see, e.g., [1, 26].

The operational goals in the management of the Barcelona DWN are of three
kinds: economic, safety, smoothness, and are respectively stated as follows (see
Chapter 12 for the mathematical formulation):

1. To provide a reliable water supply in the most economic way, minimising water
production and transport costs.

2. To guarantee the availability of enough water in each reservoir to satisfy its
underlying demand, keeping a safety stock to face uncertainties and avoid stock-
outs.

3. To operate the DWN under smooth control actions.

14.4.1 Performance comparison on a small-scale system

To analyse via simulation the computational burden of each proposed controller, a
small portion/subsystem of the complete network is used (see Figure 14.2 and [9] for
details). The DWN is considered as a stochastic constrained system subject to deter-
ministic hard constraints on the control inputs and linear joint chance constraints on
the states. The source of uncertainty in the system is assumed to be the forecasting
error of the water demands. The stochastic control problem of the DWN is stated as
follows:

min
ũk

Hp−1∑
i=0

E
[
λ1JE (k + i,x(k + i|k), ũ(k + i|k)) +λ2J∆(∆ũ(k + i|k))

]
, (14.20a)
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Fig. 14.2 Barcelona DWN small subsystem layout

subject to:

x(k + i + 1|k) = Ax(k + i|k) + B̃ũ(k + i|k) + B̃dd(k + i|k), (14.20b)

P
[
x(k + i + 1|k)≥ xmin]≥ 1 −

δx

2
, (14.20c)

P
[
x(k + i + 1|k)≤ xmax]≥ 1 −

δx

2
, (14.20d)

P
[
x(k + i + 1|k)≥ dnet(k + i + 1|k)

]
≥ 1 − δs, (14.20e)

ũ(k + i|k) ∈ Ũ(k + i), (14.20f)

dnet(k + i + 1|k) = −(B̃out(P̃M̃1ũk+i|k + P̃M̃2dk+i|k) + B̃dd(k + i + 1|k)), (14.20g)

∆ũ(k + i|k) = ũ(k + i|k) − ũ(k + i − 1|k), (14.20h)
(x(k|k), ũ(k − 1|k)) = (x(k), ũ(k − 1)), (14.20i)

for all i ∈ Z[0,Hp−1], where JE (k + i,x(k + i|k), ũ(k + i|k)) := c>u,k+iWe ũ(k)∆t captures
the economic costs with cu,k+i ∈ Rnu being a known periodically time-varying price
of electric tariff, and J∆(∆ũ(k + i|k)) := ‖P̃M̃1∆ũ(k + i|k) + P̃M̃2∆d(k + i|k)‖2

W∆ũ
is

a control move suppression term aiming to enforce a smooth operation. Moreover,
δx, δs ∈ (0,1) are the accepted maximum risk levels for the state constraints and
the safety constraint (14.20e), respectively. The objectives are traded-off with the
scalar weights λ1,λ2 ∈ R+, while the elements of the decision vector are prioritised
by the weighting matrices We,W∆ũ ∈ Sm

++. The service reliability goal (i.e., demand
satisfaction) is enforced by the constraints (14.20e) and (14.20g). In this latter con-
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straint, dnet(k + i + 1|k) ∈ Rnd is a vector of net demands above which is desired to
keep the reservoirs to avoid stock-outs. The B̃out(P̃M̃1ũ(k+ i|k)+P̃M̃2d(k+ i|k)) com-
ponent represents the current prediction step endogenous demand, i.e., the outflow
of the tanks caused by water requirements from neighbouring tanks or nodes, and
the B̃dd(k + i + 1|k) component denotes the exogenous (customer) demands of tanks
for the next prediction step.

In the dynamic model (14.4) of the DWN, randomness is directly described by
the uncertainty of customer demands, which can be estimated from historical data.
In order to solve the above DWN control problem, a tractable safe approximation
is derived following Section 14.3.1. The joint chance constraints (14.20c)–(14.20e),
are transformed into deterministic equivalent constraints as shown in [11, Appendix
B] for the particular case of Gaussian distributions.

The optimisation problem associated with the deterministic equivalent CC-MPC
for the selected application is stated as follows for a given sequence of forecasted
demands denoted by d̄k = {d(k + i|k)}i∈Z[0,Hp−1]

:

min
ũk ,ξk

Hp−1∑
i=0

E
[
λ1JE (k + i, x̄(k + i|k), ũ(k + i|k)) +λ2J∆(∆ũ(k + i|k)) +λ3JS(ξ(k + i|k))

]
,

(14.21a)

subject to:

x̄(k + i + 1|k) = Ax̄(k + i|k) + B̃ũ(k + i|k) + B̃d d̄(k + i|k), (14.21b)

x̄( j)(k + i + 1|k)≥ xmin( j)
+ Φ−1

(
1 −

δx

2nxHp

)
Σx( j)

(k + i + 1|k)1/2, (14.21c)

x̄( j)(k + i + 1|k)≤ xmax( j) − Φ−1
(

1 −
δx

2nxHp

)
Σx( j)

(k + i + 1|k)1/2, (14.21d)

x̄( j)(k + i + 1|k)≥ d̄net( j)(k + i + 1|k) + Φ−1
(

1 −
δs

nxHp

)
Σdnet( j)

(k + i + 1|k)1/2

−ξ( j)(k + i|k), (14.21e)

ξ(k + i|k)≥ 0, (14.21f)

ũ(k + i|k) ∈ Ũ(k + i), (14.21g)

d̄net(k + i + 1|k) = −(B̃out
(
P̃M̃1ũ(k + i|k) + P̃M̃2d̄(k + i|k)

)
+ B̃d d̄(k + i + 1|k)),

(14.21h)

∆ũ(k + i|k) = ũ(k + i|k) − ũ(k + i − 1|k), (14.21i)
(x̄(k|k), ũ(k − 1|k)) = (x(k), ũ(k − 1)), (14.21j)

for all i ∈ Z[0,N−1] and all j ∈ Z[1,n], where ũk = {ũ(k + i|k)} and ξk = {ξ(k + i|k)}
are the decision variables. The vectors x̄ and d̄ denote the mean of the random
state and demand variables, respectively. Moreover, Φ−1 is the left-quantile func-
tion of the Gaussian distribution, and x̄( j) and Σx( j)

denote respectively the mean and
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variance of the j-th row of the state vector. Notice that Problem (14.21) includes
the additional objective JS(ξ(k + i|k)) := ‖ξ(k + i|k)‖2

Ws
with Ws � 0, and the addi-

tional constraint (14.21f), which are related to the safety operational goal. These
elements appear due to the safety deterministic equivalent soft constraint (14.21e)
introduced with the slack decision variable ξ ∈ Rnx to allow the trade-off between
safety, economic and smoothness objectives. Constraints (14.21c) and (14.21d) can
be softened in the same way to guarantee recursive feasibility of the optimisation
problem if uncertainty is too large. For a strongly feasible stochastic MPC approach
using closed-loop predictions by means of an affine disturbance parametrisation of
the control inputs, the reader is referred to [15].

The enforcement of the chance constraints enhances the robustness of the MPC
controller by causing an optimal back-off from the nominal deterministic constraints
as a risk averse mechanism to face the non-stationary uncertainty involved in the
prediction model of the MPC. The states are forced to move away from their limits
before the disturbances have chance to cause constraint violation. The Φ−1(·) terms
represent safety factors for each constraint, and specially in (14.21e), it denotes the
optimal safety stock of storage tanks.

Problem (14.18) may be casted as a second-order cone programming problem.
However, state uncertainty is a function of the disturbances only and is not a func-
tion of the decision variables of the optimisation problem. Therefore, the variance
terms in each deterministic equivalent can be forecasted prior to the solution of the
optimisation problem to include them as known parameters in the MPC formulation.
This simplification results in a set of linear constraints and the optimisation remains
as a quadratic programming (QP) problem, which can be efficiently solved.

The optimisation problem associated with the scenario tree-based MPC approach
is stated as follows for all i ∈ Z[0,Hp−1] and all j ∈ Z[1,Nr]:

min
ũ j

k ,ξ
j
k

Nr∑
j=1

p j

Hp−1∑
i=0

λ1JE (k + i,x(k + i|k) j, ũ(k + i|k) j) +λ2J∆(∆ũ(k + i|k) j)

+λ3JS(ξ(k + i|k) j), (14.22a)

subject to:

x(k + i + 1|k) j = Ax(k + i|k) j
+ B̃ũ(k + i|k) j

+ B̃dd(k + i|k) j, (14.22b)

(x(k + i + 1|k) j, ũ(k + i|k) j,ξ(k + i|k) j) ∈ X ×Ũ(k + i) j×Rnu
+ , (14.22c)

x(k + i + 1|k) j ≥ dnet(k + i + 1|k) j
−ξ(k + i|k) j, (14.22d)

dnet(k + i + 1|k) j = −(B̃out
(
P̃M̃1ũ(k + i|k) j

+ P̃M̃2d(k + i|k) j)
+ B̃dd(k + i + 1|k) j),

(14.22e)

∆ũ(k + i|k) j = ũ(k + i|k) j
− ũ(k + i − 1|k) j, (14.22f)

(x(k|k) j, ũ(k − 1|k) j,d j(k|k)) = (x(k), ũ(k − 1),d(k), (14.22g)

ũa(k + i|k) = ũb(k + i|k) if da(k + i|k) = db(k + i|k) ∀a,b ∈ Z[1,Nr]. (14.22h)
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Table 14.1 Assessment of the CC-MPC and TB-MPC applied to the sector model of the DWN
case study.

CC-MPC TB-MPC

δx KPI1 KPI2 KPI3 KPI4 KPI1 KPI2 KPI3 KPI4 Nr Ns

0.3 58535.80 0 0 1.25
58397.14 0 0 0.94 5

1958280.69 1 0.51 1.61 10
58279.95 1 4.16 2.37 14

0.2 58541.19 0 0 1.21
58482.14 3 0.18 1.18 7

2958903.63 0 0 2.33 14
58452.41 0 0 4.05 21

0.1 58558.29 0 0 1.25
58610.32 0 0 2.57 14

5958630.20 0 0 6.65 29
58656.56 1 0.18 13.47 44

0.01 58612.28 0 0 1.25
- - - - 149

599- - - - 299
- - - - 449

0.001 58667.85 0 0 1.25
- - - - 1499

5999- - - - 2999
- - - - 4499

Table 14.1 summarises the results of applying the deterministic equivalent CC-
MPC and the TB-MPC to the aforementioned small example. Simulations have
been carried out over a time period of eight days, i.e., ns = 192 hours, with a sam-
pling time of one hour. Applied demand scenarios were taken from historical data of
the Barcelona DWN. The weights of the multi-objective cost function are λ1 = 100,
λ2 = 1, and λ3 = 10. The prediction horizon is selected as Hp = 24 hours due to the
periodicity of demands. The key performance indicators used to assess the afore-
mentioned controllers are defined as follows:

KPI1 ,
24

ns + 1

ns∑
k=0

γ1JE (k,x(k), ũ(k) +λ2J∆(∆ũ(k)) +λ3JS(ξ(k)), (14.23a)

KPI2 , |
{

k ∈ Zns
1 | x(k)< −Bpd(k)

}
|, (14.23b)

KPI3 ,
ns∑

k=1

nx∑
i=1

max{0,−Bp(i)d(k) − x(k(i))}, (14.23c)

KPI4 ,
1
ns

ns∑
k=1

t(k), (14.23d)

where KPI1 is the average daily multi-objective cost, KPI2 is the number of time in-
stants where the stored water goes below the demanded volume (for this, | · | denotes
the cardinal of a set of elements), KPI3 is the accumulated volume of water demand
that was not satisfied over the simulation horizon, and KPI4 is the average time
in seconds required to solve the MPC problem at each time instant k ∈ Z[0,ns]. For
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the CC-MPC approach, the effect of considering different levels of joint risk accept-
ability was analysed using δx = {0.3,0.2,0.1,0.01,0.001} and δs = δx. Regarding the
TB-MPC approach, different sizes for the initial set of scenarios were considered,
i.e., Ns = {19,28,59,599,5999}. The size of this initial set was computed following
the bound proposed in [27] taking into account the risk levels involved in the chance
constraints. This initial set was reduced later by a factor of 0.25, 0.50, and 0.75 to
obtain different rooted trees with Nr scenarios.

As shown in Table 14.1, the different CC-MPC scenarios highlight that reliabil-
ity and control performance are conflicting objectives, i.e., the inclusion of safety
mechanisms in the controller increases the reliability of the DWN in terms of de-
mand satisfaction, but also the cost of its operation. The main advantage of the CC-
MPC is its formal methodology, which leads to obtain optimal safety constraints that
tackle uncertainties and allow to achieve a specified global service level in the DWN.
Moreover, the deterministic equivalent CC-MPC robustness is achieved with a low
computational burden given that the only extra load (comparing with a nominal for-
mulation) is the computation of the stochastic characteristics of disturbances prop-
agated in the prediction horizon. In this way, the deterministic equivalent CC-MPC
approach is suitable for real-time control (RTC) of large-scale DWNs. Regarding
the TB-MPC approach, numeric results show that considering higher Ns increments
the stage cost while reducing the volume of unsatisfied water demand. Neverthe-
less, this latter observation is not applicable for the different Nr cases within a same
Ns. This might be influenced by the quality of the information that remains after
the scenario generation and reduction algorithms that affect the robustness of the
approach and will be subject of further research. The main drawback of the TB-
MPC approach is the solution average time and the computational burden. In this
case study, the implementation for all cases taking Ns = {599,5999} was not possi-
ble due to memory issues. Hence, some simplification assumptions as those used in
[17] or parallel computing techniques might be useful.

14.4.2 Performance assessment of CC-MPC on a large-scale
system

Previous results showed that both CC-MPC and TB-MPC have similar performance
under high levels of risk acceptability. Nevertheless, when requiring small risk levels
(δx < 0.1), CC-MPC retains tractability of the FHOP with low complexity, while the
TB-MPC suffers the curse of dimensionality. Therefore, in the following only the
performance of the CC-MPC approach is assessed on the full model of the Barcelona
DWN. The tuning of the controller parameters is the same as in the previous simu-
lations. In order to further evaluate the proposed CC-MPC scheme, results are com-
pared with the certainty-equivalent MPC approach proposed in [19], which assumes
predictions of demands as certain. In these simulations, the CE-MPC strategy has
been set up to allow the volume of water in tanks to decrease until the predicted
volume of future net demands, which is set as a hard constraint but ignoring the
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influence of uncertainty. Contrary, the CC-MPC strategy considers and propagates
the uncertainty of forecasted demands explicitly in the MPC design and, as a conse-
quence, involves a robust handling of constraints. Again, to analyse the effect of the
risk level (δx) in this CC-MPC strategy when considering large-scale systems, dif-
ferent scenarios have been simulated for acceptable joint risks of 50%, 40%, 30%,
20%, 10%, 5% and 1%.

Table 14.2 presents the numeric assessment of the aforementioned controllers
through different key performance indicators (KPIs), which are defined below:

KPIE :=
1

ns + 1

ns∑
k=0

c>u,kũ(k)∆t, (14.24a)

KPI∆U :=
1

ns + 1

nu∑
i=1

ns∑
k=0

(
∆ũ(i)(k)

)2
, (14.24b)

KPIS :=
nx∑
i=1

ns∑
k=0

max
{

0,s(i),k − x(i)(k)
}
, (14.24c)

KPID :=
nx∑
i=1

ns∑
k=0

max
{

0,dnet(i)(k) − x(i)(k)
}
, (14.24d)

KPIR :=
∑nx

i=1
∑ns

k=1 s(i)(k)∑nx
i=1
∑ns

k=1 x(i)(k)
×100%, (14.24e)

KPIO := topt(k), (14.24f)

where KPIE is the average economic performance of the DWN operation, KPI∆U
measures the smoothness of the control actions, KPIS is the amount of water used
from safety stocks, KPID is the volume of water demand that is not satisfied over
the simulation period, KPIR is the average percentage of safety volume that is con-
tained in the real water volume, and KPIO determines the difficulty to solve the
optimisation tasks involved in each strategy accounting topt(k) as the average time
that takes to solve the corresponding MPC optimisation problem. The CE-MPC has
been tuned with a safety stock for each tank equal to its net exogenous demand, i.e.,
sk = dnet,k. Therefore, the KPIS results equal to the KPID as should be expected given
their definitions. In the case of the CC-MPC, sk is equal to the right hand of (14.21e).
Regarding the comparison of the KPIS between the CE-MPC and the CC-MPC, the
results present greater values for the CC-MPC cases. This trend is also an expected
behaviour given that reducing the risk probability generates a larger back-off of
the demand satisfaction constraint, i.e., more safety stock is stored to address de-
mand uncertainty. This latter fact, in addition with the tuning of the multi-objective
cost function, leads to higher KPIS (but lower or null KPID) if this is required by
the real demand scenario in order to guarantee a service level. It can be observed
that the CE-MPC is the cheapest control strategy (lower KPIE ) but the less reliable
one given that the certainty equivalence assumption leads to unsatisfying demands
(higher KPID), especially when the water volume in the tank is close to the expected



298

Table 14.2 Comparison of the MPC strategies applied to the Barcelona DWN

Controller KPIE KPI∆U KPIS KPID KPIR KPIO

CE-MPC 2297.02 2.3586 3.8886 3.8886 19.41 4.82

CC-MPC@50% 2486.40 1.0747 695.54 0 27.79 4.72

CC-MPC@40% 2487.77 1.0767 750.06 0 27.86 4.83

CC-MPC@30% 2489.31 1.0795 819.82 0 27.95 4.79

CC-MPC@20% 2491.61 1.0835 920.36 0 28.07 4.71

CC-MPC@10% 2496.23 1.0964 1101.7 0 28.18 4.70

CC-MPC@5% 2500.52 1.1012 1298.9 0 28.18 4.89

CC-MPC@1% 2509.89 1.1131 1759.4 0 28.43 4.86

Table 14.3 Comparison of daily average economic costs of MPC strategies

Controller Water Cost Electric Cost Daily Average Cost
(e.u./day) (e.u./day) (e.u./day)

CE-MPC 23015.42 27195.31 50210.73

CC-MPC@5% 22980.34 28514.71 51495.05
e.u.: economic units

demand. Thus, the CE-MPC performance represents a strategy for the supply of
drinking water with a higher risk of failure. The different CC-MPC scenarios (those
of varying the risk acceptability level) have shown that reliability and economic per-
formance are conflicting objectives that have to reach a trade-off, i.e., the inclusion
of safety mechanisms in the controller increases the reliability of the DWN in terms
of demand satisfaction (see Figure 14.3), but also the economic cost of its opera-
tion. The main advantage of the CC-MPC is its formal methodology that leads to
obtain optimal dynamic constraints that tackle uncertainties with a minimum cost to
achieve also a global service level of the DWN. Table 14.2 shows a smooth degrada-
tion of the economic performance under the CC-MPC when varying the risk within
a wide range of acceptability levels. Therefore, the CC-MPC approach addressed in
this chapter is a suitable mean to compute the proper amount of safety and the proper
control actions to assure a desired service level. Notice that the computational bur-
den (KPIO) of the CC-MPC is similar to the CE-MPC given that the complexity of
the optimisation problem is not altered, i.e., the number of constraints and decision
variables remain the same. The only extra load that might be added is the com-
putation of the variance of the disturbances propagated in the prediction horizon.
Consequently, the CC-MPC approach is suitable for RTC of the Barcelona DWN.

Table 14.3 discloses details of the average production and operational costs re-
lated to each strategy. Comparing the CE-MPC controller with the CC-MPC@5%
controller (requiring a reliability of 95%), it can be noticed that the dynamic safety
stocks resulting within the stochastic approach might lead to an increase of the oper-
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Table 14.4 Conservatism of the Deterministic Equivalent CC-MPC

Joint Chance Constraint Number of Individual Joint Risk Conservatism
Constraints of Approximation

State Hard Bounds

0.001 4.9967×10−7

0.01 4.9817×10−5

3024 0.03 4.4539×10−4

0.05 1.2290×10−3

0.1 4.8359×10−3

Safety Constraint

0.001 4.9950×10−7

0.01 4.9801×10−5

1512 0.03 4.4524×10−4

0.05 1.2286×10−3

0.1 4.8344×10−3

ational cost, especially in the electric cost, mainly due to the extra amount of water
that is needed to be moved through the network and allocated in tanks to guarantee
that the water supply will be feasible with a certain probability for future disturbance
realisations.
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The conservatism of reformulating the stochastic CC-MPC problem into the
tractable deterministic equivalent in (14.21) has been studied in [12]. Table 14.4
shows the conservatism related to approximate constraints (14.20c), (14.20d) and
(14.20e), considering different levels of maximum joint risk. It can be observed that
conservatism increases when the risk level increases but remains almost constant de-
spite the variation of the number of individual constraints. Hence, the goodness of
the approximation using Boole’s inequality is not affected, neither by the number of
decision variables, nor by the prediction horizon. Therefore, the addressed approach
is advantageous to be applied to any other DWNs or general flow networks.

14.5 Conclusions

In this chapter, two stochastic control approaches have been assessed to deal with
the management of generalised flow-based networks. Both the CC-MPC and the
TB-MPC approaches focused on robust economic performance under additive dis-
turbances (unbounded and stationary or non-stationary) and avoid relying on heuris-
tic fixed safety volumes such as those used in the CE-MPC or the RB-MPC schemes
proposed in Chapters 12 and 13, what is traduced in better economic performance.
According to the results obtained with the considered case study, both techniques
showed a relatively similar performance. However, it seems clear that CC-MPC is
more appropriate when requiring a low probability of constraint violation, since the
use of TB-MPC demands the inclusion of a higher number of scenarios, which may
be an issue for the application of the latter to large-scale networks. The analytical
approximation of joint chance constraints based on their decomposition into indi-
vidual chance constraints, these latter bounded by means of the Boole’s inequality,
has shown to be suitable for large networks regarding that the conservatism involved
is not affected neither by the number of the inequalities nor the prediction horizon of
the MPC. The level of resultant back-off is variable and depends on the volatility of
the forecasted demand at each prediction step and the suitability of the probabilistic
distribution used to model uncertainty. The fact of unbounded disturbances in the
system precludes the guarantee of robust feasibility with these schemes. Hence, the
approaches proposed in this chapter are based on a service-level guarantee and a
probabilistic feasibility. The case study shows that the CC-MPC is suitable for the
operational guidance of large-scale networks due to its robustness, flexibility, mod-
est computational requirements, and ability to include risk considerations directly
in the decision-making process. Even when the CC-MPC increased the operational
costs by around 2.5%, it allowed to improve service reliability by more than 90%
when comparing with a CE-MPC setting.

Future research will be directed to incorporate parametric uncertainty and un-
measured disturbances in the model. In addition, future work should include a more
detailed study regarding the number of scenarios contained in the tree. Likewise,
distributed computation could be used in order to relieve the scaling problems of
TB-MPC when the number of scenarios is too high. Moreover, it is of interest to
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extend the results and develop decentralised/distributed stochastic MPC controllers
for large-scale complex flow networks.
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