
Chapter 17
Non-centralized Predictive Control for Drinking
Water Supply Systems

Abstract This chapter discusses the application of non-centralized MPC (NCMPC)
approaches to DWTNs. The aim of DMPC is to reduce the computational burden
and to increase scalability and modularity with respect to the centralised counterpart,
but still maintaining a convenient level of suboptimality with respect to the desired
control objectives. Moreover, the advantage of NCMPC approach is the simplicity
of its implementation given the absence of negotiations among controllers, which
allows for a simple implementation.

17.1 Introduction

The control schemes proposed in previous chapters have shown the potential appli-
cability of centralised MPC for the economic scheduling-control of network flows.
Nevertheless, as illustrated with the case study of Barcelona, flow-based networks
are generally systems comprised of multiple subsystems and/or large-scale systems.
Thus, the centralisation of decisions in a single MPC-based agent could be disad-
vantageous for the reliability of the network operation and the maintenance of the
monolithic prediction model. These issues have received a lot of attention from the
control research community during the last years. Several non-centralised control
strategies have been already proposed in the literature, where either large-scale sys-
tems are partitioned into subsystems with individual control agents or a plant-wide
optimisation problem is distributed in a set of smaller optimisation problems that
are usually coordinated by a master problem. The importance of system partition-
ing and/or distributed optimisation has already been noticed in classic references
addressing the decentralised control of large-scale systems [9, 17] and the decom-
position of mathematical programming problems [3]. For distributing the centralised
MPC optimisation problem, several analytic methods exist, e.g., Dantzig-Wolfe de-
composition, Bender’s decomposition, optimality condition decomposition, among
other dual or primal decomposition techniques. These analytic decompositions rely
strongly on the form of both the constraints and the objective function, and are spe-
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cialised to particular problem structures that might not cover many real large-scale
flow-based networks. Therefore, as discussed in Chapter 16, graph theory is also
used to cope with large-scale networks. Basically, the partitioning of a flow-based
network consists in choosing subsets of the global variables to be assigned to differ-
ent local agents that are in charge of controlling individual partitions/subsystems, as
described in [5, 6, 11, 14]). This chapter addresses a large-scale network as a system-
of-systems instead of analytically decomposing the global optimisation problem; the
corresponding partitions will be assumed given from now on.

It has been demonstrated in [16] that exchanging only interaction information
(even iteratively) among the local controllers is not enough to guarantee closed-loop
stability and/or optimal plant-wide performance due to their competitive behaviour.
Hence, for economically optimal operation (or to reduce sub-optimality) of the net-
work, cooperation between local controllers must be induced. This can be achieved,
e.g., by means of cooperative, coordinated or hierarchical MPC schemes, which
incorporate negotiation/coordination mechanisms to approach the centralised solu-
tion. A crucial issue in all these non-centralised control schemes is that of guarantee-
ing recursive feasibility of the optimisation problem, especially when addressing dy-
namically coupled subsystems. Among the non-centralised MPC schemes that have
been proposed in the literature (see e.g., [12] and references therein), one important
classification criterion is the information exchange between local agents (e.g., pre-
dicted trajectories, prices or dual variables), which in general can be either local or
global. On the one hand, there are schemes that use local information and iterative
communication to improve performance but guaranteeing feasibility mostly only
upon convergence to the global optimal solution. To cope with feasibility losses
(e.g., due to early termination of the iterative algorithm) other non-iterative dis-
tributed MPC schemes consider the shared variables as local disturbances and rely
on the design of (possibly over-conservative) robust local controllers, guarantee-
ing feasibility of the network at the expense of a worse economic performance. On
the other hand, there exist several cooperative approaches inspired in [18], which
exchange global information and ensure recursive feasibility of the optimisation
problem (even with non-iterative communication) by using centralised prediction
models. Generally, these cooperative schemes converge asymptotically to the cen-
tral optimum under certain structural assumptions, e.g., sparse couplings.

Most of the available non-centralised MPC algorithms were proposed to control
systems operating under a standard (tracking) cost functions and only few cooper-
ative (iterative) distributed economic MPC schemes have been recently published
(see e.g., [4, 8]). Differently, this chapter proposes a non-iterative multi-layer dis-
tributed economic MPC (ML-DMPC) approach for its application to flow-based
networks. This approach is based on a temporal and functional decomposition of the
centralised economic scheduling-control problem. The architecture of the proposed
ML-DMPC controller lies in the class of hierarchical systems [10]. Specifically,
the controller comprises two layers that operate at different time scales and interact
to fulfil a set O of desired control objectives. In a top-down hierarchy, the control
structure has a centralised coordinator in the upper layer and a set of local distributed
MPC controllers in the lower layer. Contrary to the standard coordinated distributed
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control structures [10], where the local controllers use local information and com-
municate iteratively only with the coordinator to reconstruct the centralised perfor-
mance, the proposed ML-DMPC scheme considers non-iterative and hierarchical-
like neighbour-to-neighbour communication between the local controllers. The co-
ordinator is used to influence (also non-iteratively) the overall performance trough
economic intervention parameters. The ML-DMPC controller aims to improve the
performance of a decentralised MPC strategy (but still being globally sub-optimal)
and to guarantee recursive feasibility of the involved tractable distributed algorithm.

17.2 Problem statement

In Chapter 11, a method to obtain the monolithic state-space model of a given flow-
based network graph was described. Once the control-oriented model is stated, it is
important to determine the objective of performing the partitioning of the physical
network no matter what control strategy is followed. For large-scale network flow
problems, the partitioning of the system gains sense from the point of view of mod-
ularity of the control architecture and the reduction of computational burden. In any
case, the way the network elements are interconnected is a key factor for perform-
ing the partitioning and control of the overall network since it determines the type
of couplings between subsystems and consequently the complexity and rationality
of the control strategy.

In the following sections, the overall system is assumed to be decomposed in
a set of M ∈ Z≥1 dynamically coupled non-overlapped subsystems denoted by Si,
i∈Z[1,M]. The number M of subsystems is generally a tuning parameter. In this chap-
ter, a two-stage decomposition is performed. In the first stage, a reachability analysis
is used to define a set of subsystems that can be supplied only by one source each.
These resultant subsystems are here called anchored subsystems and are denoted
as Si, i ∈ Z[1,r], where r ≤ M, is the number of flow sources in the network. The
remaining elements of the network are grouped in a subsystem denoted as S̃, which
is supplied by the cross-border outflows of the anchored subsystems. Such flows
are considered as pseudo-sources of S̃. In the second stage of the decomposition,
subsystem S̃ is later subdivided into M − r subsystems by means of the graph-based
partitioning algorithm proposed in Chapter 16. This algorithm aims at decomposing
S̃ and its corresponding directed graph into sub-graphs, in such a way that all resul-
tant partitions have nearly the same number of vertices and a hierarchical/sequential
solution order can be stated. Note that another set of pseudo-sources may appear
after the decomposition of S̃ and, contrary to the first stage of decomposition, each
subsystem may have both entering and leaving cross-border flows depending on the
interconnections of the resultant Si subsystems, i ∈ Z[r+1,M]. A sketch of the overall
decomposition process is depicted in Figure 17.1.

Particularly, this chapter considers only input-coupled dynamics and input-coupled
constraints. Then, each subsystem can be described by the following discrete-time
linear model:
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Fig. 17.1 Decomposition of a network with r sources into M subsystems
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x(k + 1)[i] = Aiix(k)[i]
+ Biiu(k)[i]

+ Bd,iid(k)[i]
+

M∑
j=1
j 6=i

Bi ju(k)[ j],

0 = Eu,iiu(k)[i]
+ Ed,iid(k)[i]

+

M∑
j=1
j 6=i

Eu,i ju(k)[ j],

(17.1a)

(17.1b)

for all k ∈Z+ and i, j ∈Z[1,M], where x[i] ∈Rnxi , u[i] ∈Rnui and d[i] ∈Rndi are respec-
tively the local state, input and demand vectors of subsystem Si, i ∈ Z[1,M]. Local
matrices are given by the topology of each subsystem, with Aii = Inxi

, Bii ∈ Rnxi
×nui ,

Bd,ii ∈ Rnxi
×ndi , Bi j ∈ Rnxi

×nu j , Eu,ii ∈ Rqi×nui , Ed,ii ∈ Rqi×ndi and Eu,i j ∈ Rqi×nui

for all i, j ∈ Z[1,M]. The decomposition assures that
∑M

i=1 nxi
= nx,

∑M
i=1 nui

= nu,∑M
i=1 ndi

= nd and
∑M

i=1 qi = q for all nxi
,nui

,ndi
,qi ∈ Z≥1. Similarly, the global con-

straint sets X , U and D are decomposed to give place to a set of local constraints
defined by:

x(k)[i] ∈ Xi := {x[i] ∈ Rnxi | 0≤ x[i] ≤ x[i],max}, (17.2a)

u(k)[i] ∈ Ui := {u[i] ∈ Rnui | 0≤ u[i] ≤ u[i],max}, (17.2b)

d(k)[i] ∈ Di := {d[i] ∈ Rpi | 0≤ d[i] ≤ d[i],max}. (17.2c)

Definition 17.1 (Neighbour and neighbourhood). A subsystem S j is defined as a
neighbour of subsystem Si if and only if Bi j 6= 0 or Eu,i j 6= 0, j ∈ Z[1,M], j 6= i. Hence,
the neighbourhood of Si is defined as Ni := { j ∈ Z[1,M] | Bi j 6= 0 or Eu,i j 6= 0, j 6= i}.

Remark 17.1. Note that the overall system model can be obtained by the composi-
tion of the above M subsystems, as follows:



357{x(k + 1) = Ax(k) + Bu(k) + Bdd(k),
0 = Euu(k) + Edd(k),

where the vectors and matrices are now a permutation of the original ones, with

x(k) =

 x(k)[1]

...
x(k)[M]

 , u(k) =

 u(k)[1]

...
u(k)[M]

 , d(k) =

 d(k)[1]

...
d(k)[M]

 , (17.3)

and

A =

 Inx1
. . . 0

...
. . .

...
0 . . . InxM

 , B =

 B11 . . . B1M
...

. . .
...

BM1 . . . BMM

 ,

Bd =

 Bd,ii . . . 0
...

. . .
...

0 . . . Bd,MM

 , Eu =

 Eu,11 . . . Eu,1M
...

. . .
...

Eu,M1 . . . Eu,MM

 ,
Ed =

 Ed,ii . . . 0
...

. . .
...

0 . . . Ed,MM

 .
Moreover, since the dynamic and static nodes of the network were decomposed into
M disjoint subsets, it follows that the global constraint sets can be recovered as
Cartesian products, i.e.,

X =
M∏
i=1

Xi, U =
M∏
i=1

Ui, D =
M∏
i=1

Di. (17.4)

♦

Before getting through the design of the ML-DMPC strategy, the following pre-
liminary assumptions related to the overall system are stated.

Assumption 5 All demands have a periodic flow request (with period T ∈ Z≥1)
that can be supplied by at least one flow source through at least one flow path18.

Assumption 6 The required control objectives can be grouped in a setO =Ol∪Og,
which is a composition of a setOl of local control objectives and a setOg of global
control objectives. Moreover, ml , |Ol |, mg , |Og|, and hence ml + mg = |O|.

Assumption 6 allows to rewrite a centralised general economic stage cost func-
tion J : Z+×Rnx ×Rnu → R+ in the following form:

18 A flow path is an ordered sequence of arcs, which may connect sources, intermediate nodes and
demands.
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J(k,x(k),u(k) =
mg∑
g=1

λg`g(k,x(k),u(k)) +

ml∑
l=1

λlJl(k,x(k),u(k), (17.5)

where λg,λl ∈R+ are scalar weights that prioritise, within the overall cost function,
each global and local control objective, particularly represented by convex functions
Jg : Z+×Rnx ×Rnu → R+ and Jl : Z+×Rnx ×Rnu → R+, respectively. Hence, from
(17.1), (17.2) and Remark 17.1, the centralised MPC optimisation problem with
stage cost (17.5) and prediction horizon N can be rewritten as follows:

min
uk

Hp−1∑
t=0

 mg∑
g=1

λgJg(k,x(k + t|k),u(k + t|k))

+

ml∑
l=1

λlJl(k,x(k + t|k),u(k + t|k)

)
, (17.6a)

subject to:

x(k + t + 1|k)[i] = Aiix(k + t|k)[i]
+ Biiu(k + t|k)[i]

+ Bd,iid(k + t|k)[i]
+

M∑
j=1
j 6=i

Bi ju(k + t|k)[ j], (17.6b)

0 = Eu,iiu(k + t|k)[i]
+ Ed,iid(k + t|k)[i]

+

M∑
j=1
j 6=i

Eu,i ju(k + t|k)[ j], (17.6c)

(x(k + t + 1|k)[i],u(k + t|k)[i]) ∈ Xi×Ui, (17.6d)

x(k|k)[i] = x(k)[i], (17.6e)

for all i ∈ Z[1,M] and all t ∈ Z[0,Hp−1]. The aggregate state and input vectors in the

cost function are given by x(k + t|k) = (x(k + t|k)[1]T

, . . . ,x(k + t|k)[M]T

)T , u(k + t|k) =
(u(k + t|k)[1]T

, . . . ,u(k + t|k)[M]T

)T , respectively. The decision variable is the input
sequence uk = {u(k + t|k)}t∈Z0,Hp−1

.
Thus, the goal of the ML-DMPC approach proposed in this chapter is that of

solving (17.6) in a distributed fashion in order to cope with the aforementioned dis-
advantages of a centralised controller. To do so, a set C := {C1, . . . ,CM} of local con-
trollers, their communication network and a coordination mechanism are designed
in the following to properly address the effect of couplings between subsystems and
to take into account Assumption 6.
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Fig. 17.2 ML-DMPC control architecture

17.3 Proposed approach

The whole ML-DMPC set-up consists of:

(i) an upper layer in charge of achieving the global objectives by solving a cen-
tralised optimisation problem with a sampling time ∆t1,

(ii) a lower layer comprising a set of distributed MPC agents that compute the
references for the system actuators in order to satisfy the local objectives.

This layer operates with a sampling time ∆t2 (∆t2 ≤ ∆t1). The local controllers
solve their associated optimisation problem in a hierarchical/sequential fashion and
exchange (non-iteratively) in a neighbour-to-nehigbour communication strategy the
predicted sequence of the inputs affecting neighbouring subsystems. The upper layer
influences the operation of the lower layer by projecting global economic informa-
tion into the local agents, specifically by modifying the prices/weights of the flow
arcs that are shared among the subsystems arising in the lower layer. Figure 17.2
shows the proposed control structure. The ML-DMPC scheme leads to a subopti-
mal plant-wide performance but with the advantage of a tractable implementation
due to a hierarchical-like communication approach that avoids negotiations among
local controllers. A formal description of the two optimisation layers involved in the
ML-DMPC approach and their interaction is given below.
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17.3.1 Lower optimisation layer

Once the network partitioning is performed and the M local models are obtained, it
only remains to distribute the original centralised economic MPC problem among
the local controllers Ci, considering the given management policies and constraints.

In order to simplify the notation, let rewrite the interaction-oriented local models
is rewritten in the following more compact form:{

x(k + 1)[i] = Aiix(k)[i]
+ Biiu(k)[i]

+ Bd,iid(k)[i]
+ B̄iw(k)[i]

0 = Eu,iiu(k)[i]
+ Ed,iid(k)[i]

+ Ēiw(k)[i],

(17.7a)

(17.7b)

for all i∈Z[1,M], where w(k)[i] := (wT
i1 (k), . . . ,wT

i|Ni|
(k))T ∈Wi is a vector stacking the

flows decided by the controllers of neighbours of subsystem Si, {i1, . . . , i|Ni|} is an
ordered sequence of the indices contained in the set Ni (that is, i1 < .. . < i|Ni|) and
w j(k) := TT

w j
u(k)[ j] for all j ∈ Ni. In the definition of each w j(k), the matrix Tw j

∈
Rnu j

×nui j (TT
w j

Tw j
= Inui j

) is such that it collects the mi j (mi j < m j) columns of the

identity matrix of order nu j
, corresponding to the indices of the rows of ũ(k)[ j] ∈Rnu j

related to the controlled flows decided by the controller C j and affecting subsystem
Si. Moreover, matrices B̄i and Ēi are suitably defined to represent the effect of w(k)[i]

on the local state vector x(k)[i], and the setWi is obtained appropriately from Ui. In
the sequel, every subsystem S j that imposes an outflow w j(k) to a subsystem Si will
be considered as a virtual demand of Si.

Interpretation 1 At any time instant k ∈Z+ when the controlled flow u[i](k) is com-
puted, the controller Ci has knowledge of the state x[i](k) and the demands d[i](k)
and w[i](k) imposed by the local and virtual demands, respectively. Future demands
d[i](k+t) and w[i](k+t) might be unknown for all t ∈Z≥1 and can take arbitrary val-
ues in Di and Wi, respectively. Nevertheless, the controller Ci has also knowledge
of the Hp-step sequences of both the local and virtual demand expectations.

Each controller Ci will be in charge of deciding only the network flows corre-
sponding to subsystem Si by using local and neighbouring information under 1. In
this chapter, the local problems are defined in such a way that each of them con-
siders a local stage cost function but with a structure similar to the one in (17.5).
Specifically, the stage cost function related to each Ci is written as

Ji(k,x[i](k),u[i](k)) =
mg∑
g=1
λ̂g,iĴg,i(k,x[i](k),u[i](k))

+

ml∑
l=1
λl,iJl,i(k,x[i](k),u[i](k)), (17.8)

where each Ĵg,i, g∈Z[1,mg], corresponds to the g-th global control objective properly

expressed and weighted with a suitable λ̂g,i ∈ R+ in order to influence controllers
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Ci to improve plant-wide performance. Moreover, each Jl,i is assumed to be the
corresponding part of the separable local objectives Jl , l ∈ Z[1,ml ], related to the
subsystem Si.

For each subsystem Si, a portion of control importance is removed by its neigh-
bours and added to its local uncertainty in a max-min sense due to the local knowl-
edge considered in 1. Hence, before fully devising the distributed MPC controllers
operating in the lower layer, the following definition (adjusted from [1, Definition
4.1]) is introduced.

Definition 17.2. Denote a given network decomposition with P = {Si}i∈Z1,M
and let

CSi∞ be the maximal max-min robust control invariant set for subsystem Si. Then,
the decentralised max-min robust control invariant set for the overall system

x(k + 1) = Ax(k) + Bu(k) + Bdd(k), ∀k ∈ Z+ (17.9a)
0 = Euu(k) + Edd(k), ∀k ∈ Z+ (17.9b)

subject to constraints

x(k) ∈ X = {x ∈ Rnx |0≤ x≤ xmax}, ∀k ∈ Z+ (17.10a)
u(k) ∈ U = {x ∈ Rnu |0≤ u≤ umax}, ∀k ∈ Z+ (17.10b)

and decomposed into ∆ is given by C∆
∞ =

∏M
i=1 CSi∞.

For a given network decomposition P and local sets Xi, Ui,Di andWi, i∈Z[1,M],
each maximal max-min robust control invariant set CSi∞ can be explicitly computed
for the overall network.

Note that such sets CSi∞ may result to be empty for a given P (consequently CP∞ =
∅), which implies that there is no guarantee that a decentralised control strategy will
be feasibility for all times. In such a case, the sets Ui (accordingly Wi), i ∈ Z[1,M],
should be properly modified to make possible the decentralised design of CP∞, see
e.g., [1].

Assumption 7 The local constraint sets arising for a given network decomposition
P = {Si}i∈Z1,M

are such that

Bd,iiDi⊕ B̄iWi ⊆ −BiiUi and Ed,iiDi⊕ ĒiWi ⊆ −Eu,iiUi,

for all Si ∈ P . Hence, CSi∞ :=
(
(Xi⊕ (−BiiUi))	

(
Bd,iiDi⊕ ĒiWi

))
∩Xi 6= ∅.

Even when Assumption 7 holds and CP∞ exists, the algebraic equation (17.7b)
for each local model acts as a coupling constraint that forbids the design of non-
iterative distributed controllers with parallel solution of the local optimisation prob-
lems. Thus, the distributed MPC algorithm considered in the lower layer of the
proposed ML-DMPC approach involves a non-iterative communication-based MPC
design that builds on the hierarchical decentralised MPC approach reported in [13].
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The strategy proposed here also follows a hierarchical sequence of solution but con-
sidering conditions to deal with the existence of bidirectional complicating flows
between neighbour subsystems. The optimisation problem to be solved in the lower
layer of the ML-DMPC by each local controller Ci, i ∈ Z[1,M], with sampling time
∆t2, is defined as follows:

min
uk

Hp−1∑
t=0

 mg∑
g=1

λ̂g,iĴg,i(k,x[i](k + t|k),u[i](k + t|k))

+

ml∑
l=1

λl,iJl,i(k,x[i](k + t|k),u[i](k + t|k))

)
, (17.11a)

subject to:

x[i](k + t + 1|k) = Aiix[i](k + t|k) + Biiu[i](k + t|k) + Bd,iid[i](k + t|k)

+ B̄iw[i](k + t|k), ∀t ∈ Z[0,Hp−1] (17.11b)

0 = Eu,iiu[i](k + t|k) + Ed,iid[i](k + t|k) + Ēiw[i](k + t|k), ∀t ∈ Z[0,Hp−1] (17.11c)

x[i](k + 1|k) ∈ CSi∞, (17.11d)

x[i](k + t|k) ∈ Xi, ∀t ∈ Z[2,Hp] (17.11e)

u[i](k + t|k) ∈ Ui, ∀t ∈ Z[0,Hp−1] (17.11f)

u[i]
(r)(k|k) = u[i]?

(r) (k + 1|k − 1), ∀r ∈ Iu (17.11g)

x[i](k|k) = x[i](k), (17.11h)

where Iu ⊂ Z+ is a set containing the indices of all the rows of vector u[i](k) related
to the inputs decided locally by Ci but affecting neighbours whose controllers C j are
located in higher levels of the pre-defined hierarchy of solution.

Comparing with the algorithms in [13, 15], problem (17.11) has two subtle but
important differences:

1. The incorporation of (17.11d) as a robustness constraint that enforces the pre-
dicted state to lie within the maximal max-min robust control invariant set at
the first prediction step.

2. The incorporation of (17.11f), restricting those components of the first control
action that are decided locally but affect neighbouring subsystems whose con-
trollers are located at higher levels of the solution hierarchy.

As demonstrated in [7, Chapter 6] for a min-max interpretation in a standard cen-
tralised MPC controller, the robustness constraint (17.11d) leads to a robust strongly
feasible MPC algorithm. Nonetheless, this constraint on its own cannot guarantee
recursive feasibility of the overall distributed MPC solution sequence, because CSi∞
is computed under 1, which requires that each controller Ci knows at least the first
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demand value of its local and virtual demands (i.e., d[i](k) and w[i](k) when solving
at k). This requirement is not fulfilled if controllers Ci are allowed to freely optimise
their full input vector without considering their effect in the hierarchical sequence
of solution of the non-iterative ML-DMPC approach.

To illustrate this observation, assume that a controller C j optimise the flow of a
complicating arc affecting a subsystem Si whose controller Ci has already solved
the i-th problem in the solution sequence. Then, the trajectory obtained by C j could
be infeasible (specially due to the equality coupling constraint (17.11c)) for Si since
w[i](k) might be changed and Ci does not have the chance to recompute its solu-
tion. Hence, constraint (17.11f) is an extra necessary condition to satisfy 1 and to
maintain feasibility of the overall sequence of local problems.

17.3.2 Upper optimisation layer

The fulfilment of a global objective from a local point of view often implies in-
formation from the entire network, but this is lost when the system partitioning is
performed. Therefore, it is necessary to figure out how to induce cooperation among
the set of distributed controllers, considering all the control objectives belonging to
O in a suitable way.

One common way to improve overall closed-loop performance of a decen-
tralised/distributed control scheme is to incorporate a supervisor controller or co-
ordinator on top of the local controllers. Two frequently used coordination methods
are the goal coordination and the interaction prediction coordination (cf., [10]). The
fundamental idea behind these approaches is to have independent subproblems con-
taining certain coordinating parameters (e.g., Lagrange multipliers, co-state vari-
ables, pseudo-variables, etc.) in addition to the local decision variables. In both
coordination methods, duality theory is used as a standard to construct an equiv-
alent two-level problem to the primal (centralised) optimisation problem. Within
such framework, the coordinating parameters are updated iteratively by the coordi-
nator based on the local solutions until an optimal solution to the overall system is
achieved (cf. [3, 10]). Feasibility of these coordinated control strategies is guarantee
only upon convergence.

Contrary to the common methods, the upper optimisation layer of the ML-DMPC
approach proposed in this chapter is not focused on reconstructing the centralised
optimal solution in an iterative manner but to improve the economic performance
of the local MPC controllers by intervening in their decision process with a low
frequency of intervention. Specifically, this upper layer influences the local solutions
by computing, in a non-iterative way, the weight ω ∈Rnω (where nω is the number of
arcs interconnecting the subsystems) related to the shared links between partitions
that appear after the selected network decomposition method (see Figure 17.1). The
weights in ω will affect the first term in the local cost function (17.11a) of each
controller Ci, i∈Z[1,M]. Therefore, to compute ω, a centralised optimisation problem
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based on a temporal and functional decomposition of the network is stated in the
upper layer of the ML-DMPC by considering

(i) a static model of the whole network, and
(ii) a cost function that only takes into account the global control objectives asso-

ciated to the system.

The proposed upper optimisation layer works with a sampling time ∆t1 = T ,
where T ∈Z≥1 corresponds to the period of the periodic flow requested by local de-
mands (see Assumption 5). Thus, when looking at the volume evolution of storage
elements, they show a similar behaviour as the flow to the demands, i.e., volumes
might also show a periodic behaviour with period T . For this reason, when mod-
elling the network with sampling time ∆t1, it can be assumed that volumes do not
change along the time. From now on, sub-index c is used to differentiate the tempo-
ral scale of the model in the upper layer to that of the lower layer (e.g., xc(k) denotes
the state at the coordinator level at time instant k with sampling time ∆t1). Hence,
storage nodes behave as static nodes in this layer and the network dynamic model
(17.9a) becomes a stationary model, i.e., xc(k) = Acxc(k) + Bcuc(k) + Bd,cdc(k).

The stationary model considered by the coordinator is

Jup(k,xc(k),uc(k) :=
mg∑
g=1

λg,cJg,c(xc(k),uc(k), (17.12)

the upper layer optimisation problem is here proposed to be formulated for a flow-
based network as the search of the economically optimal path flows from sources
nodes to demand nodes.

Definition 17.3 (Directed path). Given a directed graph G = (V,A) of a network,
a directed path is an ordered sequence of nodes v1,v2, . . . ,vn in which there is an
arc (i, j) pointing from each node i in the sequence to its successor node j in the
sequence, that is, {(v1,v2)(v2,v3), . . . , (vn−1,vn)}.

To mathematically and systematically find all flow paths in a given network this
chapter follows the methodology in [2, Appendix A], which exploits the informa-
tion contained in the node-arc incidence matrix of the network directed graph to
construct the path-arc matrix for the given sources and demands. The description
of such algorithm is omitted here and the reader is referred to the aforementioned
reference. Once the path-arc matrix is obtained, a constrained optimisation problem
can be stated to minimise (17.12) in terms of path flows, which are denoted here as
up ∈ Rnp with np the number of possible paths.

Hence, the coordinator solves in the upper layer of the ML-DMPC, an optimisa-
tion problem with the following structure:

min
up

Ĵup(xc(k),up(k)) (17.13a)

subject to:
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Apup(k)≤ bp(k), (17.13b)
Aequp(k) = beq(k), (17.13c)

where function Ĵup is equivalent to (17.12) but properly expressed in terms of the
path flows up(k) by using the graph path-arc matrix. Moreover, constraint (17.13b) is
used to consider the physical bounds of each actuator involved in each path, while
constraint (17.13c) is used to enforce satisfaction of demands dc(k). Matrices Ap
and Aeq and vectors bp and beq are defined accordingly to the considered bounds
and balance constraints.

Throughout this chapter, it has been assumed that the flow at each arc of the net-
work is driven by an actuator. Therefore, by using the optimal solution of problem
(17.13) and the information contained in the path-arc matrix of the overall network,
it is possible to compute the accumulated cost incurred in traversing all the paths
that reach the intermediate nodes from which the arcs interconnecting the M sub-
systems depart. This accumulated cost information, in addition to Assumption 5,
allow to define the weight ω as a coordinating economic parameter. This weight is
used by the coordinator to project, into the cost function of each local controller
Ci, the economic impact (from a global point of view) that each subsystem Si will
suffer when requesting flow from its neighbour subsystems.

In network flow problems, the global objectives are often given as a composition
of economic linear cost functions. In this case, the value of ω can be obtained by
following Algorithm 15.

Note that Assumption 5 and the temporal scale selected for the upper layer make
(17.13) independent of the state. Furthermore, the weight ω is more an interven-
tion parameter than a coordination variable since the upper layer does not use any
feedback information from the local controllers allocated at the lower layer.

17.3.3 ML-DMPC algorithm

The sharing of information between the two layers of the proposed ML-DMPC de-
pends on the nature and features of each application. For the case considered in this
chapter (i.e., periodic demands), the interaction is unidirectional from the upper op-
timisation layer to the lower optimisation layer. Once the optimisation problem re-
lated to the upper layer is solved, the resultant parameters are properly updated for
each optimisation problem behind each Ci, i ∈ Z[1,M]. This updating is performed
with a periodicity ∆t1 to consider possible changes in the periodic pattern of de-
mands. In fact, if a given application involves an agreement of pre-defined demands
to be satisfied, the optimisation problem of the upper layer needs to be executed
only once at the beginning of the operation. In general, the computational time that
the upper layer spends is quite low with respect to the computational time of the
lower layer. This fact is due to the difference in the nature of the models handled by
each layer and the interactions given by the distributed MPC controllers as well as
their amount and disposition within the defined hierarchy. Algorithm 16 collects the
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Algorithm 15 Computation of the economic intervention parameter ω
1: Compute the path-arc matrix of the network graph, denoted here by Rp ∈ Rnp×m.
2: Define a matrix Cp ∈ Rnp×m with the same structure of matrix Rp but containing in each

matrix element the unitary flow cost of each actuator in each possible path.
3: Identify all the arcs interconnecting subsystems Si, i ∈ Z[1,M], and denote with nus

∈ Z+ the
number of such arcs, called from now on as complicating arcs.

4: Solve problem (17.13) and identify from the optimal solution all the paths in which each
complicating arc participates, and denote by np j

∈ Z+, j ∈ Z[1,nus
], the numbers of such paths.

5: Define a set of matrices Ts j
∈ Rnp×np j , j ∈ Z[1,nus

], each of them collecting the np j
columns of

the identity matrix of order np.
6: Define a set of matrices Rp j

:= TT
s j

Rp and Cp j
:= TT

s j
Cp for all j ∈ Z[1,nus

].
7: From the sequential order of the directed paths involved in each matrix Rp j

, define a set of

matrices R̃p j
whose elements will be the same as the ones in matrices Rp j

for all the positions
related to the sequential arcs that reach the complicating arcs (these latter included) in each
path, and zero in those matrix elements related to the successor arcs.

8: Define the vector ω := (ω1, . . . ,ωnus
)T , with each of its components computed as

ω j =
1T

nus

((
Cp j
◦Rp j

)
◦ R̃p j

)T
TT

s j
up(k)?[

RT
p j

TT
s j

up(k)?
]

(r j )

, ∀ j ∈ Z[1,nus
]

where 1nus
denotes an all-ones column vector of length nus

, the operator (◦) indicates the
Hadamard product of matrices and [·](r j )

is the r j row of the vector in the brackets with r j

being the position of the associated j-th complicating arc in the input vector uc(k). Then, ω j
represents a unitary cost per flow unit.

main steps of the proposed ML-DMPC approach. The computational time spend by
the scheme corresponds with the sum of maximum times of each hierarchical level
of controllers.

One important property desired in the design of any MPC strategy is recursive
feasibility. In the following, it is shown that the proposed ML-DMPC algorithm
remains feasible for all times if initial feasibility is assumed. The guarantee of fea-
sibility of the approach is unrelated to optimality of the distributed solution.

Theorem 17.1. Let Assumptions 5 to 7 hold and suppose that an initial feasible
solution in Step 1 of Algorithm 16 exists. Then, each local MPC problem (17.11)
solved in Step 3 of Algorithm 16 is robust strongly feasible for each subsystem Si ∈
P .

Proof: The proof is by induction, showing that feasibility at time k implies feasibility
at time k + 1. Let x[i](k) be a feasible initial condition for each local problem (17.11)
and assume that there exists a pair of feasible (not necessarily optimal) state-input
trajectories given by (x[i]

k ,u
[i]
k ) for each subsystem Si ∈ P .

Consider now the hierarchical flow of the solution at the next time instant k + 1.
Since each subsystem applied previously the first control action of the initial feasible
trajectory u[i]

k , it follows then that x[i]
k+1 = x[i](k + 1|k) and from constraint (17.11d) it
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Algorithm 16 Non-iterative Multi-Layer Distributed Economic MPC
1: Initialisation: Set k = 0, establish an arbitrary weight ω in the upper layer and send that

information to every local controller Ci, i ∈ Z[1,M]. For each current local state x[i](k) and
local demand sequence d[i]

k = {d[i](k), d̄[i](k + 1|k), . . . , d̄[i](k + Hp − 1|k)}, find for all sub-
systems Si a feasible (not necessarily optimal) pair of state and input sequences (x[i]

k =
{x(k+t|k)}t∈Z[0,Hp ]

,u[i]
k = {u(k+t|k)}t∈Z[0,Hp−1]

). Apply u[i](k|k) in every subsystem and transmit

each u[i]
k to the controllers of the corresponding neighbours of each Si.

2: Collecting of information: After receiving all the neighbour trajectories u[ j]
k , j ∈ Ni, each

controller Ci builds the trajectory w[i]
k = {w[i](k + t|k)}∈Z[0,Hp−1]

, differencing between shared

inputs to be imposed by controllers arranged in higher levels of hierarchy and shared inputs
planned by controllers arranged in the same or lower levels of hierarchy. These imposed and
planned input trajectories are formed locally as w[i]

a,k = {w[i]?
a (k|k), . . . ,w[i]?

a (k + Hp − 1|k)} and
w[i]

a,k = {w[i]?
b (k+1|k−1), . . . ,w[i]?

b (k+Hp −1|k),w[i]?
b (k+1|k−1)}, respectively, and it is assumed

that w[i](k + t|k) = (w[i] T
a (k),w[i] T

b (k)T . At each sampling time, obtain x[i](k) and d[i]
k for each

subsystem Si.
3: Solution of local problems: Solve each optimisation problem (17.11) following a predefined

hierarchical sequence.
4: Implementation of control action: Each local controller Ci applies κi(x[i](k),u[i]

k ,d
[i]
k ,w

[i]
k ) =

u[i]?(k|k) to the associated subsystem Si. Transmit each u[i]
k to the controllers of the corre-

sponding neighbours of each Si.
5: Updating of the economic intervention parameter: If bkcP1

∈ Z+, then solve problem
(17.13) for the current dk and update ω following Algorithm 15. Send the new weight to each
local controller Ci. Otherwise, go to step 5.

6: Increment k and go to step 2.

holds that x[i](k+1)∈ CSi∞ for all i∈Z[1,M]. Since CSi∞ 6= ∅ by Assumption 7, it follows
from the invariance property of CSi∞ that for all (x[i](k + 1),d[i]

k+1,w
[i]
k+1) ∈ CSi∞×D

Hp
i ×

WHp
i , there exists a control sequence u[i]

k+1 ∈U
Hp
i such that the constraints in problem

(17.11) are satisfied at time instant k + 1 for all i ∈ Z[1,M].
This claim holds only under 1, that is, if and only if each controller Ci knows at

least the first demand value of its local and virtual demands (d[i](k + 1) and w[i](k +

1) when solving at k + 1). Such requirement is guaranteed by means of constraint
(17.11f), which is feasible by the assumption of existence of any initial feasible
trajectory uk. Therefore, all the local problems solved sequentially by controllers Ci
are feasible at k +1. Feasibility for all times follows then by induction over k and the
assumption of initial feasibility. Consequently, the ML-DMPC approach is strongly
feasible and the claim is proved. �

17.4 Simulations and results

In order to evaluate the effectiveness of the proposed ML-DMPC approach, the case
study related to the model of the Barcelona DWTN is used. In this network, the set
Og of global control objectives is formed only by the cost function
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JE (x(k),u(k;cu(k),cx(k) := cT
u (k)We u(k)∆t + cT

x (k)Whx(k), (17.14a)

while the set Ol of local control objectives is formed by the cost functions

JS(x(k);s(k) :=

{
(x(k) − s(k)T Ws(x(k) − s(k) if x(k)≤ s(k)
0 otherwise,

(17.14b)

J∆(∆u(k)) := ∆uT (k)W∆u ∆u(k). (17.14c)

The overall network is assumed to be decomposed in six subsystems (P = {S1, . . . ,S6}),
which are non-overlapped, output-decentralised and input-coupled (see Figure 16.3).
The model and constraints of each subsystem Si are obtained following Section
17.2.

The controller Ci of each subsystem Si uses the following local multi-objective
stage cost in its optimisation problem:

Ji(k,x[i](k),u[i](k) = λ̂1,iĴE,i(x[i](k),u[i](k;c[i]
u (k)) +λ2,iJ∆,i(∆u[i](k))

+λ3,iJS,i(ξ
[i](k);x[i](k),s[i](k)),

where functions ĴE,i, J∆,i and JS,i are the local economic, safety and smoothness
objectives for subsystems Si (see Section 17.3.1 for the derivation of the local costs).
Moreover, λ̂1,i, λ2,i, and λ3,i are positive scalar weights to prioritise each objective
in the aggregate local cost function.

Each local MPC controller operates with a sampling time ∆t2 = 1 hour and a
prediction horizon Hp = 24 hours. The weight λ̂1,i and the internal economic param-
eters of each function ˆ̀

E,i, i ∈ Z[1,6], are modified by the upper optimisation layer,
placing properly each element of the intervention parameter ω (see Algorithm 15)
in the local cost of the corresponding complicated arcs. The cost function used in
the upper optimisation layer is given by

Jup(k,xc(k),uc(k) = JE,c(xc(k),uc(k), (17.15)

which is derived from (17.14a) but expressed in a temporal scale of days (i.e., ∆t1 =
24 hours).

The constraints and the rest of the parameters involved in the optimisation prob-
lems (i.e., water demands, economic prices of water end electricity, safety thresh-
olds) are set up according to Chapter 2.

Figure 17.3 shows, in a more compact way, the resulting subsystems and the
important couplings between them including their direction. Instead of neglecting
the effect of this shared links as classic pure decentralised control schemes do, the
ML-DMPC approach applied to the aforementioned case study has the control ar-
chitecture shown in Figure 17.2.

The results obtained by applying the ML-DMPC (Algorithm 16) are compared
with those of applying a centralised MPC (CMPC) approach and a decentralised
MPC (DMPC) strategy proposed in [14]. All of the results were obtained for a sim-
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Figure 1: Network subsystems Si and their shared connections wij

1

Fig. 17.3 Network subsystems Si and their shared connections wi j

ulation horizon of 72 hours with real data of the network, and are summarised in
Table 16.2 (Chapter 16) in terms of computational burden and of economic cost as
a global management performance indicator. For each MPC approach, the compu-
tational time (in seconds) and the water, electric and total cost in economic units
(e.u.), are detailed. It can be noticed that an increment of nearly 30% of the total
costs of operation occurs when using the one-level hierarchical DMPC strategy re-
ported in [14] with respect to the CMPC baseline. Despite the lower electric costs,
the loss of performance in the overall cost is due to the specialised behaviour of lo-
cal MPC controllers to solve their own optimisation problems without knowing the
real water-supply cost of using shared resources with the neighbours. In contrast,
the ML-DMPC outperforms the DMPC results by including the bi-level optimisa-
tion, which allows to propagate the water cost of sources related with neighbour
subsystems to the shared links thanks to the daily centralised control level. With
this ML-DMPC approach, the level of sub-optimality is acceptable comparing with
the CMPC strategy, i.e., total costs are very similar, but the computational burden
is reduced. For this particular application, the computational time of the three ap-
proaches is able to satisfy the real-time constraint since the control sampling time is
1 hour. Thus, the main motivation for using ML-DMPC is the scalability and easy
adaptability of the sub-models if network changes, as well as the modularity of the
control policy that leads to face some malfunction/fault without stopping the overall
supervisory MPC strategy.

Due the difference of price between water sources and the impact of electric
costs on the overall economic performance, the CMPC and ML-DMPC strategies
decide to use more water from the Llobregat source despite the consequent pumping
of more water through the network (see Figures 17.5), but achieving a lower total
cost, while the hierarchical DMPC decides to exploit in each subsystem their own
water source (which could be expensive) and minimise the pumping operation cost.
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Table 17.1 Performance comparisons

INDEX CMPC DMPC ML-DMPC

Water Cost 93.01 205.55 97.11
Electric Cost 90.31 34.58 87.53

Total Cost 183.33 240.13 184.65
CPU time 1143 537 540
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Fig. 17.4 Economic costs of the three MPC strategies
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Fig. 17.5 Total flow per water source in the Barcelona DWTN

Figure 17.4 shows in detail the evolution of water cost and electric cost, respectively.
These results confirm the improvement obtained by including an upper optimisation
layer to coordinate the local MPCs and face the lack of communication when solving
their problems in a tractable way.
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17.5 Conclusions and research perspectives

This chapter proposed a non-iterative multi-layer distributed economic MPC ap-
proach for large-scale flow-based networks. The control architecture consists in two
optimisation layers. The upper layer, working with a larger time scale, is in charge of
improving the global performance (in general related to an optimal economic cost)
by influencing a set of distributed MPC controllers by means of an intervention
economic parameter. These distributed controllers are hierarchically arranged in a
lower optimisation layer and are in charge of determining the set-point of the flow
actuators to satisfy the local management/control objectives. The system decompo-
sition is based on graph partitioning theory. Results obtained on selected simulation
scenarios have shown the effectiveness of the control strategy in terms of system
modularity, reduced computational burden and, at the same time, reduced loss of
performance in contrast to a CMPC strategy and a hierarchical-like DMPC strategy.
Additionally, it has been proved that the proposed approach results in a strongly
feasible distributed MPC algorithm. For clarity of presentation, in Algorithm 16 it
was required that each subsystem calculates its input trajectory at each time step in
a hierarchical and sequential order. However, the algorithm works in the same way
if non-neighbouring systems located in the same level of hierarchy solve their prob-
lems in parallel. Future work will be focused on finding stability conditions under
the framework of economic MPC, and also on improving the mechanism of coordi-
nation to avoid the requirement of plant-wide information in the upper layer of the
ML-DMPC approach.
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