
Chapter 18
Data-driven Evolutionary-game-based Control
for Drinking Water Networks

Abstract This work addresses the design of a control strategy for drinking water
transport networks (DWTNs) based on evolutionary-game theory (EGT). This the-
ory allows to model the evolution of a population composed by a large and finite
number of rational agents, which are able to make decisions. As an analogy with a
multi-variable control system for DWTN, the whole population represents the total
available water resource in the system, and each agent represents a small portion
of the resource. In the population evolution, each agent makes the decision to se-
lect one of the system valves and/or pumps in order to establish its corresponding
value of resource. Agents make these decisions pursuing an improvement of their
benefits described by a fitness function, which is associated to the control objective,
i.e., agents receive more benefits as the control objective is achieved. This global
objective in the DWTN is established by the company in charge of the management
of the network, e.g., maintain safety volumes within the tanks, minimize the water
costs, minimize the costs of the energy to operate the actuators.
The aforementioned evolution process, in which agents make decisions, is used to
solve an optimization problem that is described in terms of current measurements
of the DWTN tank volumes, and subject to constraints over the decision variables
in the system (physical limits of flows through valves and pumps). Furthermore,
since the control problem is given in terms of instant measurements, this control
strategy might be implemented without the need of an explicit model of the DWTN.
In this work, two different data-driven population-games-based control designs for
DWTNs are presented, and both the necessary assumptions and conditions to imple-
ment the proposed methodologies are clearly stated. Finally, the effectiveness of the
proposed control approach through the system performance improvement is shown
by using the considered DWTN case study.
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18.1 Introduction

Around 663 million people had no access to safe drinking water in 2015 and around
2.4 billion people live without adequate sanitation according to [25]. This situa-
tion has impacts on the economy of the society according to the Millenium Sumit
of 2000, on which the United Nations agreed the Millenium Development Goals
(MDG). One of the biggest concerns of the MDG, due to the rapid population
growth and industrialization, is to guarantee the access to drinking water, achieving
a proper management of the available water resources. Hence, it becomes essential
to overcome the lack of drinking water for achieving sustainable development in-
cluding both social and economic developments, poverty reduction and equity, and
also sustainable environmental services [13].

Over the last decade, several optimization-based control strategies have been pro-
posed to manage efficiently drinking water and to solve resource allocation prob-
lems in water applications. For instance, in [10] a non-linear multi-objective opti-
mization procedure has been proposed to manage water flows and reserves in drink-
ing water transport networks (DWTNs), considering the uncertainty of climate and
global change development, using an integrated approach, i.e., modelling the drink-
ing water system, the climate, and the society as a whole. However, this solution
implies to consider a lot of variables and constraints which increase the complexity
of the optimization problem. Likewise, optimization-based strategies such as model
predictive control (MPC) have been designed for this kind of systems, considering
the uncertainty of demand patterns as in [26] and, minimizing operational costs and
shortage events [9].

Another approach to address the DWTN control design is the use of population
dynamics taking advantage of their stability properties and the close relationship
between the solution in a population game (Nash equilibrium) and the unique max-
imizer of a constrained convex optimization problem [23]. Recently, game theory
has been used in the solution of engineering problems [1, 14, 17, 24], and for the
solution of optimization problems [15, 16]. Furthermore, in this chapter the popu-
lation game approach is presented as a powerful tool for the design of data-driven
controllers. More precisely, two different directions in the design of data-driven
population-games-based controllers are treated in this work. First, the DWTN is
controlled by making a partitioning into sub-systems that satisfy specific conditions,
and a resource allocation problem is solved at each partition. This approach gener-
ates a decentralized control scheme since the local controllers neither communicate
to each other nor exchange information among them. Secondly, it is proposed the de-
sign of data-driven controllers by minimizing a cost function and considering flow-
balance constraints. Under this approach, the network is divided into sub-systems
according to the established constraints over the control inputs, which constitutes a
distributed scheme due to the existing intersection among the different sub-systems.

The presented contents in this chapter are a compilation of the theory proposed
in previous works [3–6, 21]. However, some new case studies are incorporated as
well as new simulation results.
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Notation

Although this book follows an unified notation and in order to facilitate the reading
of this chapter, some additional notation is introduced. The sub-index is associated
to a node of a graph, or to a strategy in a game. On the other hand, the super-index
refers to a population. For instance, the sub-index i in ui,Pi, up

i or fi refers either to a
node in a graph or to a strategy, and the super-index p in mp, up, up

i or np indicates a
population. Also it should be clear that the super-index is not an operational number,
i.e., n3 refers to population three but n3 6= nnn. We use bold font for column vectors
and matrices, e.g., u, and H; and non-bold style is used for scalar numbers, e.g., np.
Calligraphy style is used for sets, e.g., S. The column vector with n unitary entries
is denoted by 1n, and the column vector with null entries and suitable dimension
is denoted by 0. The identity matrix with dimension n× n is denoted by In. The
cardinality of a set S is denoted by |S|. The continuous time is denoted by t, and
it is mostly omitted throughout the manuscript in order to simplify the notation.
Finally, R≥0 represents the set of all non-negative real numbers, and Z>0 represents
the set of positive integer numbers.

18.2 Problem statement

18.2.1 First data-driven perspective

In the proposed DWTN model for the design of the population dynamics-based con-
trollers, which is composed by several storage tanks, the flow direction is unique
since it is assumed that the pressure head at upstream tanks of the network is always
higher than the pressure head at downstream tanks. This consideration is common
in DWTNs that have been designed for places where the topography is steep and the
slope is descending. Due to this assumption, it is possible to distinguish between
source and receptor tanks, taking into account that the former ones are always up-
stream and directly linked to the latter ones.

Consider then a simple DWTN composed by n receptor tanks, and only one
source tank as shown in Figure 18.1. This topology is known as branched [19],
which means that there are no loops in the network due to the fact that several out-
flows might go out from a single source tank, but no several inflows come into a
single receptor. Let S = {1, ...,n} be the set of receptor tanks in the branched
sub-system. The volume of the tank i ∈ S is denoted by xi ∈ R≥0, its maximum
volume is denoted by x̄i ∈R≥0, and its inflows and outflows are given by qin,i ∈R≥0
and qout,i ∈ R≥0, respectively. Hence, the vector of all the tank volumes is denoted
x ∈ Rn

≥0, and the vector of maximum volumes x̄ ∈ Rn
≥0. The parameter ui ∈ [0,1]

determines the setting of the input valve in the ith tank, Ki > 0 scales the outflow,
and it can be considered as a volume-flow conversion factor or the discharge coeffi-
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cient of the tank. Moreover, the system is affected by perturbations that are related
to daily demand patterns.

xs

x1 xi xn

Fig. 18.1 Branched topology with n receptor tanks, and one source tank whose volume is denoted
by vs. The source tank is upstream of the receptor tanks.

The control objective consists in avoiding shortages throughout the system, i.e.,
to avoid that the current volume of the tank xi runs out, not supplying the demand, for
all i ∈ S. To achieve this objective, it is proposed to do an allocation of the available
resource stored in the n tanks, i.e., to distribute the current available volume given by
x̄i − xi in an optimal way by controlling the inflows qin,i, for all i ∈ S. For instance,
considering the hypothetical situation in which one tank is completely filled and
another tank is empty, more priority should be assigned to the inflow of the empty
tank rather than the inflow assigned to the filled one, in order to prevent shortages.

For each sub-system, the topology of interest is given by different receptor tanks
and one source. The entire control system for the DWTN is composed by π local
controllers that do not communicate with each other and which operate indepen-
dently in parallel, i.e., all local controllers may operate their corresponding control
inputs at once.

18.2.2 Second data-driven perspective

This section presents the design of a controller without considering the model of the
system, but just by considering the fact that the error within a tank (i.e., the differ-
ence between the safety value and the current volume) can be reduced as the control
action is increased. In order to design a data-driven controller based on the proposed
methodology, it is defined a cost function corresponding to the desired behaviour of
the system. In this particular case, a volume error at each tank is considered.

The controller is designed through an optimization problem minimizing econom-
ical costs, the volume error with respect to the safety storage term, and variations in
the control actions. The economical costs are given by (αp

1 +αp
2 (k))>up(k), where

αp
1 is a constant vector defining the energy costs and αp

2 is a time varying vec-
tor determining the water costs. The volume error is given by xp

s − xp, where xp
s is
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the safety storage imposed by the company in charge of the system management.
Finally, the ∆up(k)>∆up(k) corresponds to the smooth operation cost.

These objectives are minimized subject to constraints of mass balance and physi-
cal constraints of actuators. To this end, new variables x̃s ∈Rnu of safety values, and
x̃ ∈Rnu composed of tank volumes, are introduced. Notice that the dimension of the
new vectors of volumes corresponds to the dimension of the vector of control ac-
tions, i.e., x̃s, x̃,u ∈Rnu . The scalar x̃i denotes the volume corresponding to the tank
whose inflow is given by ui, and null in case that ui is not an inflow for any tank.
The safety volume x̃s,i corresponds to the safety volume of the tank whose inflow is
given by ui, and null otherwise. Briefly, x̃i = x j, and x̃s,i = xs, j if ui is the inflow of
the jth tank, and null if ui is not an inflow for any tank.Notice that the constraints
over the system states (i.e., tanks volumes) may not be considered since this ap-
proach does not use a Control-Oriented-Model (COM). The following optimization
problem only depends on measured state values (volumes) and decision variables
(control inputs):

maximize
up

V (up(k)) = −γ1(αp
1 +αp

2 (k))>up(k)

−γ2(x̃p
s − x̃p(k))>diag(up(k)) (x̃p

s − x̃p(k)) −γ3∆up(k)>∆up(k),
subject to Ep

uup(k) = −Ep
ddp(k),[

Inu

−Inu

]
up(k)≤

[
up

max
−up

min

]
.

18.3 Proposed approach

18.3.1 Population-games Approach: First Data-driven Perspective

In this section, a detailed description of the population dynamics-based controller is
done, taking into consideration that it is presented for the case of a single partition or
sub-system. As it was stated before, the control approach is conceived from an anal-
ogy between the population dynamics framework and the DWTN model (see Table
18.1). In order to make clearer the analogy, it is worth to understand the process of
transport between a source tank and the final user.

First of all, storage tanks receive water from treatment plants and/or natural wa-
ter bodies (e.g., aquifers, reservoirs, etc.). Then, this water is redistributed among
several storage tanks, which are located close to the final user. For instance, these
can be placed in houses to prevent shortage when there is a lack of the resource.
Consumers use the water that is available for them into the closest tank. In order to
match supply and demand, the utility has the possibility to manipulate the amount
of water that is deposited into receptor tanks through valves.

Considering this process, one can notice that the control problem is reduced to a
resource allocation problem, in which the system can be seen as the population of
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Table 18.1 Equivalence between population dynamics and DWTN

Population dynamics DWTN
P Population System
i Strategy Receptor tanks
m Population mass Total outflow source tank
q Agents Flow units
ui Proportion of agents Proportion of flow
u Strategic distribution Flow distribution in receptor tanks
fi Fitness of a strategy Available volume capacity

a game. The population is composed by water or flow-units, which summed all up
form a mass (outflow). When the population mass reaches a point in which the flow
diverges, it has the possibility to select one the n paths (strategies) that lead to one
of the receptor tanks in S. The mass is going to select certain strategy based on the
maximization of its wealth, which is defined by a fitness function.

Now that the analogy has been exposed, consider the branched DWTN with n ∈
Z>0 receptor tanks (strategies). The total flow through the system (population mass)
is denoted by Q ∈ R≥0, which corresponds to the outflow of the source tank. Each
flow-unit is assigned to an inflow of one of the receptor tanks.

The scalar ui ∈ R≥0 is the proportion of flow units assigned to each flow asso-
ciated to the tank i ∈ S as a percentage, i.e., the inflow for the ith tank is given by
uiQ. The vector u ∈ Rn

≥0 is the flow proportion distribution involving the n tanks
according to the topology. The set of the possible distributions of flow is given by a
simplex

∆ =

{
u ∈ Rn

≥0 :
∑
i∈S

ui = 1

}
,

and the tangent space of the set of possible distributions of flow is defined as

T∆ =

{
z ∈ Rn :

∑
i∈S

zi = 0

}
.

Each flow unit is assigned to each tank i ∈ S depending on the current volume
capacity, which is described by a function fi(u). Therefore, less inflow is assigned
to those tanks close to be filled up.

The design of the population-dynamics-based controllers are given by the proper
selection of the fitness functions that define the incentives for the proportion of
agents to choose a particular strategy. The proper selection of the fitness functions is
further discussed bellow and it depends on how the water is distributed in a DWTN
with branched topology. Furthermore, it is necessary that the fitness functions satisfy
conditions to obtain a class of population game known as stable game [11].
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Fig. 18.2 Proper selection of fitness functions for divergence topology a) and b). Correspondence
is as follows: a) decreasing fitness function with respect to volume. b) increasing relation existing
between proportion of agents and volume for divergence topology.

Definition 1 The game F(u) is stable if the Jacobian matrix J = DF(u) is negative
semi-definite with respect to the tangent space T∆ [11], i.e.,

z>Jz≤ 0, for all z ∈ T∆, u ∈∆.

Then, it implies that a game is stable if the fitness functions are decreasing with
respect to the proportion of agents. ♦

Notice that for the branched topology, the fitness functions can be selected de-
creasing with respect to the current volume, e.g., the error with respect to the maxi-
mum capacity volume as in [20] (see Figure 18.2a)). When a proportion of agents is
increased it is expected that the corresponding volume increases (see Figure 18.2b)).
Consequently, due to the fact that fitness functions are increasing with respect to the
volume, the fitness function decreases with respect to the proportion of agents (nec-
essary condition for a stable game).

The distributed replicator dynamics

The results presented on this chapter are obtained using the replicator dynamics
[23] in order to find a solution to the resource allocation problem. The solution, in
which no agent has incentives to switch from one strategy to another one [23], is
determined in terms of a Nash equilibrium19, which can be found when the dynam-
ics converge, and is denoted by u∗ ∈∆. The replicator dynamics are of interest in
this work since they share gradient properties studied in [22], and because of their
passivity properties studied in [3]. However, the replicator dynamics require full
information (i.e., all the tanks (strategies) need information about the states of the
others in order to evolve).

19 u∗ ∈∆ is a Nash equilibrium if each used strategy entails the maximum benefit for the propor-
tion of agents selecting it, i.e., the set of Nash equilibria is given by {u∗ ∈∆ : u∗i > 0⇒ fi(u∗)≥
f j(u∗)}, for all i, j ∈ S [23].
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Since the problem is handled using a distributed control approach, it is necessary
to use the distributed replicator dynamics, which were deduced in [2] from a local
revision protocol that only needs partial information. Due to the fact that only local
information is needed, then there is an undirected non-complete connected graph
describing the interactions among agents. It is denoted by G = (V,E), where V is
the set of nodes, which represents the tanks, and E ⊂ {(i, j) : i, j ∈ V} is the set of
links representing the information sharing within the system. Furthermore, the set
of neighbours of the node i ∈ V is given by Ni = { j : (i, j) ∈ E}. Notice that i /∈ Ni,
and that Ni 6= ∅, for all i ∈ V since G is connected.

The distributed replicator dynamics are given by

u̇i = ui

 fi(u)
∑
j∈Ni

u j −

∑
j∈Ni

u j f j(u)

 , for all i ∈ S.

Now that the distributed replicator dynamics have been defined, consider a pop-
ulation composed by a large and finite number of agents. Agents in the population
have incentives to select the tank outflows (e.g., in a general control system, the error
is an incentive for the controller to apply more energy to the system and then cor-
rect the states to achieve the desired values). The incentives, associated to rewarding
that the proportion of agents ui receives, for selecting the tank i ∈ S , are given by a
fitness function fi(u) whose mapping is fi : ∆ 7→ R. Moreover, the vector of all the
fitness functions is denoted by F = [ f1 · · · fn]> with mapping F : ∆ 7→ Rn.

The solution of the population game is given by the condition fi = f j, for all
i, j ∈ S . In order to control the case of flow divergence topology, it is proposed the
following fitness function,

fi = −

(
1

ei +ε

)
, for all i ∈ S, (18.2)

with,
ei = 1 −

xi + si +γ

x̄i +γ
, for all i ∈ S,

where si ∈R≥0 is the shortage volume, i.e., the volume that is demanded but cannot
be supplied by the ith tank, γ ∈R>0 is a constant that ensures 0≤ ei≤ 1, and ε∈R>0
is a small factor that prevents the indetermination of fi when ei = 0. Moreover, the
proposed fitness function for the strategy i ∈ S, only depends on the volume vi and
the proportion of agents ui, making it suitable to apply in this case where only local
information is available.

All the valves, defining the inflow of the receptor tanks in a partition, are estab-
lished by the vector u ∈Rn

≥0. These settings in the output gates affect the behaviour
of the tank volumes, i.e., x ∈ Rn

≥0. Then, the variation of the tank volumes modi-
fies the fitness function (18.2), affecting the control actions over the output valves
u ∈ Rn

≥0.
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18.3.2 Population-games approach: Second data-driven perspective

Consider a society whose topology is represented by an undirected non-complete
connected graph denoted by G = (V,E), where V denotes the set of nodes of the
graph G. These nodes represent the set of n available strategies in a social game
denoted by S = {1, . . . ,n}. Besides, the set E ⊂ {(i, j) : i, j ∈ V} denotes the edges
of the graph G that determines the possible interactions among social strategies.

The graph G is divided into π ∈ Z>0 sub-complete graphs known as cliques
[7]. Additionally, each clique represents a population within the society. The set
P = {1, . . . ,π} denotes the collection of the π populations, and the set of cliques is
denoted by C = {C p : p ∈ P}. The clique corresponding to the population p ∈ P is
a graph given by C p = (V p,E p), where the set V p represents the np available strate-
gies in a population game, which are denoted by S p = {i : i ∈ V p}. On the other
hand, E p = {(i, j) : i, j ∈ V p} is the set of all the possible links in C p determining full
interaction among the population strategies.

In this work, it is assumed that the set of cliques is already known, i.e., the num-
ber of cliques π, the set of vertices V p, and the set of edges E p for all p ∈ P are
known. Although, if it is desired to obtain the optimal set of cliques20, there are sev-
eral methods to find them, e.g., the Bron Kerbosh algorithm [12], or the maximum
clique problem using replicator dynamics as shown in [7]. Once the optimal set of
cliques C has been identified, it is possible to find redundant links. A link (i, j) ∈ E
is redundant if (i, j) /∈ Ẽ , i.e., (i, j) /∈ E p, for all p ∈ P .

Then, the number of cliques that contain a node i∈ V , denoted by G(i), is defined
as follows:

G(i) =
∑
p∈P

g(i, p),

and

g(i, p) =
{

1 if i ∈ V p

0 otherwise.

Due to the fact that the graph G is a non-complete and connected, then all cliques
share at least one node with another clique, which is known as an intersection node.
The set I p = {i∈V p : G(i)> 1} collects all the intersection nodes in a population p∈
P . Moreover, the set of intersection nodes in the graph G is given by I =

⋃
p∈P I p.

Furthermore, all the populations p ∈ P such that a node i ∈ V belongs to the set
of nodes V p are collected in a set denoted by Pi. The set of all the populations that
includes a node i ∈ V is given by Pi = {p : i ∈ V p}, where Pi ⊆ P .

The scalar ui ∈ R≥0 is the proportion of agents in the society selecting the strat-
egy i ∈ S. Similarly, the scalar up

i ∈ R≥0 is the proportion of agents selecting
the strategy i ∈ S p in the population p ∈ P . Moreover, the distribution of agents
throughout the available strategies in the society and populations is known as the

20 The minimum amount of cliques π such that
⋃

p∈P V
p = V , and the minimum amount of links

|Ẽ|, where Ẽ =
⋃

p∈P E
p ⊆ E such that the graph G̃ = (V, Ẽ) is connected.
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social strategic distribution and the population strategic distribution denoted by
u ∈ Rn

≥0, and up ∈ Rnp

≥0, respectively.
The set of possible social strategic distributions is given by a simplex denoted

by ∆, which is a constant set, i.e., ∆ =
{

u ∈ Rn
≥0 :

∑
i∈S ui = m

}
, where m ∈ R>0

is the constant mass of agents in the society. Similarly, the set of possible strategic
distributions of the population p ∈ P is given by a non-constant simplex defined
as ∆p =

{
up ∈ Rnp

≥0 :
∑

i∈S p ui = mp
}
, where mp ∈ R>0 corresponds to the mass of

agents in the population p ∈ P . Furthermore, there is a relationship between the
social proportions and the population proportions given by

ui =
1

G(i)

∑
p∈Pi

up
i . (18.3)

Notice that if it is considered that up
i = 0 for all i /∈ V p, then (18.3) can be written

as
ui =

1
G(i)

∑
p∈P

up
i . (18.4)

The fitness functions take a social or population strategic distribution, and return
the payoff that a proportion of agents playing a certain strategy receives. Let fi :
∆ 7→ R be the mapping of the fitness function for the proportion of agents playing
the strategy i ∈ S , and f p

i : ∆p 7→ R be the mapping of the fitness function for the
proportion of agents playing the strategy i ∈ S p in the population p ∈P . The fitness
corresponding to a strategy i ∈ S is the same as the fitness for a strategy j ∈ S p for
all p ∈ P if i = j. Consequently, for all i ∈ S p and for all p ∈ Pi,

fi(u) = f p
i (up), if ui = up

i . (18.5)

The vector of the fitness functions for a society is given by F = [ f1 . . . fn]> ∈
Rn. The social average fitness is denoted by f̄ , where f̄ = (u>F)/m. Similarly, the
vector of fitness functions for a population p∈P is given by Fp ∈Rnp

, whose fitness
functions are associated to the strategies S p. The average fitness for a population p∈
P is denoted by f̄ p = (up>Fp)/mp. There is a relationship between the population
masses and the social mass given by

m =
∑
p∈P

mp
−

∑
i∈S

(G(i) − 1)ui. (18.6)

The framework of this paper is given by the assumptions stated next.

Assumption 1 The game F is a full potential game [23], i.e., there is a continuously
differentiable function V (u), known as the potential function, satisfying

∂V (u)
∂ui

= fi(u), for all i ∈ S, and u ∈∆.
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Assumption 2 Fitness functions depend only on strategies on which there is con-
nection, i.e., each node requires only available information given by the graph topol-
ogy.

Assumption 3 The proportion of agents playing the strategies corresponding to
intersection nodes are strictly positive for all the time, i.e., up

i > 0 for all i ∈ I, and
for all p ∈ P (i.e., there is not extinction of the intersection population). This also
implies that population masses are strictly positive, i.e., mp > 0, for all p ∈P , since
the population masses are composed of proportion of agents within populations.

Assumption 4 The game F is a stable game [11], i.e., the Jacobian matrix DF(u)
is negative semi-definite with respect to the tangent space T∆ (see Definition 1).

The features of the potential function V (u) determine whether the full potential game
F is stable, as shown in Lemma 1.

Lemma 18.1. If V (u) is twice continuously differentiable and concave, then the full
potential game F is a stable game.

The objective for the society is to converge to a Nash equilibrium21 of the game
F denoted by u∗ ∈ ∆. In order to achieve this objective, there is a game at each
population p ∈ P converging to a Nash equilibrium of the game Fp denoted by
up∗ ∈ ∆p, and the intersection nodes i ∈ I allow a mass interchange among the
different populations.

Population dynamics and mass dynamics

A game is solved for each population with constraints given by the population
masses mp, which vary dynamically. Dynamics associated to each population are
shown in (18.7a). There are π different dynamics of this form, one for each clique
C p for all p ∈ P , i.e.,

u̇p
i = up

i

(
f p
i − f̄ p

−φp) , for all i ∈ S p, (18.7a)

φp = β

 1
mp

∑
j∈S p

up
j − 1

 , (18.7b)

where β is the convergence factor for the whole system that takes a positive and
finite value. Notice that, when φp = 0 (i.e., up ∈ ∆p), then (18.7a) becomes the
classical replicator dynamics equation [27].

On the other hand, there are as many mass dynamics as intersection nodes in the
graph, i.e., one for each i ∈ I. The dynamics for population masses mp are given by

21 u∗ ∈∆ is a Nash equilibrium if each used strategy entails the maximum benefit for the propor-
tion of agents selecting it, i.e., the set of Nash equilibria is given by {u∗ ∈∆ : u∗i > 0⇒ fi(u∗)≥
f j(u∗)}, for all i, j ∈ S [23].
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ṁp
i = mp

i

(
ui − up

i

)
, for all p ∈ Pi, (18.8)

Equation (18.8) describes the movements of agents among populations through
intersection nodes for the case in which there is not social mass constraint [6]. There
might be alternative possibilities in the selection of the mass dynamics (18.8). How-
ever, the requirements that should be satisfied are: i) the dynamics satisfy the com-
munication constraints established by the graph G, and ii) dynamics converge to the
equilibrium point given by ui = up

i , for all p ∈ Pi.
There is a relationship between mp

i , for all i ∈ I p, and the population masses mp

given by

mp =
1
|I p|

∑
i∈I p

mp
i , for all p ∈ P. (18.9)

For the mass dynamics at intersection nodes in (18.8), the vector of masses and
the vector of states associated to an intersection node i ∈ I are defined next. The
masses vector is denoted by mi = [mp1

i . . . mpG(i)
i ]> ∈RG(i), where p1, . . . , pG(i) ∈

Pi; and the vector of population states is ui = [up1
i . . . upG(i)

i ]> ∈ RG(i), where
p1, . . . , pG(i) ∈ Pi; both vectors mi, and ui for all i ∈ I. Notice that, mi 6= mi, and
ui 6= ui.

Finally, the dynamical system can be forced to converge to a Nash equilibrium
u∗ such that F(u∗) =∇V (u∗) converges to a desired value fi(r) for an i ∈ I, where
r is a known value (e.g., a reference). Modifying the relationship between the states
in (18.4) by adding the reference r, the following new relationship is obtained:

ui =
1

G(i) + 1

∑
p∈P

up
i + r

 ,
where up

i = 0, if i /∈ V p. Using this modification, by (18.8), ui tends to r. This makes
f̄ to converge to the desired value fi(r), for only one i ∈ I.

Optimization problems

The presented population dynamics with time-variant mass may be implemented to
solve different constrained optimization problem forms. First, it is presented a pop-
ulation game without social mass constraint but with the positiveness over the pro-
portion of agents. Afterwards, the population-games approach is presented to solve
a constrained optimization problem with several constraints over the proportion of
agents.

First consider optimization problems without social mass constraint. This prob-
lem only demands the positiveness of optimization variables. From a mass dynamics
perspective, it implies a variation of the social mass arbitrarily. The problem is stated
as follows:

maximize
u

V (u)
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subject to u ∈ Rn
≥0,

where V : Rn
≥0 7→ R, and V is continuously differentiable and concave. Also, it is

supposed that the solution point of this problem is an interior point. The solution
for the optimization problem with one constraint is found by F(u) = ∇V (u) = 0,
since V (u) is concave and by the fact that it is known that the maximum point is an
interior point. Therefore, the desired value for the average fitness is fi(r) = 0, and it
is enough to find the correct value for reference r and any intersection i ∈ I.

Secondly, consider optimization problems with multiple constraints over agents
proportions. Suppose that there is a strategic interaction with more than one con-
straint, e.g., different constraints over the proportion of agents. It is desired that the
total amount of certain groups of proportions of agents are constant. This problem
is stated as

maximize
u

V (u)

subject to Hu = h, and u ∈ Rn
≥0, (18.10)

where u ∈ Rn
≥0, V : Rn

≥0 7→ R, and V is concave and continuously differentiable.
Moreover, H ∈ RL×n since there are L constraints and n decision variables, and
h ∈ RL. For this optimization problem, µ is the Lagrange multiplier vector. The
Lagrange function l : Rn×RL 7→ R is

l(u,µ) = V (u) +µ>(Hu − h). (18.11)

Moreover, ∇ul(u,µ) = ∇ f (u) + H>µ, and −∇µl(u,µ) = −Hu + h. The Lagrange
condition is used to find possible extreme points in the objective function, in which
∇ul(u,µ) = 0,∇µl(u,µ) = 0 [8].

Consequently, fitness functions for each node are chosen to be defined as F(u) =
∇ul(u,µ), and F(µ) = ∇µl(u,µ). This problem is solved by using a reference r
as it was explained in Sub-section 18.3.2 in order to force a convergence value for
the fitness functions associated to the social states and the Lagrange multipliers. In
order to use the population and the mass dynamics, it is necessary that the games
are stable according to Assumption 3.

Lemma 18.2. If V (u) is twice continuously differentiable and concave, and the
constraints have the form Hu = h, then the games F(u) = ∇ul(u,µ) and F(µ) =
∇µl(u,µ) are stable.
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Partition 1

Partition 2 Partition 3

Fig. 18.3 Partitions over a branched topology. Some tanks are source and receptor in different
partitions (gray tanks).

18.4 Simulations and results

18.4.1 Case study: First data-driven perspective

In the design of the proposed decentralized controller, it is necessary to make a
partitioning of the DWTN into different sub-systems. Each sub-system must corre-
spond to a case of flow divergence (i.e., each sub-system must be of the form shown
in Figure 18.1). In order to clarify the partitioning process in a typical branched
DWTN, an arbitrary DWTN is presented in Figure 18.3. At this general example,
it is possible to identify that the whole system is composed of three partitions or
sub-systems.

When performing the partitioning, it is possible to find some tanks that are a
source and also a receptor for different sub-systems in the DWTN (this is typical
when the topology is branched). For instance, in the partitioning presented in Fig-
ure 18.3, the gray tanks are receptors for the partition 1, and source tanks for the
partitions 2, and 3.

A DWTN composed by eight tanks is controlled (see Figure 18.4), for an sce-
nario in which shortages are produced due to the fact that the network is only
operating with water stored in the main upstream tank. The system is a branched
DWTN whose topology is mainly divergent, so it can be partitioned in three main
subsystems; all independently controlled by a distributed replicator-dynamics-based
controller. The maximum storage capacity and the scale factors of each tank are
presented in Table 18.2. Since the system is branched and the divergence topology
prevails, it is possible to divide the system into three partitions, as it was described
before. The first one is composed by tanks 2, and 3, the second by tanks 4, and 5,
and the third by tanks 6, 7, and 8. Each partition receives the flow from a source
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Table 18.2 Maximum volumes and scale factors of the tanks in the DWTN.

Tank i x̄i
[
m3] Ki

[
1/ms

]
1 2.0 0.123
2 1.1 0.160
3 2.0 0.326
4 0.5 0.599
5 2.6 0.660
6 0.2 0.632
7 2.0 0.255
8 3.5 0.427

x1 d1

x2 d2 x3 d3

x4 d4 x5 d5 x6 d6 x7 d7 x8 d8

Fig. 18.4 Case study with eight tanks in a branched DWTN.

tank, which is distributed in different proportions, depending on the setting of the
input valves of each tank of the partition.

Each tank attends a different demand pattern along the day denoted by di. The
tanks with volumes x5 and x8 supply a constant demand pattern of 4.5× 10−3 l/s,
while the others, denominated as inactive tanks (i.e., tanks 2, 3, 4, 6, and 7) are
just operating to store water, not attending any demand pattern. When there is not
a control strategy, the flow is divided equally, and shortage of 26 m3 is produced
because the distribution of flows is inefficient, as shown in Figures 18.5a), 18.5b),
and 18.5c).

When the control strategy is applied, then the priority is given to the tanks that
supply the demand, and inactive tanks become less filled up since they are not at-
tending any demand pattern. Thereby, no shortages are produced, the demand is
fully supplied, and the distribution of flows is more efficient, in comparison to the
case with no control. This is because all the tanks keep some volume stored on them
at the end of the day, while in the other case, tanks 5 and 8 are completely empty.

It has been shown that the proposed decentralized population dynamics-based
control is efficient in terms of a better distribution of drinking water throughout
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Fig. 18.5 Evolution of the used capacity in storage tanks; (a, b, c) capacity of tanks when no control
strategy is applied; and (d, e, f) capacity of tanks when the evolutionary game-based strategy with
the replicator dynamics is applied.

the DWTN, avoiding shortages. The partitioning proposed methodology allows to
design the decentralized controller by using different local controllers with a lower
computational burden with respect to a centralized controller.

18.4.2 Case Study: Second data-driven perspective

Consider the case study presented in Figure 18.6, which corresponds with the aggre-
gate model of the Barcelona Drinking Water Network presented in Figure 2.2. For
this system, consider x̃ = [x̃1 x̃2 . . . x̃61]>, x̃s = [x̃s,1 x̃s,2 . . . x̃s,61]>, and
u = [u1 u2 . . . u61]> according to the explanation presented in Section 18.2.2.

In the control design, the first step is the determination of cliques within the
system, i.e., to make a partitioning of the system. The aforementioned partition pro-
cess of the BDWTN is a problem already studied in [18]. For the BDWTN control
problem, the proposed partitioning is determined based on the system mass-balance
constraints. Lagrange-multiplier vertices are connected to decision variables ver-
tices from which information is needed in order to compute the fitness functions
F(µ). As a criterion for performing the partitioning, it is desired that all the La-
grange multipliers, and the nodes connected with them, belong to the same clique.
In order to formalize this partitioning criterion, letH j be the set of all the nodes that
are involved in the jth equality constraint of the form (18.10), where j = 1, . . . ,L,
e.g., for the BDWTN system, H1 = {1,2,5,6}, and H2 = {2,3}. Furthermore, we
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Fig. 18.6 Aggregate model of the Barcelona DWTN (BDWTN), comprised by 17 states, 61 control
actions, 25 demands, and 11 mass-balance nodes.

Table 18.3 Partitioning of the network into the three resultant cliques.

Clique Vertices u Involved states x

1 1,2,3,4,5,6,7,8,9,10,11,13,17,18,22,29,30,36,37,38 1,2,3,4,6,7,9,10,11
2 12,14,15,16,19,20,21,23,24,25,26,27,31,32,33,34,39, 4,5,6,7,8,9,10,12,14

40,41,45,46,47
3 28,35,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59, 9,10,11,12,13,14,15,

60,61 16,17

consider two sets of nodes for mass-balance constraintsHi, andH j. IfHi∩H j 6= ∅,
then all the nodesHi∪H j should belong to the same clique.

Based on this idea, it is possible to determine the vertices (strategies) that
should belong to the same clique (population). As an example, consider the set
of nodes associated to the constraint given by mass-balance node 9, i.e., H9 =
{28,35,43,49}, and the set of nodes corresponding to the mass-balance constraint
10, i.e., H10 = {43,44,52}. There is a common vertex given by H9 ∩H10 = {43}.
Now, considering the constraint corresponding to the mass-balance node 11, i.e.,
H11 = {50,51,52,56,57,58,59,60,61}, then it is obtained that H10 ∩H11 = {52}.
Consequently, all the nodesH9∪H10∪H11 should belong to the same clique.
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Fig. 18.7 Partitioning of the BDWTN into three cliques (see Table 18.3).

On the other hand, there are some vertices that are not associated to any con-
straint, e.g., the node 4 associated to the decision variable x4, then 4 /∈ H j for all
j = 1, . . . ,11. In these cases, vertices are assigned to the closest clique. Cliques
are presented in Figure 18.7, and the nodes of each clique are shown in Ta-
ble 18.3. Notice that {H1∪H2∪H3∪H5} ∈ V1, {H4∪H6∪H7∪H8} ∈ V2, and
{H9∪H10∪H11} ∈ V3.

Once the partitioning is performed, the optimization problem (18.1) is stated of
the form (18.10) by adding slack variables, which may be solved by using the popu-
lation and mass dynamics. In this case, the society is composed of three population
(cliques). In order to analyse the performance of the data-driven controller, the ob-
tained results are compared to a centralized MPC controller. Figure 18.8 presents
the evolution of three volume tanks (i.e., x1, x12, and x14), and three control inputs
(i.e., u18, u32, and u40) for both centralized MPC controller and data-driven con-
troller based on population dynamics. In Figures 18.8a), 18.8b), and 18.8c) show
that, with the centralized MPC controller, the tanks are maintained with more vol-
umes with respect to the data-driven controller based on population dynamics. This
better performance of the centralized MPC controller is obtained due to the fact it
disposes of the system model in comparison to the data-driven control approach.
Moreover, Figures 18.8d), 18.8e), and 18.8f) show the similar performance of the
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Fig. 18.8 Evolution of volumes (a) 1, (b) 12, and (c) 14. Evolution of control inputs (d) 18, (e) 32,
and (f) 40.

Table 18.4 Discrimination of economical costs for different control strategies.

Total Cost in Economical Units (e.u.)
Population Dynamics Approach Model Predictive Control

Day Data-driven Controller Model-based Controller
Water Energy Water Energy

1 45484.48 18409.34 37915.28 22096.12
2 41384.76 18131.81 28352.38 22235.15
3 40022.43 18791.73 28400.39 22288.11
4 40389.76 18387.35 28330.14 22219.59

Sum 167281.43 73720.23 122998.21 88838.97
Overall costs 241001.66 211837.17

control inputs for both controller. This close behaviour is obtained because of the
constraints, which are taken into account for both control approaches.

Table 18.4 shows the comparison of the economical costs obtained with the
centralized MPC strategy and the data-driven population-games-based control ap-
proach. The results exhibit lower energy costs associated to the control inputs with
the data-driven approach. However, since the MPC controller disposes of the model
system to generate a prediction, the centralized MPC approach minimizes more the
overall costs. In contrast, even though the minimization of costs, the data-driven
control scheme is non-centralized, reducing the amount of required communication
links in order to compute the final control inputs.
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18.5 Conclusions and research perspectives

Two data-driven non-centralized control strategies to manage water flows among
drinking water networks have been presented. The proposed controllers are based on
population games, and have been designed using the distributed replicator dynam-
ics and a modification of the population dynamics incorporating mass dynamics.
Additionally, two partitioning approaches have been introduced in order to divide
the typical centralized control problem into several sub-systems. The partitioning of
the system allows to reduce the computational burden required to manage the flows
among the system. In the first population-games approach, the partitioning implies
a decentralized control scheme since the local controllers do not communicate to
each other. On the other hand, the partitioning in the second population-games im-
plies a distributed control scheme since there is overlapping among the resulting
sub-systems. Both techniques have been tested using two different case studies.
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