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Abstract— In this paper, a distributed control scheme based
on population games is proposed. The controller is in charge
of dealing with the energy consumption problem in a Hetero-
geneous Cellular Network (HetNet) powered by hybrid energy
sources (grid and renewable energy) while guaranteeing appro-
priate quality of service (QoS) level at the same time. Unlike the
conventional approach in population games, it considers both
atomicity and non-anonymity. Simulation results show that the
proposed population-games approach reduces grid consumption
by up to about 12% compared to the traditional best-signal level
association policy.

I. INTRODUCTION

The energy efficiency in the next generation cellular net-
works is a field of special interest today, particularly with
the exponential growth of users expected in 5G systems.
This phenomenon has motivated different projects focused
on the study of ways to reduce grid consumption in cellular
networks. One of the conclusions of these projects is that
most of the grid consumption in cellular networks is caused
by base stations (BSs) and also depends on the traffic load
[4]. This problem is quite related to the design of the user-
BS association algorithm, which determines how the network
uses its resources to serve the users.

Among different alternatives to improve the energy effi-
ciency in cellular networks [19], the utilization of renewable
energies (RE) as the power source for BSs has been relevant
in the last few years. However, the integration of RE in
next-generation cellular networks (NGCN) presents various
challenges. Some of them are related with the need for
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control strategies and short-time response to guarantee the
network stability despite the variability of renewable sources
[9]. This is an appropriate scenario for the application of
distributed control solutions [6], [16].

Game theory has been used to solve the user-BS asso-
ciation problem. In [3], the user-BS association problem
in HetNets has been modelled as a non-cooperative game
and solved with a distributed algorithm inspired by machine
learning techniques. In [11], the network-selection problem
has been studied by using coalitional games with an evolu-
tionary perspective. In particular, the need for a users-centric
paradigm in fully-distributed environments and the multi-
objective characteristics of next generation network systems
was stated. Finally, an introduction to distributed population
dynamics applied to optimization and control problems can
be found in [5].

In this paper, population games are used to develop a
distributed user-BS association mechanism to reduce grid
consumption in a HetNet powered with hybrid energy
sources. To evaluate the proposed mechanisms, we utilize
a two tier HetNet where the first tier is a Macro-Base
station (MBS) powered by on-grid energy and the second tier
is composed by small cell-base stations (SCBSs) powered
only by renewable energy. This network architecture requires
more demanding control strategies to guarantee quality of
service (QoS) levels. Wind is the only green-energy source
considered because it is highly fluctuating, fact that has a
significant effect on user-BS association dynamics increasing
the control requirements.

The main contribution of this paper is a novel distributed
user-BS association scheme based on population games to
reduce grid consumption in HetNets powered by hybrid
sources without storage systems. In particular, characteristics
of atomicity and non-anonymity are considered to take into
account that one user decision affects the global performance
of the system. It is important to note that atomicity and non-
anonymity are novel features of the population games ap-
proach proposed being this the main difference with previous
works as presented in [5], [17]. For this reason, we refer to
the proposed mechanism as population-like games.

The remainder of the paper is as follows. In section
II, the problem statement is described. Section III presents
the atomicity and non-anonymity approaches in population
games. Section IV describes the simulation scenario. In
Section V, the performance of the proposed schemes is eval-
uated, including the analysis of results. Finally, in Section VI,
conclusions are drawn. A summary of the notation used on



TABLE I
NOTATION

Parameter Description

B Set of base stations
b Number of base stations
` Base station’s index
U Set of users
u Number of users
i User’s index
p Possible location
k Discrete time step
N Simulation horizon
Bk Active base stations in a time k
Bi,k Available BSs providing service to i ∈ U at k
C`,k Energy consumption of BS ` at k
rpi`,k Transmission rate of i ∈ U , connected with a BS ` at k
ψp
i` SINR perceived by i ∈ U in p from BS `
ϕ Threshold: minimum SINR required to have service
yi` User-BS association indicator for user i with BS `
zA,k Number of active users at k
zmax
` Users that can be served by a SCBS ` simultaneously
fi`,k Fitness function perceived for i ∈ U from BS ` at k
%h`i,k Switching rule from strategy ` to strategy h for i ∈ U

this work can be found in Table I.

II. PROBLEM STATEMENT

The major sources of energy consumption in a cellular
network are base stations (BSs), whose consumption depends
on the number of active users in a given time instant [4].
Hence, a suitable user-BS association mechanism is key
to reduce on-grid consumption. To evaluate the proposed
population-like games user-BS association mechanism, a
two-tier downlink HetNet,which is composed of one MBS
and multiple SCBSs, is used. The MBS is always on and is
powered by on-grid energy, while the SCBSs are powered
exclusively by renewable energy without a battery system.

Let us define a geographical area A ⊂ R2 where base
stations and users are located. The set of b ∈ Z>0 base
stations is denoted by B = {1, . . . , b} and a set of u ∈ Z>0

users is denoted by U = {1, . . . , u}. Let p ∈ A denote
a possible location, and b = 1 ∈ B represent the MBS.
Let k ∈ Z≥0 denote the discrete time with a sampling time
given by τ ∈ Z>0 seconds, and let N ∈ Z>0 be a simulation
horizon. Each SCBS updates its cell size every τ seconds by
changing the transmission power according to the amount
of renewable energy available at its location. In each time
instant k, a set of Bi,k ⊂ B base stations are available to
provide service to user i ∈ U .

A. Energy Model

The energy consumption model used in this paper has been
proposed by project EARTH and has been widely used in
works related to energy efficiency in cellular networks [8],
[13], [20]. According to EARTH, the energy consumption
of a BS consists of two parts: the static power consump-
tion and the dynamic power consumption [4]. The energy
consumption can be expressed as

C`,k = ∆`δ`,kT`,k + ES
` , ∀` ∈ B, (1)

where ∆` is the slope of load-dependent energy consumption
of BS `, the transmission power of BS ` at the kth time
instant is T`,k, the traffic load of BS ` at the kth time instant
is δ`,k, and ES

` is the static energy consumption of BS ` in
each time instant. Static power consumption is related to the
energy required for the normal operation of a BS, and the
dynamic power consumption is the additional energy demand
caused by the traffic load, which is approximated by a linear
function of the load.

Here, the total energy consumption of the network scenario
in a given time instant is the sum of the grid consumption
(due to MBS) and the green consumption (due to SCBSs).
Hence, the reduction of consumption in BS ` = 1 (MBS) is
the key to improve energy efficiency.

B. Traffic Model

Traffic requests are modelled as an inhomogeneous Pois-
son point process [12]. The traffic size, the arrival rate per
area λp ∈ R≥0, and the average traffic size µp ∈ R≥0, for
all p ∈ A, are independently distributed. Moreover, these
three elements are used in order to capture the spatial traffic
variability, as in [12].

A mobile user i ∈ U , at location p ∈ A, associated with a
BS ` ∈ Bi,k, has a transmission rate denoted by rpi` ∈ R≥0,
which can be generally expressed according to the Shannon-
Hartley theorem [12] as

rpi` = W` · log2(1 + ψp
i`), ∀i ∈ U , ` ∈ Bi,k, p ∈ A, (2)

where W` ∈ R≥0, is the operating bandwidth. The received
signal by user i ∈ U at location p ∈ A from ` ∈ Bi,k is given
by signal-to-interference-plus-noise ratio (SINR) denoted in
this paper by ψp

i` ∈ R≥0.
In this work, it is assumed that the network’s frequency

scheduling is such that each SCBS can only serve a fixed
number zmax

` of users simultaneously for all ` ∈ B\{1}.
Nevertheless, the MBS has no limit for the number of served
users, being able to serve all active users at an instant zA,k.
Note that the bandwidth assigned to a user i ∈ U connected
to the BS ` ∈ Bi,k is affected by the number of users
connected to it for the channels available must be shared
between the active users.

Assuming that mobile users are uniformly distributed in
the coverage area of all BSs, the traffic load of the `th BS
in the kth time instant can be expressed as

δ`,k =

∑
i∈U yi`,k

U`,k
, ∀` ∈ B, (3)

U`,k =

{
zA,k, if ` = 1,
zmax
` , otherwise,

where yi` is the user association indicator, i.e., if user i ∈ U
is associated to the BS ` ∈ B, then yi` = 1, and yi` = 0
otherwise. Moreover, note that 0 ≤ δ` ≤ 1, for all ` ∈ B and
time instant k.

The average transmission rate per user in the kth time
instant depends on ψ and the number of users connected to



the serving BS [2], which allows to express (2) as

rpi`,k =
W`∑

i∈U yi`,k
log2(1 + ψp

i`), ∀ i ∈ U , ` ∈ Bi,k. (4)

According to [1], at each time instant, a user can be associ-
ated with the `th BS if the received signal level ψp

i` is greater
than a threshold ϕ that indicates the minimum signal level
required by a user to have service.

C. On-grid Energy Consumption Optimization Problem

As previously mentioned, on-grid consumption reduction
and adequate transmission rates are design requirements in
NGCN. Hence, the optimization problem has two objectives:
i) to reduce the overall system grid consumption, and ii) to
maximize the average transmission rate per user. According
to this, it is possible to formulate the following optimization
problem:

min
y11,k,...,yn1,k

J(y11,k, . . . , yn1,k) = (5a)

N∑
k=1

{
γ1
∑
i∈U

yi1,k − γ2
W`∑

i∈U yi`,k
log2(1 + ψp

i`)

}
,

s.t.∑
i∈U

yi`,k ≤ zmax
` , ∀` ∈ B\{1}, k ∈ [0, N ] ∩ Z≥0, (5b)

yi`,k.ψ
p
i` ≥ ϕ, ∀i ∈ U , ` ∈ Bi,k, k ∈ [0, N ] ∩ Z≥0, (5c)∑

`∈B

yi`,k ≤ 1, ∀i ∈ U , k ∈ [0, N ] ∩ Z≥0, (5d)

yi`,k ∈ {0, 1}, ∀i ∈ U , ` ∈ B, k ∈ [0, N ] ∩ Z≥0, (5e)

where (5a) is the objective function, which focuses on min-
imizing consumption from the grid and maximizing user’s
transmission rate with an optimal assignment of active users
to available BSs at each time instant. Moreover, γ1, γ2 ∈ R>0

are weights assigned to each objective. Expressions in (5b)-
(5e) are the problem constraints: (5b) establishes that a small
cell ` can serve a maximum of zmax

` users simultaneously;
(5c) is the user’s received signal level constraint, (5d) re-
quires that a user is served only by one BS in a time instant;
and (5e) establishes that yi,` is a binary variable.

The optimization problem (5) is a multi-objective mixed
integer problem (MIP), a well-known NP-hard problem [10].
However, the distributed control strategy based on population
games proposed in this paper is a suitable alternative for
reducing the computational burden. Improving computational
burden is possible since each user solves a limited maximiza-
tion problem based only on the comparison of its current
fitness function with the fitness function offered by the subset
of BSs (Bi,k).

Another key element in the proposed game-theory-based-
mechanism is the possibility of designing a fitness function
according to the cost function in the optimization problem. In
this case, the fitness function maintains the weight for each
objective and includes an incentive to choose a BS powered
by renewable energy. These features are here expressed as

fi`,k = γ1Pi` + γ2r̃
p
i`,k, ∀` ∈ Bi,k, (6)

where the condition γ1 + γ2 = 1 must hold. Here, Pi` is the
incentive received for user i ∈ U to choose a cell ` ∈ Bi
according to the energy source and r̃pi`,k is the normalized
transmission rate that can receive user i ∈ U from BS ` ∈
Bi at time instant k ∈ [0, N ] ∩ Z≥0. On-grid energy has
a higher economic and environmental impact compared to
green energy, being suitable to consider a network-operator
policy focused on encouraging users to use cells powered
by renewable energies. For this reason, in this paper it is
proposed a green incentive G for users such that

Pi` =

{
G, if ` = 1,
2G, if ` ∈ B\{1}. (7)

The energy efficiency problem is studied using a dis-
tributed population-like game approach with atomicity and
non-anonymity features. Hence, in each time instant k ∈
[0, N ] a user i ∈ U with revision opportunity evaluates its
fitness function fi`,k among available choices Bpi,k ⊂ B and
selects the destination BS according to the switching rule
denoted by %h`i,k [18].

III. ATOMICITY AND NON-ANONYMITY IN
POPULATION-LIKE GAME APPROACH

Some of the main characteristics of population dynamics,
which can be seen as restrictive features for applying this
game-theoretical approach in engineering applications, are
the anonymity and non-atomicity [7].

Definition 1: (Anonymity [7]) The anonymity describes
the situation in which the index of decision makers does
not affect the utility function. This concept can also be
associated with the homogeneousness of decision makers
selecting strategies, i.e., decision makers are assumed to be
indistinguishable within the same strategy. ♦

Definition 2: (Atomicity [7]) The atomicity describes the
situation in which a single decision maker affects the global
utility. ♦

This paper presents an alternative population-like game
approach that allows dealing with atomicity and non-
anonymity. In fact, it is assumed that each decision maker
within the population is different, and consequently each de-
cision maker has a different utility. Therefore, each individual
decision maker affects the global utility. In addition, all the
decision makers selecting the same strategy are considered
to be different even though they belong to the same strategy.

Let U be the set of rational decision makers in a popula-
tion located throughout a bi-dimensional geographical area
denoted by A ⊂ R2. These agents are rational in the sense
that they make decisions pursuing the improvement of their
individual benefits. Moreover, let B = {1, . . . , b} denote the
set of choices that the set of decision makers have. More
precisely, let Bpi,k ⊂ B denote the possible choices that
the ith decision maker has at time instant k depending on
its geographical position p ∈ A, where Bpi,k 6= ∅, for all
i ∈ U , k ∈ Z>0, p ∈ A. In other words, the sets Bi, for all
i ∈ U define possible interaction sets. For simplicity, it is
omitted the superscript p, indicating that the set of available



strategies for each decision maker depends on its position,
i.e., Bi,k = Bpi,k.

The set of decision makers selecting the strategy ` ∈ B at
time instant k is given by U`

k ⊆ U . Note that the cardinality
|U`

k| =
∑

i∈U yi`,k for all k and |U| =
∑

`∈B
∑

i∈U yi`,k.
Moreover, consider a strategic profile given by a distribution
of decision makers U throughout the set of choices B, i.e.,(
U1
k , . . . ,Ub

k

)
, which represents the population state, where⋂

`∈B U`
k = ∅, and

⋃
`∈B U`

k = U . Also, let gi = {` ∈ B :
i ∈ U`} return the strategy that a decision maker i ∈ U is
choosing. In addition, let the amount of decision makers be
constrained at each possible choice, i.e., |U`

k| ≤ zmax
` , being

zmax
` ∈ Z>0, for all ` ∈ B.

Assumption 1: The initial distribution of decision makers(
U1
0 , . . . ,Ub

0

)
in the population is feasible, i.e., |U`

0 | ≤ zmax
` ,

for all ` ∈ B. It implies that n = |U| ≤
∑

`∈B z
max
` .

Moreover,
⋂

`∈B U`
0 = ∅, and

⋃
`∈B U`

0 = U . ♦
Let fi`,k ∈ R be the fitness function for the decision maker
i ∈ U selecting the strategy ` ∈ B at time instant k ∈ Z>0. If
two decision makers i, j ∈ U are selecting the same strategy
` ∈ B, then fi`,k 6= fj`,k since the population considers
non-anonymity. Furthermore, since the decision maker i ∈ U
cannot select the strategies B\Bi,k, then for simplicity it is
considered that the decision maker has no incentives to move
to such a strategy, i.e., fi`,k = 0, for all B\Bi,k. The objective
within the population is to achieve a Local ε-Equilibrium
[17] as presented in Definition 3, which also provides notions
about Local Nash Equilibrium [14], [15].

Definition 3: (Local ε-Equilibrium). Let ε ∈ R≥0. A pop-
ulation distribution

(
U1∗, . . . ,Ub∗) is a Local ε-Equilibrium

with respect to the interaction sets Bi if all decision makers
i ∈ U`∗, for all ` ∈ B, satisfy the following condition:

fi` ≥ fi`′ − ε, ∀ `, `′ ∈
{
h ∈ Bi : |Uh| < zmax

h

}
. (8)

On the other hand, if condition (8) holds with ε = 0, then(
U1∗, . . . ,Ub∗) is a Local Nash Equilibrium with respect to

the interaction sets Bi. ♦
The population evolves according to switching rules, which
determine the timing and the result of decision makers’
choices. Let %h`i,k ∈ R≥0 represent the switching rule for the
ith decision maker. Therefore, if %h`i,k > 0, then the decision
maker i ∈ U has incentives to move from the hth strategy
to the `th at time instant k. The evolution of the population
is made by assigning a revision opportunity as described
in [18]: a decision maker is chosen randomly from the
population, and it receives an opportunity to decide whether
or not it should move to another strategy by comparing its
utility with those it would obtain by selecting the strategy
with a higher fitness function from the set Bi,k.

Assumption 2: Suppose that a decision maker i ∈ U
receives a revision opportunity. Then, before its next revision
opportunity, all decision makers j ∈ U\{i} receive a revision
opportunity. ♦

Being i ∈ U the decision maker with a revision opportu-

nity, then the procedure is as follows:

Ugi
k+1 = Ugi

k \
{
i sgn

(
%gi`i,k

)}
, for any i ∈ U , (9a)

U`
k+1 = U`

k ∪
{
i sgn

(
%gi`i,k

)}
\{0} , for any ` ∈ Bi,k. (9b)

Notice that the equilibrium in (9) is achieved when %gi`i =
0, for all i ∈ U , ` ∈ Bi, i.e., when the decision maker i ∈ U
has not incentives to move to any strategy ` ∈ Bi,k. In this
case, U`∗

k+1 = U`∗
k , for all ` ∈ B.

Remark 1: Notice that in (9) each decision maker i ∈ U
does not require full information from the population, but
only local information from Bi. ♦

Now, it is necessary to define an appropriate switching rule
for the population. Consider the following switching rule:

%h`i,k=
(
zmax
` − |U`

k|
)
max (0, fi`,k−fih,k− ε) ,∀h, `∈Bi, (10)

where ε ∈ R≥0. Notice that the switching rule in (10)
indicates that the ith decision maker has incentives to move
from the hth to the `th strategy only if it represents an
improvement over its utilities greater than ε and there is
available capacity at the `th strategy. Proposition 1 shows
that an equilibrium in dynamics (9) with the aforementioned
switching rule implies a Local ε-Equilibrium with respect to
the allowed interactions within the population.

Proposition 1: (ε-Equilibrium Point) The equilibrium
point of the dynamics in (9) with the switching rule in (10)
implies a Local ε-Equilibrium with respect to the interaction
sets Bi, for all i ∈ U .

Proof: It immediately follows from the fact that the
equilibrium in (9) implies that %gi`i = 0, with i ∈ Ugi∗, for
all i ∈ U , ` ∈ Bi. Therefore, fi`,k ≤ figi,k+ε, with i ∈ Ugi∗,
for all i ∈ U , ` ∈ Bi such that zmax

` < |U`
k|, which is the

required conclusion according to Definition 3.
In addition to obtaining a local equilibrium (Definition

3), Proposition 2 shows the satisfaction of constraints stated
involving the initial condition in Assumption 1, for all the
time instants k ∈ Z>0.

Proposition 2: (Satisfaction of constraints) If Assumption
1 holds, then, |U`

k| ≤ zmax
` ,

⋂
`∈B U`

k = ∅, and
⋃

`∈B U`
k = U

under dynamics in (9) for all time instants k ∈ Z>0.
Proof: Regarding the first constraint, it is assumed

that |U`
0 | ≤ zmax

` , for all ` ∈ B. Moreover, notice that
the cardinality |U`

k| only can growth one by one, for all
` ∈ B, due to the fact zmax

` ∈ Z>0 and that %gi`i,k = 0 in
(9) if constraint |U`

k| ≤ zmax
` is active. Then |U`

k| ≤ zmax
` ,

for all ` ∈ B and all k ∈ Z>0. Regarding the second
constraint, notice that 0 /∈ U`

k, for all ` ∈ B. It follows
that if

⋂
`∈B U`

k = ∅, then for any i ∈ U , Ugi
k ∩ U`

k = ∅, and
{Ugi

k \T } ∩
{
U`
k ∪ T

}
= ∅, for any set T .

Regarding the third constraint:
Ugi
k+1 ∪ U`

k+1 =
{
Ugi
k \
{
i sgn

(
%gi`i,k

)}}
∪{

U`
k ∪

{
i sgn

(
%gi`i,k

)}
\ {0}

}
= Ugi

k ∪ U`
k, completing

the proof.

IV. CASE STUDY
The scenario described in Section II was implemented to

evaluate the proposed mechanism. The case study considered



TABLE II
SIMULATION PARAMETERS

Parameter Value Units

Coverage Area 3.5 km2

System LTE -
N. Macro Base Station 1 -
N. SCBS 36 -
Inter-site distance 500 m
Tx power MBS 43 dBm
Tx power SCBS 22 dBm
Static Power Cons. MBS 130 W
Static Power Cons. SCBS 6.8 W
Consumption Slope MBS 4.7 -
Consumption Slope SCBS 4.0 -
Path loss between MBS and user Cost 231 model -
Antenna Gain 15 dBi
Max. users simultaneously for an SCBS 100 -
Receiver sensitivity −107.5 dBm
Time instant length 1 s
Mobility Model Random walk point -
Mobility Speed 4 km/h
γ1 0.6 -
γ2 0.4 -
G 0.5 -

is composed of one MBS and 36 overlapping SCBSs. The
MBS is powered by on-grid energy, which is always on,
ensuring constant coverage over the area. Each BS covers
one sector, and only large-scale loss is considered in the
simulations.

From a telecommunications viewpoint, the technical pa-
rameters of the simulation are defined according to a Long-
Term-Evolution system in a coverage area of 3.5 km2 [1].
The distance between BSs is 500 m and users are uniformly
distributed in the coverage area. Users are moving according
to a random walk point model with 4 km/h speed. Table
II summarizes the parameters used in the simulation. In
traditional cellular networks, mobile users connect to the
BS that offers the best SINR, which depends on BS power
transmission, path loss, and interference from other BSs.
However, this mechanism is not entirely adequate for Het-
Nets, since SCBSs with available resources can be ignored
by users when receiving a stronger signal from an MBS
[2]. In the rest of the paper, this procedure is referred to
as the traditional scheme, and it will be the baseline for
evaluating the performance of the proposed game-theory-
based mechanism. In particular, to evaluate the performance
of the proposed game-theory-based mechanism, a dynamic
scenario with a controlled wind profile is used to enable
different groups of SCBS during specific time periods. As a
consequence, the number of active BSs changes according
to the pre-defined sequence.

V. RESULTS AND DISCUSSION

Using MATLAB R©, it was possible to evaluate the pro-
posed schemes and their impact on grid power consumption
and users transmission rate in an environment with changing
characteristics of renewable sources.

Figure 1 shows the user-BS association process in the
scenario with the controlled wind and 1000 users, which
changes the network topology each 60 time instants. Initially,

users are connected to the MBS because it is the only station
active. In time instant 61 (Figure 1(a)), a sector of small cells
is activated and some users change their BS according to the
revision protocol. It is important to note that the revision
opportunity is a probabilistic process. Hence not all users
make a decision at the same time. In Figure 1(b), it is
possible to observe the game evolution at the end of this
wind episode (k = 120). Here, the largest number of users
in the area with active SCBS are distributed over green cells.
It is important to note that some users continue to connect to
the MBS despite being in a location with coverage of green
cells, for they find a better utility in the MBS either due to
the cells overload or because these users are located on the
edges of small cells where the transmission rate is worse.
In this case, the second element of the objective function
presented in (5a) has a dominant role in the utility function.

Figure 1(c) presents the game evolution in k = 360. Here,
it is observed that most users with the possibility of accessing
a green cell are associated with one of them. Finally, Figure
1(d) shows the last time instant in the period with all
SCBS active. There, it is possible to observe a uniform
distribution of users over green cells and the accomplishment
of the objective of discharging traffic load from MBS to
cells powered by renewable energies. Regarding the users
connected to the MBS, besides the evaluation of utility
function mentioned previously, it is important to remember
that the process of user generation is dynamic and, for this
reason, at each time interval there will be users who have
not started the game. These new active users are connected
to the base station with the best signal level, in this case the
MBS.

Regarding energy efficiency, the proposed game-theory-
based mechanism has a grid consumption of 79.7 kW com-
pared with 91 kW of the traditional scheme. This represents
a reduction up to 12.4%. On the other hand, the average
transmission rate is 17.1 Mbps with the traditional scheme
and 16.6 Mbps with the game-theory-based mechanism,
which is a consequence of the priority to reduce on-grid
consumption and the relationship between signal level and
the user rate presented in (2). Nevertheless, the impact over
network throughput is minimal (2.4%). Figure 2 shows the
behaviour of cost function components. There it is possible
to observe a gradual reduction of grid consumption along the
simulation time Figure 2(a). In the same way, in Figure 2(b)
we can see a gradual maximization of average user rate until
a stable point. This behaviour is in line with the objective
function presented in (5a).

VI. CONCLUSIONS

The goal of this paper was to study a distributed game-
theory-based mechanism to control the user-BS association
process in a HetNet powered by renewable energy, reduc-
ing grid consumption and improving energy efficiency. The
proposed mechanism is based on a population game with
characteristics of atomicity and non-anonymity, elements
not considered previously in proposals based on similar
methodologies.



(a) (b) (c) (d)

Fig. 1. User-BS association process with the proposed scheme. State of network at different time instants (a) k = 61, (b) k = 120, (c) k = 360, and
(d) k = 480.

C
1
,k

[w
at

ts
]

0 50 100 150 200 250 300 350 400 450 500
130

140

150

160

170

180

190

200

210

(a)

M
bp

s

0 50 100 150 200 250 300 350 400 450 500
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

(b)

Fig. 2. Behaviour of the cost function components.

The distributed population dynamics mechanism has been
shown to be a suitable option for balancing traffic in dense
HetNets and reducing grid consumption through traffic dis-
charge from MBS to green SCBS. Another important charac-
teristic observed is the possibility to reduce the users search-
space to a subset of strategies, which facilitates solving
the integer association problem, being a proper option for
controlling systems with a large amount of users, as expected
in next generations of cellular networks. It is part of our
future investigation to formally relate the equilibrium of the
proposed game-theoretical approach with the solution of the
optimization problem.

Finally, it is important to emphasize that the proposed
distributed game-theory-based mechanism can be used to
attain other goals related to the performance of the network
through the modification of the utility function.
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