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Abstract— In this paper, tools from cooperative game the-
ory are combined with predictive control to perform the
partitioning of large-scale systems (LSS). More specifically, a
partitioning algorithm based on the Shapley value to rank the
links by using a cooperative cost game is proposed. To this end,
coalitional model predictive control, which offers a trade-off
between control performance and communication burden, is
considered to assess the value of the coalitions in the game.
Also, combinatorial explosion issues are relieved by means of
an attribution of value to the links based on the nodes they
connect. The proposed method is implemented in the Barcelona
drinking water network as a real LSS case study, showing the
effectiveness of the proposed approach.

I. INTRODUCTION

Model predictive control (MPC) has become the accepted
standard for complex constrained multivariable control prob-
lems in the processes industry [1]. It corresponds to a com-
plete control methodology that uses a model to predict the
future evolution of the process starting from the current sys-
tem state along a receding horizon. MPC has also distributed
formulations to enjoy well-known advantages such as scala-
bility, modularity, and the capacity of controlling large-scale
systems (LSS) [2]. The key concept is to decompose the
overall control problem into smaller pieces assigned to local
controllers or agents, which use partial system information
and are able to communicate with each other. Applications
of these schemes include network systems, such as traffic,
water or power networks [3], among many others.

The aforementioned pieces are generally grouped into
neighborhoods or coalitions that are traditionally kept fixed
along time [4]. In contrast to these static approaches, dif-
ferent schemes that explicitly consider a dynamic evolution
of the agents that belong to each coalition have recently
appeared. These so-called coalitional approaches offer a
reduction of the communication burden without compromis-
ing the control system performance [5]–[12]. More specif-
ically, this work follows the line of research of [10]–[12],
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(CSIC-UPC), Barcelona, Spain cocampo@iri.upc.edu
§E. Algaba is with the Department of Applied Mathematics II, University

of Seville, Spain ealgaba@us.es

where several tools from cooperative game theory were
integrated in coalitional schemes to gain knowledge about
the relevance of the communication links and the local
controllers. In these schemes, the objective function to be
optimized in a networked control structure was interpreted
as the characteristic function of a cooperative cost game
with restricted cooperation [13]. Certainly, it was shown that
solution concepts of this game provide information about
the relevance of the agents and their connections involved
in the distributed control problem. In this sense, the well-
studied one-point solution concept Shapley value [14], which
measures an averaged contribution of each player into the
game, will be considered in this work.

Beyond its dynamic rationale, coalitional control can also
be used to determine static neighborhoods [15]. In fact, it
can be profitable for the overall system that several agents
permanently share their information, and some others do
not communicate at all. This natural procedure, necessary
to determine the structure that should be considered for the
control network, is known as the system decomposition or
partitioning [16]–[20]. In this way, the main contribution of
this work is to perform the partitioning of an LSS by means
of a Shapley value-based partitioning algorithm, which rep-
resents an enhancement of a preliminar algorithm – only
suitable for small networks – introduced in [15]. To this end,
a cooperative game defined in the set of agents is introduced
here. A coalitional MPC scheme, which allows for including
constraints on the states and the inputs, is also used in this
paper to measure the cost of the different coalitions enabled
at each time instant. Likewise, a way to redistribute the game-
theory results from the agents to the links is proposed in this
work. The straightforward consequence is a mitigation of
combinatorial explosion issues with respect to [15]. To test
the proposed partitioning algorithm, the Barcelona drinking
water network, which was reported in [21], [22], is chosen
here as the case study.

The remainder of this paper is organized as follows. In
Section II, the problem setting is stated in a coalitional
networked framework. Next, in Section III, a connection be-
tween the fields of coalitional control and cooperative game
theory is given and characteristic indices for the Shapley
value of the links are proposed as well. In Section IV,
a Shapley value-based partitioning algorithm is presented.
In Section V, the Barcelona drinking water network is
introduced as the case study to illustrate the effectiveness
of the proposed partitioning approach. Finally, conclusions
and lines of future work are presented in Section VI.



II. COALITIONAL MPC

Consider the class of distributed linear systems consti-
tuted by N = {1, 2, . . . , |N |} interconnected subsystems
or agents. The dynamics of subsystem i ∈ N can be
mathematically described as

xi(k + 1) = Aiixi(k) + Biiui(k) + wi(k),

wi(k) =
∑
j 6=i

[Aijxj(k) + Bijuj(k)] + Bpidi(k),

(1)
with xi(k) ∈ Rnxi being the state vector of agent i, ui(k) ∈
Rnui its input vector, and wi(k) ∈ Rnxi the related distur-
bances, which can be either external to the whole system,
denoted by di(k) ∈ Rndi , or be caused by the neighbors
as well. Likewise, Aii ∈ Rnxi

×nxi ,Bii ∈ Rnxi
×nui , Aij ∈

Rnxi
×nxj ,Bij ∈ Rnxi

×nuj and Bpi ∈ Rnxi
×ndi are system

matrices of suitable dimensions. It is also assumed that states
and inputs are constrained into an independent set defined by
a collection of linear inequalities, i.e.,

xi(k) ∈ Xi, Xi ⊆ Rnxi , ui(k) ∈ Ui, Ui ⊆ Rnui .
(2)

The goal of each local controller is to steer a se-
quence of future states over a prediction horizon Np, that is,
Xi(k + 1 : k + Np) = {xi(k + 1), . . . ,xi(k + Np)}. To
this end, the controller must solve the following open-loop
finite-horizon optimization problem:

U∗i (k : k+Np−1) = arg min
Ui(k:k+Np−1)

Np−1∑
r=0

`i
(
xi(k+ r),ui(k+ r)

)
,

(3)

subject to (1), (2), a forecast of the expected disturbances
Ŵi(k : k + Np − 1) = {ŵi(k), . . . , ŵi(k + Np − 1)}, and
a measured initial state x̂i(k). Likewise, `i

(
xi(k),ui(k)

)
is related to a certain convex stage cost that is minimized
along Np at each time step. As a result, the sequence of the
optimal control inputs over Np, that is, U∗i (k : k+Np−1) =
{u∗i (k), . . . ,u∗i (k +Np − 1)} is obtained.

A. Networked Coalitional Structure

In coalitional control, the agents are merged at each time
instant into several C1, C2, . . . , Cnc disjoint neighborhoods or
coalitions, with

⋃nc
r=1 Cr = N , which behave as a single

agent and evolve dynamically with time. Conversely, this
work deals with coalitional control in a static sense, being the
objective here to find a time-independent set C1, C2, . . . , Cnc .
It is possible to manage this approach from a graph-theory
viewpoint, considering that agents in N are initially con-
nected by a network characterized by an undirected graph
(N , E), where E = N × N is the set of edges or links
corresponding to all possible communication connections
among the agents. Notice that the number of elements in
both sets are related by

|E| = ½ |N ||N − 1|. (4)

Each link l ∈ E can be classified according to its relevance
from a control viewpoint. In fact, it can be more profitable

for the overall system performance to fix/disconnect some
links permanently. This way, the partitioning objective will
correspond to find the best configuration of links, named
network topology and denoted by Λ, according to several
partitioning requirements, as it will be shown in Section IV.
Notice that the condition for a coalition C ⊆ N to be formed
is to be connected by topology Λ. When it does happen, a
model analogous to (1) is calculated at a coalition level, i.e.,

xC(k + 1) = ACCxC(k) + BCCuC(k) + wC(k),

wC(k) =
∑
j /∈C

[ACjxj(k) + BCjuj(k)] + BpCdC(k),

(5)
with xC(k) = [xi(k)]i∈C ∈ RnxC , uC(k) = [ui(k)]i∈C ∈
RnuC , wC(k) = [wi(k)]i∈C ∈ RnxC and dC(k) =
[di(k)]i∈C ∈ RndC being respectively the coalitional states,
inputs, overall disturbances and external disturbances that
aggregate the corresponding vectors, and ACC ∈ RnxC×nxC ,
BCC ∈ RnxC×nuC , ACj ∈ RnxC×nxj , BCj ∈ RnxC×nuj

and BpC ∈ RnxC×ndC are obtained by aggregating the cor-
responding individual matrices. The coalitional constraints
become

xC(k) ∈ XC ⊆ RnxC , XC =
∏
i∈C Xi,

uC(k) ∈ UC ⊆ RnuC , UC =
∏
i∈C Ui.

(6)

Consequently, the coalitional MPC controller solves an op-
timization problem at each time instant k described by

U∗C(k : k+Np−1) = arg min
UC(k:k+Np−1)

Np−1∑
r=0

`C
(
xC(k+r),uC(k+r)

)
,

(7)

subject to (5), (6), the aggregate forecast of the expected
disturbances ŴC(k : k+Np−1), and a measured coalitional
initial state x̂C(k). Also, `C

(
xC(k),uC(k)

)
is the coalitional

stage cost to be minimized, and U∗C(k : k+Np−1) refers to
the optimal sequence of coalitional control inputs over Np.

Finally, note that to compute the centralized MPC scheme
in a distributed fashion, it is enough to calculate the optimal
input sequence by taking C = N and solving (7).

III. GAME-THEORY VIEWPOINT

In [10]–[12], [15], the key to integrate game-theory results
into distributed control was to interpret the set of edges E
as the set of players in a cooperative game by defining a
certain characteristic function that assigns a value to each
topology Λ ⊆ E . In this work, this perspective is changed to
working directly with a game defined over the set of agents
N . To this end, a cost function v that assigns a cost to each
coalition of players C ⊆ N is defined by

v(C,xN ) =
Np−1∑
r=0

[
`C
(
xC(k + r + 1),u∗C(k + r)

)
+

∑
i/∈C

`i
(
xi(k + r + 1),u∗i (k + r)

)]
,

(8)

with `i
(
xi(k),ui(k)

)
and `C

(
xC(k),uC(k)

)
being the stage

costs introduced in the previous section. This cost function is



evaluated by computing the control sequence of coalition C,
i.e., u∗C(k), which is obtained by solving (7). The rest of
the agents calculate their input sequences u∗i (k) by solv-
ing (3) independently. This choice avoids undefinition issues
because it allows evaluating (8) with information from all
the agents that take part in game (N ,v), independently if
they are either in or out coalition C. This way, the use of (8)
has a clear advantage with respect to the approach in [15],
where linear feedback gains KΛ were designed for each Λ.
Here, each coalition C solves its own optimization problem,
which is decoupled from the rest of the network. Hence, only
2|N | optimization problems should be solved, far less than
the 2|E| problems required in [15].

Once the game is defined, the next step is to choose a
payoff rule to get the corresponding cost or benefit that
each player expects from the game. In this work the Shapley
value [14] is considered. It assigns to game (N ,v) vector
φ(N ,v), defined ∀i ∈ N as

φi(N ,v)=
∑

C⊆N ,i/∈C

|C|!(|N | − |C| − 1)!

|N |!
[v(C ∪ {i})− v(C)],

(9)
that is, the marginal contribution of each agent i is averaged
for all the possible coalition permutations it can be part of.

Given that the partitioning procedure proposed in this work
will be performed by enabling/disabling links among the
different agents, a measure of the relevance of the links is
required. This way, note that given a link l = {i, j} ∈ E ,
it is possible to redistribute the Shapley value of the agents
that are the end-points of this link, i.e., i and j, by means
of the following expression:

ξl(N ,v) =
1

|Ei|
φi(N ,v) +

1

|Ej |
φj(N ,v), l = {i, j},

(10)
with Ei and Ej being, respectively, the set of links connected
to agents i and j.

A. Measure Indices based on the Shapley Value

In this section, two indices related to the Shapley value
are provided to supply information regarding the relevance of
the links. To this end, the following procedure is considered:

Procedure
Let L be a given number of samples. Do, for each sample:

a) Obtain a measurement of the initial state x̂N (k) and the
expected disturbances ŴN (k : k +Np − 1).

b) Calculate v(C) by using (8), ∀C ⊆ N , where u∗C(k)
and u∗i (k) are obtained, respectively, by solving (7) for
coalition C and (3), for the agents out of C.

c) Evaluate φi(N ,v),∀i ∈ N , by means of (9).

Note that, it is possible to calculate the mean value and the
standard deviation from the obtained results. Their discrete-
time equations, considering L samples and equiprobable
elements, can be found in [23], and reproduced below.

.

µi =
1

L

L∑
h=1

φhi (N ,v), σi =

√√√√ 1

L

L∑
h=1

(φhi (N ,v)− µi)2.

(11)
Finally, the redistribution of the aforementioned values

among the links is provided by (10), i.e., with l = {i, j}

µξl =
1

|Ei|
µi +

1

|Ej |
µj , (12)

σξl =
1

|Ei|
σi +

1

|Ej |
σj . (13)

Note that (12) provides a way to arrange and compare the
links according to their relevance from a control-performance
perspective. This way, the lower the mean value of a link is,
the more useful the link becomes. Likewise, (13) represents
a measure of how tightly the samples are clustered around
the mean value. Both indices will be taken into account in
the partitioning algorithm proposed in the following section.

IV. PARTITIONING ALGORITHM

In [15], a partitioning algorithm to group the atomic
components of a distributed system into agents was provided.
Here, this viewpoint is enhanced by considering that the
agents stem from the constraints imposed on the system
by the node equations, i.e., there is a pre-partitioning stage
in which some atomic components are grouped due to the
junction nodes. Once the agents are defined, the goal in this
paper is to find what agents should cooperate to improve
the overall system performance. To this end, as commented
before, a communication link between each pair of agents
is initially assumed, with the total number of links given
by (4). Then, not only the mean value but also the standard
deviation are considered in this work to classify the links
through their Shapley value, by means of the computation of
indices (12) and (13). Considering this ranking, the following
partitioning algorithm is proposed:

Partitioning Algorithm

Let (N , E) be an undirected graph that describes a set N
of agents connected by links l ∈ E . Let Lc,Le ∈ R, κ ∈ R+

be given thresholds, with Lc < Le. Then,

1) By using (12) and (13), respectively, obtain indices µξl
and σξl , ∀l ∈ E .

2) Keep fixed the links belonging to set Ec with

l ∈ Ec ←→

µ
ξ
l < Lc,
|µξl |
σξl

> κ.
(14)

3) Disconnect the links in set Ee, where

l ∈ Ee ←→

µ
ξ
l > Le,
|µξl |
σξl

> κ.
(15)



Fig. 1. Aggregate model of the Barcelona DWN

Therefore, links l ∈ Ec are economical in control terms
and fixed, while links l ∈ Ee are removed since they are
too costly for the system. In other words, the configuration
of the system will be described after the partitioning by the
following network:

(N , E\(Ec ∪ Ee)), (16)

where the links in E\(Ec ∪ Ee) may be dynamically enabled
or disabled at each time instant by means of a coalitional
control approach, in the line of [10], [11]. A diagram that
summarizes the partitioning method is given in Fig. 2.

Remark 1 Term |µξl |/σξl decreases with the dispersion of the
data set. Hence, by imposing |µξl |/σξl > κ, the maximum
dispersion for a link to be a suitable candidate for being
always either fixed or disconnected is limited.

V. CASE STUDY
The proposed partitioning scheme has been implemented

in the Barcelona drinking water network (DWN), which
is managed by Aguas de Barcelona, S.A. (AGBAR). The
Barcelona DWN distributes the water supplied by the Ter
and Llobregat rivers, which are regulated at their head by
dams with an overall capacity of 600 hm3, to the whole
Barcelona metropolitan area. Besides the rivers, some addi-
tional underground wells also contribute to an overall flow of
around 7 m3/s, which is become potable by four drinking
water treatment plants. Given the limits in the water flow
provided by each source, there exist different water prices
depending on water treatments and legal extraction canons.

Fig. 2. Partitioning algorithm diagram

A. Coalitional Control Model

Control-oriented schemes for DWNs have been widely an-
alyzed in the literature [24]. In particular, several control ap-
proaches of the Barcelona DWN are discussed in [21], [22].
In this paper, an aggregate version of the entire Barcelona
DWN analyzed in [22] is considered and depicted in Fig. 1.
This model contains 17 tanks, 61 actuators – divided in
26 pumps and 35 valves – and 25 sectors of consume that
represent the external disturbances. As seen in Fig. 1, water
volumes (in m3) are indicated by x, flows (in m3/s) by u
and sectors of consume (also in m3/s) by d, according to the
notation introduced in Section II. The number that follows
between parentheses identifies the corresponding variable.

As mentioned in the previous section, a pre-partitioning
into agents will be performed due to the nodes that appear
in Fig. 1. For example, the node equations

u(1)− u(2)− u(5)− u(6) = 0,
u(2)− u(3)− d(2) = 0,

(17)

physically connect flows u(1), u(2), u(3), u(5) and u(6).
Hence, the values of these flows must be determined at the
same time. For this reason, all states that comprise incoming
flows involved in (17) should belong to the same agent, i.e.,

x+(1) = x(1) + u(3) + u(4)− d(1),
x+(2) = x(2) + u(5)− d(3),
x+(6) = x(6) + u(6) + u(20) + u(27)− u(23),

(18)

where superindex + refers to the successors state. Following
this approach, nine agents have been defined, where the cri-
terion of considering outgoing flows, e.g., u(23), as dis-
turbances has been assumed. For instance, agent 1 is fully
described by (17) and (18).



Note that the coupling among the subsystems is given
through their inputs. Therefore, in the case study, Aij = 0
in (1), and equivalently, ACj = 0 in (5). From an overall
centralized viewpoint, the following equations are satisfied:

xN (k + 1) = ANxN (k) + BNuN (k) + BpNdN (k),
(19a)

0 = ENuN (k) + EdNdN (k), (19b)

with xN (k) ∈ R17, uN (k) ∈ R61 and dN (k) ∈ R25. This
way, (19a) corresponds with the dynamics of the storage
tanks, and (19b) describes the network static relations due
to the mass balance at junction nodes. Notice that, from
a centralized viewpoint, wN (k) is only composed of the
external disturbances BpNdN (k).

Finally, consider the main physical constraints of the DWN
given by the variables related to the tank volumes and
manipulated flows, i.e., ∀k

xmin
N ≤ xN (k) ≤ xmax

N , umin
N ≤ uN (k) ≤ umax

N . (20)

B. System Management Criteria
The following management policies for the Barcelona

DWN are considered given the knowledge of the system and
the performance objectives to be reached (see [21], [22]):

• Minimizing drinking water production and transport
costs due to chemicals, legal canons and electricity
costs, which are expressed as

f1,i(k) = We(α1 +α2(k))Tui(k), (21)

where vector α1 ∈ Rnui corresponds to water costs,
vector α2(k) ∈ Rnui considers time-dependent elec-
tricity costs, and matrix We ∈ Rnui

×nui adds the cor-
responding prioritization to the aforementioned costs.

• Maintaining the stored volume around a given safety
value in case of emergency, which is achieved by
minimizing

f2,i(k) = (xi(k)− βxmax
i )TWx(xi(k)− βxmax

i ), (22)

with β ∈ R+ being a safety volumen parameter, where
xmax
i ∈ Rnxi takes from (20) the corresponding states,

and with Wx ∈ Rnxi
×nxi being a weighting matrix.

• Penalizing sudden variations of the control inputs by
minimizing

f3,i(k) = ∆uT
i (k)W∆u∆ui(k), (23)

with ∆ui(k) = ui(k)−ui(k− 1), and where W∆u ∈
Rnui

×nui is also a weighting matrix.

Therefore, the following individual cost related to agent
i ∈ N is considered in this work:

`i(k) = f1,i(k) + f2,i(k) + f3,i(k), (24)

being the aggregate cost of a certain coalition C, defined by

`C(k) =
∑
i∈C

`i(k). (25)

TABLE I
MEAN VALUES AND STANDARD DEVIATIONS, l = {i, j}

µξij(×10
9) σξij(×10

8)

µ12 = −0.1829 µ37 = 0.2281 σ12 = 1.6701 σ37 = 1.3613
µ13 = 0.2460 µ38 = −1.5507 σ13 = 1.3651 σ38 = 1.2035
µ14 = 2.1817 µ39 = −1.0447 σ14 = 1.4616 σ39 = 0.9295
µ15 = 2.1430 µ45 = 2.1085 σ15 = 1.4321 σ45 = 1.4245
µ16 = −0.1615 µ46 = −0.1960 σ16 = 1.6026 σ46 = 1.5949
µ17 = 2.1983 µ47 = 2.1638 σ17 = 1.4655 σ47 = 1.4578
µ18 = 0.4194 µ48 = 0.3850 σ18 = 1.3077 σ48 = 1.3000
µ19 = 0.9254 µ49 = 0.8910 σ19 = 1.0337 σ49 = 1.0260
µ23 = −2.1530 µ56 = −0.2346 σ23 = 1.5659 σ56 = 1.5654
µ24 = −0.2174 µ57 = 2.1251 σ24 = 1.6624 σ57 = 1.4283
µ25 = −0.2560 µ58 = 0.3463 σ25 = 1.6329 σ58 = 1.2706
µ26 = −2.5605 µ59 = 0.8523 σ26 = 1.8034 σ59 = 0.9966
µ27 = −0.2008 µ67 = −0.1794 σ27 = 1.6663 σ67 = 1.5988
µ28 = −1.9796 µ68 = −1.9582 σ28 = 1.5085 σ68 = 1.4410
µ29 = −1.4736 µ69 = −1.4522 σ29 = 1.2345 σ69 = 1.1670
µ34 = 0.2115 µ78 = 0.4016 σ34 = 1.3574 σ78 = 1.3039
µ35 = 0.1729 µ79 = 0.9076 σ35 = 1.3279 σ79 = 1.0299
µ36 = −2.1316 µ89 = −0.8713 σ36 = 1.4984 σ89 = 0.8721

C. Simulation Results

The results presented in this work have been tested for the
Barcelona DWN by using the Matlab® solver quadprog in
a 2.6 GHz Intel Core® i5, 8 GB RAM computer. This way,
a coalitional MPC scheme has been implemented in open
loop with a prediction horizon Np = 24, and the following
values for the performance parameters: We = 0.7I, β = 0.8,
Wx = 0.2I, W∆u = 0.1I, with I being the identity matrix
of suitable dimensions. According to (4), the nine agents ob-
tained due to the node equations are related to 36 possible
communication links. The mean values and standard devi-
ations for all these links have been calculated by means
of (12) and (13), considering L = 100 measurements of the
initial state and expected disturbances, which are taken from
historical data. Relevant statistics are represented in Table I.

At this point, the partitioning algorithm proposed in Sec-
tion IV has been implemented with Lc = −1.8 × 109,
Le = 0.8 × 109 and κ = 10, set by trial and error. As a
result, sets Ec and Ee are given by

Ec = {{2, 3}, {2, 6}, {2, 8}, {3, 6}, {6, 8}}, (26)

Ee = {{1, 4}, {1, 5}, {1, 7}, {4, 5}, {4, 7}, {5, 7}}, (27)

where links {1, 9}, {4, 9}, {5, 9}, and {7, 9} were not
included in set Ee since they do not verify condition |µ

ξ
l |
σξl

> κ.
As extracted from (26), it can be concluded that agents 2, 3,
6 and 8 should be merged in a new single agent. Likewise,
according to (27), there should not be cooperation among
agents 1, 4, 5 and 7. Nevertheless, agent 9 is free to cooperate
with anyone given its large dispersion. An overview of
the results provided by the proposed partitioning algorithm
is shown in Fig. 3, where the links have been drawn in a
color scale between green and yellow, with darkest links
representing the useful ones.

Note that it is possible to verify that the performance
of the proposed algorithm is good, by examining the best
coalitions of agents according to the mean cost they obtained



TABLE II
AGENT OCCURRENCES IN THE 20 BEST-PERFORMANCE COALITIONS

Agent 1 2 3 4 5 6 7 8 9
Ocurrences 11 20 20 12 11 20 11 20 16

in our experiments. In Table II, it is shown how many times
each agent appears in the 20 coalitions with minimum mean
cost. As can be seen, agents 2, 3, 6 and 8 appear in all of
these coalitions, fact that shows their relevance. Agents 1,
4, 5 and 7 appear only in 11 or 12 out of these coalitions,
which again is aligned with the outcome of the proposed
approach. Finally, agent 9 appears in 16 out of the 20 best
coalitions, which makes it a worthy candidate for occasional
information exchanges.

Fig. 3. Case study partitioning overview

VI. CONCLUSIONS AND FUTURE WORK

In this work, a heuristic partitioning algorithm that classi-
fies the communication links inside a network from a control-
performance perspective has been introduced. A game over
agents has been defined and coalitional model predictive
control has been considered in the optimization procedure.
A way to redistribute the Shapley value of the agents
among the links has been presented as well. The choice of
fixing/removing links is then based on indices related to their
Shapley value’s mean and standard deviation. The proposed
algorithm has been tested with the Barcelona drinking water
network as an LSS case study.

The partitioning performed is aligned with the results
obtained by examining the best coalitions, which illustrates
the feasibility of the proposed approach. For this reason,
current work includes the use of randomized methods to
apply the proposed partitioning algorithm to larger networks,
where the exhaustive computing of every coalition is not
possible. Also, the current static nature of the proposed
partitioning approach motivates to explore its application to
dynamic partitioning to improve the system performance.
Likewise, a stability analysis of the proposed algorithm,
performance comparisons with other partitioning methods,
and alternative control formulations instead of (8) could also
be taken into account in further works.

REFERENCES

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7,
pp. 733–764, July 2003.

[2] J. M. Maestre and R. R. Negenborn, Eds., Distributed Model Predictive
Control Made Easy, ser. Intelligent Systems, Control and Automation:
Science and Engineering. Springer, 2014, vol. 69.

[3] R. R. Negenborn, B. De Schutter, and J. Hellendoorn, “Multi–agent
model predictive control for transportation networks: Serial versus
parallel schemes,” Engineering Applications of Artificial Intelligence,
vol. 21, no. 3, pp. 353–366, April 2008.

[4] R. R. Negenborn, P.-J. van Overloop, T. Keviczky, and B. De Schutter,
“Distributed model predictive control of irrigation canals,” Networks
and Heterogeneous Media, vol. 4, no. 2, pp. 359–380, June 2009.

[5] M. Jilg and O. Stursberg, “Optimized distributed control and topology
design for hierarchically interconnected systems,” in Proc. of the 12th

Eur. Control Conf., Zurich, Switzerland, July 2013, pp. 4340–4346.
[6] P. Trodden and A. G. Richards, “Adaptive cooperation in robust

distributed model predictive control,” in Proceedings of the 24th

IEEE International Symposium on Intelligent Control (ISIC 2009), St.
Petersburg, Russia, July 2009, pp. 896–901.

[7] K. Cai and H. Ishii, “Quantized consensus and averaging on gossip
digraphs,” IEEE Transactions on Automatic Control, vol. 56, no. 9,
pp. 2087–2100, September 2011.

[8] D. Bauso and G. Notarstefano, “Distributed n-player approachability
and consensus in coalitional games,” IEEE Transactions on Automatic
Control, vol. 60, no. 11, pp. 3107–3112, November 2015.

[9] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans. on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, September 2004.
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