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Abstract—The attempt to improve hydrogen quality has mo-
tivated research focused solely on the design of reactors for
hydrogen production, paying little interest to their modelling
and much less attention to its dynamic analysis. For these main
reasons, this paper is focused on the dynamic analysis of a
mathematical model of an ethanol steam reformer (ESR) for
producing hydrogen. This analysis differs from other nonlinear
analyses since it is applied to a specific seventh-order system,
while literature presents analyses for at most fourth-order sys-
tems. The nonlinear model used is based on mass balances. It
is represented by partial differential equations (PDEs), which
are converted into ordinary differential equations (ODEs) by the
finite-differences method over the space. A general nonlinear
dynamic analysis based on equilibrium points and their local
stability is carried out by using these ODEs. Dynamic analysis
results show that the studied reactor has a stable equilibrium
point for a physical-sense range of inputs (ethanol + water),
which allow to have available key criteria for the design of control
strategies.

I. INTRODUCTION

Hydrogen is considered an excellent energy vector with an
important role in reducing harmful emissions to the environ-
ment when it comes from renewable sources such as ethanol,
which is produced from biomass fermentation processes [18].
According to [1], there are three techniques for hydrogen pro-
duction from ethanol: steam reforming (SR), partial oxidation
(POX) and auto-thermal reforming (ATR). According to the
same author, the SR technique is the most used due to its high
efficiency and lower operating temperature compared to both
POX and ATR. In this process, a mixture of fuel (ethanol) and
steam is supplied to the reformer. The process is endothermic
and then it requires an external heat source. The conversion of
the mixture occurs in the presence of a catalyst. The product of
the reforming is a flow of gases, containing mainly hydrogen,
carbon monoxide, carbon dioxide and methane. The catalyst
is able to accelerate the rate of reaction and improve the
performance of the reformer. Cobalt-based catalyst has been
considered an appropriate choice because of its low cost and
high activity, especially to produce hydrogen at a moderate
temperature [4], [5].

The mathematical modelling of a catalytic reactor is not a
simple and straightforward process. Rather, it is a complex
process due to some main factors. Among others, we can
mention: (i)

• the nonlinear nature of the ESR,
• the modelling errors induced by its complicated kinetics,

and
• load disturbances in the inlet composition.

However, over the last decades great advances in terms of ESR
modelling have been achieved. For instance, a complete model
(mass and energy balances) of three-stage low-temperature
ethanol steam reformer for fuel cell application is presented
in [9]. In [10], a controllability analysis over this model
was done. Here, the nonlinear model was linearized before
applying a controller and, in [13], a linear predictive control
was applied. In addition, a rigorous computational model for
hydrogen production from bio-ethanol is presented in [3] and
some control strategies are applied in [2], [15]. Moreover,
a modelling of the bio-ethanol reforming process for the
production of hydrogen is presented in [7]. Finally, more
recent research shows a mathematical model of an ESR plus
a membrane separation for pure hydrogen production [16]. In
all these works, linear control techniques were applied. The
controller must deal with the high nonlinearities present in the
dynamics of the reformer and be able to satisfy the hydrogen
demand of the FC by keeping carbon monoxide as low as
possible. So far, specialized literature shows a large number
of models and their controllers after a linearization procedure.
However, to the best of the knowledge of the authors, there
are not exist works involving a nonlinear dynamic analysis of
the ESR.

Dynamic analysis must be connected directly to mathemati-
cal modeling before applying a controller. The main objective
of this analysis is to know whether the modelled system is
stable or not within a dynamical range of interest according
to the working/control specifications afterwards. From the
classical stability literature [19], a process is considered as
stable if it starts its operation at a initial condition close to the
desired point of operation and it remains in this position for
that moment on. Different tools for analyzing the dynamical
behaviour of a system, corresponding to nonlinear phenomena,
have been used in the literature, such as Phase Plane Analysis
and Lyapunov (linearization method and direct method) for
second-order systems [17], [8], and Normal Form of Fold
Bifurcation or Equilibrium Points and their stability for higher
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Figure 1: Scheme of the ESR

order systems [11], [14]. Under the light of this brief state of
the art, the main contribution of this paper relies on the dynam-
ical analysis of an ESR towards the determination of the stable
regios for a simpler control approach. The analysis carried out
in this paper differs from all of the aforementioned analyses
since they are applied to a specific seventh-order system, while
literature presents analysis for lower-order systems.

The remainder of this paper is organized as follows. Sec-
tion II gives a brief description of chemical reactions of
the ESR used in this paper and presents a description of
the mathematical model (PDEs), spatial discretization of the
nonlinear model and the resultant model based on ODEs.
Section III presents the methodology used for the dynamic
analysis (equilibrium points and their stability). Next, Section
IV shows and discusses the main results of the analysis carried
out. Finally, the conclusion and some future works are drawn
in Section V.

II. SYSTEM DESCRIPTION

In this paper, the ethanol steam reformer analyzed use a
cobalt-based catalyst and corresponds to a real laboratory
system validated experimentally [18, 19]. ESR reactions (Eq.
(1) to Eq. (4)) over cobalt-based catalyst occur simultaneously
within the reformer with the same thermodynamic conditions,
and are expressed as follows [6], [20]:

C2H5OH −−→ CH3CHO + H2, (1a)
C2H5OH −−→ CO + CH4 + H2, (1b)

CO + H2O −−⇀↽−− CO2 + H2, (1c)
CH3CHO + 3 H2O −−→ 2 CO2 + 5 H2, (1d)

Reaction rates represent how fast the chemical conversion oc-
curs while the detailed expressions and physical explanations
for each reaction in (1) can be found in [21]. In this reformer,
inlet components are a mixture of the ethanol and water,
and outlet components are reformed gases containing mainly
hydrogen, carbon dioxide, carbon monoxide and methane as
depicted in Figure 1.

A. ESR Mathematical Model

Some properties of the dynamical model of the ESR are
widely studied and discussed in the specialized literature [9],
[16]. Here, a brief description of the mathematical model of
the catalytic reactor used in this paper is carried out in order to
perform the dynamic analysis. This model was proposed and
experimentally validated by [16] and it stands for a catalytic

reactor. The mass balance is represented by PDEs due to its
dependence on the time and length of the reactor as follows:

∂Cj(t, z)

∂t
+Cj(t, z)

∂v(t, z)

∂z
+v(t, z)

∂Cj(t, z)

∂z
=
∑
i

νj,i ri(t),

(2)
Cj(0, z) = Cj,0(z) ∀ z ∈ [0, L], (3)
Cj(t, 0) = Cj,in(t) ∀ t ≥ 0, (4)

where (3) and (4) are the initial and the boundary conditions,
respectively, while i ∈ (a, b, c, d) is the reaction index ac-
cording to (1). Variable t indicates time while z the position
along the axial direction of the reactor (in m). Notice that
L is the axial length of the reactor (in m). Cj indicates the
concentration of j-th component (in mol/m3), and Cj,in the
concentration at the reactor inlet. The stoichiometric coeffi-
cient of the j-th component in the i-th reaction (dimensionless)
is denoted by νj,i while the reaction rate of the i-th reaction
by ri (in mol/(m3 min)). This latter describes the speed of
each chemical reaction in (1) and depends jointly on the
concentration, temperature, pressure and time through non-
linear relations (see [16] for further details). The linear velocity
of the gas mixture is denoted by v (in mol/s) and is defined
as v = vin(1 + εX), where ε represents the molar relation of
the considered reaction and X the conversion rate.

B. Spatial Discretization

In order to convert the PDEs in (2) into a set of ODEs
for the dynamic analysis, a spatial discretization is performed.
For this purpose, backward-finite differences are applied as
follows [16]:

∂Cj

∂z
=
Cj(z)− Cj(z − 1)

∆z
. (5)

The amount and complexity of the ODEs depends directly
on the number of volumes in which the ESR is divided.
More divisions of volume means larger number of equations.
Therefore, in order to obtain a simpler model for the dynamic
analysis, the ESR is divided into 10 slices of smaller size
and it is assumed that the remaining slides show quite similar
behaviour with respect the initial one.

C. Analyzed ODEs

The cardinality of the set of ODEs obtained as a result of
spatial discretization is 70 (7 concentrations x 10 differential
volumes). However, this set of ODEs represents only one unit
of volume (seven equations) as depicted in Figure 2.

From the point of view of the dynamic analysis, if it is
possible to analyze the stability of one unit, the remaining
units will show a similar behaviour by the consideration of
homogeneity. Then, the set of ODEs of one unit/slide is
presented as

dx(t)

dt
= fi(x(t),u(t)), (6)

for all t ≥ 0, where x ∈ R7 is the vector of system states
(concentrations for each component in a slide), u ∈ R2 is
the vector of inputs (reactant inflows) and fi : R7 � R7, for
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Figure 2: First volumetric unit of the ESR

i ∈ {1, . . . , 7}, are the corresponding nonlineal mappings of
the concentrations along the volumetric unit.

III. DYNAMICAL ANALYSIS

Before applying control techniques, it is quite convenient
to know whether or not the system is stable and its sta-
bility/instability regions. In this section, a general nonlinear
dynamic analysis (based on equilibrium points and Lyapunov
stability [19]) is performed over the ODEs in (6).

A. Equilibrium points

In dynamic analysis, equilibrium points play an important
role. These points determine the system status in which the
system behaves in steady state. According to the classical
theory, to compute the equilibrium points in a system, the
following relation must hold:

fi(x(t),u(t)) = 0. (7)

Before solving (7) to find the equilibrium points, the following
considerations should be taken into account:

• ESR is operating under normal operation conditions.
In other words, concentrations must be non-zero and
positive for all t ≥ 0. Any concentration that does not
obey this condition will not be taken into account for
the dynamic analysis since there is no physical sense in
handling negative or imaginary concentrations.

• After finding the solutions of (7), concentrations x be-
come an equilibrium point, and it is represented by
xeq = [xeq

1 , . . . , x
eq
7 ]T .

• According to [12], the ESR inputs are physically con-
strained by lower and upper bound as follows

1.8× 10−3 ≤ u1 ≤ 2.4× 10−3, (8a)

8.76× 10−3 ≤ u1 ≤ 10.8× 10−3, (8b)

where u1 represents the molar inflow rate of ethanol
while u2 is the molar inflow rate of water. Therefore,
the nonlinear dynamic analysis is performed taking into
account these limitations.

Due to the complexity and nonlinearity of the ODEs (Ap-
pendix A), MAPLE is used as computational tool to find out
the solutions.
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Figure 3: Open-loop system response of the ESR for a given
set of inflows

B. Stability analysis

The equilibrium points determined when solving (7) may
be stable or not [14]. First, to determine their stability, the
general Jacobian matrix must be computed as follows:

J =


∂f1(x,u)

∂x1

∂f1(x,u)
∂x2

. . . ∂f1(x,u)
∂x7

∂f2(x,u)
∂x1

∂f2(x,u)
∂x2

. . . ∂f2(x,u)
∂x7

...
...

. . .
...

∂f7(x,u)
∂x1

∂f7(x,u)
∂x2

. . . ∂f7(x,u)
∂x7

 . (9)

Some of the inputs of J in (9) are represented in Appendix
B. After computing J , its eigenvalues λ must be computed by
using the corresponding characteristic equation [19].

IV. MAIN RESULTS

A. Results discussion

Figure 3 shows the response of the ESR (obtained hydrogen
outflow rate) facing initial conditions of both ethanol and water
inflow rates. As can be seen, the total ethanol conversion
occurs practically in the first five volumetric divisions of
the catalytic reactor. From the fifth division on, the inflow
rates tend to be constant. In addition, the behaviours of the
concentrations are directly related to the reactions presented
in (1).

B. Equilibrium points and their stability

The existence of a stable equilibrium point is necessary to
judge the system as stable within a attractive basin. Therefore,
Propositions 1 and 2 must hold.

Proposition 1: Consider the model in (6). Assume that the
system is operating under normal conditions (positive, non-
zero concentrations and constant inlet). Moreover, define the
closed set

X = {x ∈ R7 : xmin ≤ x ≤ xmax}, (10)



Table I: Value of the feasible equilibrium point for (6)

Coordinate Value
x

eq
1 0.0214823424
x

eq
2 21.126448052
x

eq
3 1.0838471420
x

eq
4 52.743460460
x

eq
5 10.769715900
x

eq
6 10.762420580
x

eq
7 0.0066186780

Table II: Values for the eigenvalues of J evaluated in the
equilibrium point of Table I

Eigenvalue Magnitude
λ1 -3.58180044700000
λ2 -59216.9862270505
λ3 -6344.32219030252
λ4 -1891.35422756652
λ5 -3.58180047382225
λ6 -3.58180010660375
λ7 -3.58180100000030

where xmin ∈ R7
≥0 and xmaxR7

≥0 are the vectors of minimum
and maximum concentrations, respectively, and R≥0 denotes
the set of positive real numbers. Therefore, the system (6) must
have at least one equilibrium point xeq such that xeq ∈ X . ♦

In order to show the validity of Proposition 1, the system
was simulated in a loop that generates no less than 1000
random combinations of inflows (ethanol + water). In all cases,
the equilibrium point in Table I was numerically found. As
shown in Table I, all concentrations are positive, which shows
the existence of a feasible equilibrium point. On the other
hand, other numerical values for the solution of (7) were
also found but their magnitudes correspond to negative and/or
imaginary concentrations.

Proposition 2: Considering the existence of a equilibrium
point xeq according to Proposition 1. After computing the
eigenvalues λ of the corresponding Jacobian matrix J in (9),
xeq is stable if

Re{λi(J(xeq))} < 0, (11)

for all i ∈ {1, . . . , 7}, holds. ♦
Once J is stated for the considered ESR under some values

of u1 and u2 satisfying (8), the computation of λi yields in
the set of values presented in Table II. From this table and
Propositions 1 and 1, it is possible to conclude that the ESR
under study shows a unique feasible and stable equilibrium
point.

V. CONCLUSIONS

This paper has presented a numerical approximation of a
dynamic analysis for the nonlinear mathematical model of an
ethanol steam reformer for hydrogen production. The mass-
balance model reported in the literature has been used for ob-
taining the equilibrium points of the system and their stability.
Considering that ESR operates under nominal conditions and
satisfying its physical limitations (constraints), the performed
analysis shows that the system has an unique physically-
feasible equilibrium point when inflows within their ranges are

applied. In addition, the eigenvalues of the corresponding Jaco-
bian matrix of the system evaluated at the yielded equilibrium
point have shown that this equilibrium point is stable. Future
work will address the analysis of the system including more
units of volume and other approaches for numerical stability
analysis such as Floquet or Lyapunov Exponents. Also, the
analysis of the complete process including the influence of the
permeate membrane for hydrogen purification ant the output
will be also addressed.
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