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Abstract—Robot-assisted dressing is performed in close phys-
ical interaction with users who may have a wide range of
physical characteristics and abilities. Design of user adaptive
and personalized robots in this context is still indicating limited,
or no consideration, of specific user-related issues. This paper
describes the development of a multi-modal robotic system for
a specific dressing scenario - putting on a shoe, where users’
personalized inputs contribute to a much improved task success
rate. We have developed: 1) user tracking, gesture recognition
and posture recognition algorithms relying on images provided by
a depth camera; 2) a shoe recognition algorithm from RGB and
depth images; 3) speech recognition and text-to-speech algorithms
implemented to allow verbal interaction between the robot and
user. The interaction is further enhanced by calibrated recog-
nition of the users’ pointing gestures and adjusted robot’s shoe
delivery position. A series of shoe fitting experiments have been
performed on two groups of users, with and without previous
robot personalization, to assess how it affects the interaction
performance. Our results show that the shoe fitting task with the
personalized robot is completed in shorter time, with a smaller
number of user commands and reduced workload.

Index Terms—Assistive robots, robot personalization, multi-
modal human-robot interaction.

I. INTRODUCTION

By 2050, the world population is expected to increase
by 2 to 4 billion people [1]. This growth will have a

profound demographic consequence: while in 2000, 10 percent
of the world’s population was over 60 years old, by 2050 this
proportion will be more than doubled. Some studies report that
more than half of the people 75 years or older who suffer from
age-related physical and cognitive impairment need assistance
with activities of daily living (ADL) [2]. Assistive technologies
can improve the life quality for both older adults and their
caregivers [3]. Assistive robots, in particular, can help patients
with recovery and allow prolonged independent living, while
compensating for increased costs of care and lack of nursing
staff [4].

The main goal of this work is development of an au-
tonomous robot that provides personalized assistance to a user
in performing a dressing task. In this context, the considered
dressing task consists in comfortably putting on a shoe which
has been selected by the user. The experiments were designed
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Fig. 1. Assisted-dressing scenario with a WAM robot: Use case of putting
on a shoe.

to evaluate robot performance and user workload under differ-
ent conditions. The user is assumed to have reduced mobility,
partial control over legs, and is in a seated position as shown
in Fig. 1. The user should be able to interact with the robot
through a number of modalities. This will allow the robot to be
adaptable to situations where a single modality is insufficient,
e.g. asking the robot to pick up ”the black shoes” where
there are several choices. Ambiguity may be reduced with
the addition of the gesture modality, in this case pointing. The
interpretation of the pointing gesture may be difficult due to
the context of the situation. Pointing to an object relatively
nearby compared to one further away may result in a different
arm pose (e.g. elbow bent or straight, hand rotated) and for
this reason specific calibration, i.e. robot personalization, is
required.

Natural human-robot interaction (HRI) requires successful
recognition of the user’s and robot’s intentions [5]. In the shoe
fitting task, the successful interaction is based on continuous
tracking of the shoe and the user. The contribution of this
work is twofold. First, a multimodal robotic system for support
in dressing was developed. Several vision- and speech-based
modalities have been developed to deal with the user’s and
robot’s intentions in real time. Second, we proposed a robot
personalization method to evaluate the ability of the developed
multimodal robot to adapt to an individual user. The person-
alization focused on reducing user workload and frustration,
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especially important for users with reduced mobility.

A. Relevant Work

Assisted dressing is receiving increased attention in the
robotics community. Earlier studies evaluated assisted dressing
on a mannequin with a dual-arm robot [6], [7]. The robot
was able to pull a T-shirt over the mannequin’s head while
tracking the position of the collar and sleeves. In [8], the
work of the same authors was extended to include learning
of the mannequin-cloth relationship. Successful manipulation
of some types of garments depends on accurate estimation
of their state [9]. To get a better insight into the interaction
between the robot and non-rigid garments, some authors
proposed to perform a dressing task on a dual-arm robot, by
putting the robot arms into the corresponding sleeves of a T-
shirt [10].

An important aspect of human-robot interaction is safety,
where the adaptation to users can be studied from the as-
pect of user’s limitations in avoiding events that can lead
to discomfort or injuries [11]. Still, most of the studies on
safety in robot-assisted dressing have not included tests with
users and were limited to experiments on a mannequin. Some
proposed solutions employ learning techniques to teach a
compliant robot arm to wrap a scarf around a mannequin’s
neck [12] or detect failures in jacket dressing [13]. The
proposed scenarios with a mannequin have a limited utility
for real-world applications because the mannequin’s position
is always fixed. The obtained results are difficult to generalize
when applied to human motion.

Adaptation to users is of great importance for acceptance of
the robots, not least for persons with reduced mobility. Some
authors proposed building of a unique model that defines user’s
mobility space [14]. A different approach of personalized
assistance was proposed in [15], where the robot and user
take turns when moving to compensate for the user’s mobility
limitations. Although some level of adaptation was achieved
in these studies, no perception of the garment state was
considered. Recent work by Yamazaki et al. [16] included both
garment state estimation and personalized assistance for users,
allowing a humanoid robot to assist users with putting on a
pair of trousers. The personalized assistance was incorporated
into the the robot’s motion planning, taking into account visual
feedback of the trousers and the size of the user’s legs. Pignat
et al. [17] applied learning by demonstration to provide per-
sonalized assistance with dressing. The authors used Hidden
Semi-Markov Models (HSSM) to encode sensory and motor
information necessary to perform both time-dependent and
independent dressing task segments.

Most of the early work on robot-assisted dressing relied on
vision as the primary interaction modality, as summarized in
Table I. Recent studies included additional modalities such as
haptics to improve the interaction with the user [18], [19], [20],
[21], [22]. The evaluation of such systems focused on robot
performance without considering the direct user input for robot
personalization, hence limiting the scalability of such systems
in applications with people. In the work presented in this paper,
a robotic system was developed that exploits speech-based and

vision-based interaction modalities to successfully assist a user
with a dressing task, and can be customized to the particular
set of user abilities and needs through direct input from the
user. The results provide a proof-of-concept for the I-DRESS
project1, which aims to develop a multimodal robotic system
equipped with a wide range of sensors and safety features to
provide proactive assistance with dressing to users with limited
mobility.

II. METHODOLOGY

In the context of an assisted-dressing task in which a robot
assists the user in putting on a shoe, every person would have
a particular way of interacting. The multi-modal approach
developed in this research enables the system to learn and
respond to individual anthropometrics, speech and gestures
commands resulting in personalized interaction with a user.
The development of the robot assistant for support in dressing
required integration of several hardware and software com-
ponents. The robot features several vision-based and speech-
based modalities for interaction with the user.

A. Task Description

The application scenario consists of a user’s daily activity
of putting on a shoe in a seated position. The target users are
persons with reduced mobility, with partial control of their
legs, i.e. having a certain level of difficulty in lifting their legs
and moving their feet. The user may choose from a set of
shoes using speech or a combination of speech with pointing
gestures to form so-called deictic expressions. The robot’s task
is to grasp the requested shoe and position and hold it in
an appropriate position in front of the user so that they can
comfortably place their foot inside.

In the first instance, experiments were performed to compare
task efficiency using single or combined interaction modali-
ties. Each participant performed two experiments. In the first
experiment, only speech could be used to request a shoe; in the
second, the participants were asked to combine the speech with

1The I-DRESS project: https://i-dress-project.eu/

Fig. 2. Dressing scenario
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TABLE I
SUMMARY OF THE MOST RELEVANT STUDIES IN ASSISTED DRESSING

Publication Application Modalities Adaptation method User tests
T. Tamei et al., 2011 [6] T-shirt dressing Vision N/A No

N. Koganti et al., 2013 [7] Cloth state estimation Vision N/A No
N. Koganti et al., 2014 [8] T-shirt dressing Vision N/A No

T. Matsubara et al., 2013 [10] Cloth estimation Vision N/A No
A. Colomé et al., 2015 [12] Scarf dressing Force N/A No
G. Chance et al. 2016 [13] Jacket dressing Vision, speech, accelerometer N/A No

K. Yamazaki et al., 2016 [16] Trousers dressing Vision, force N/A Yes
K. Yamazaki et al., 2013 [23] Cloth state estimation Vision N/A No

Y. Gao et al., 2015 [14] Jacket dressing Vision Model of body motion space Yes
J. P. Costeira et al., 2015 [15] Hat dressing Vision Learning of user motion constraints Yes

E. Pignat et al., 2017 [17] Jacket and shoe dressing Vision Modeling user behavior with HMM No

(a) Closed gripper (b) Open gripper (c) Shoes with markers

Fig. 3. Gripper and crocs shoes used in the experiments: (a) gripper, (b)
ribbon attached for easier grasping, and (c) color markers used for recognition
of both the shoes and their grasping points.

the pointing gesture into deictic commands. The experiments
were performed in the laboratory environment, and a graphical
model of the scenario is shown in Fig. 2.

B. Hardware

The central part of the system is a Barrett’s 7-DOF WAM
robotic arm equipped with an in-house developed gripper
shown in Fig. 1. The gripper has four fingers, which are
controlled by a servo motor (see Fig. 3a). A set of crocs-type
of shoes commonly used by patients in hospitals was also
used in this scenario. Each shoe has a ribbon attached that
is grasped by the four fingers before the shoe can be moved
to the user (see Fig. 3b). The ribbons are marked with four
different color markers for easier recognition (see Fig 3c).

Visual input is provided by two Microsoft Kinect cameras,
an XBOX 360 and a Kinect One, which will be referred to
as Kinect 1 and Kinect 2, respectively. The depth and RGB
images from the Kinect 1 are used to recognize the colors and
locations of the shoes markers. User tracking, posture and ges-
ture recognition rely on depth images provided by the Kinect
2, while the audio input from its integrated 4-microphone array
operating at 48 kHz is used for speech recognition and sound
localization. The cameras were connected to different PCs and
showed no noticeable interference during operation, which can
sometimes occur when using two cameras. One of the reasons
for no noticeable interference may be different orientation of
the two cameras: the Kinect 1 was facing downwards, while
the Kinect 2 was facing the user. Also, some studies suggest
that use of different technologies to compute depth may reduce
interference in a dual-camera setup: while Kinect 1 computes

alterations in the IR light pattern it projects, Kinect 2 computes
the IR rays time of flight.

The integration of hardware and algorithms was performed
in Robot Operating System (ROS). Three personal computers
(PCs) run the entire system. A PC running Ubuntu 12.04 LTS
64-bit, powered by an Intel quad-core Q9550 CPU @2.83
GHz×4 with 8 GB of RAM was used to run most of the
implemented algorithms and to connect the Kinect 1 camera.
The second PC running Ubuntu 12.04 LTS 64-bit powered by
an Intel Core i5-2400 CPU @3.10 GHz×4 and 4 GB of RAM
was used to control the WAM robot and the gripper, having all
the necessary drivers installed. The third PC running Windows
8.1 Pro 64-bit, powered by an Intel Core i7 X990 @3.47 GHz
and 2.80 GHz and 16 GB of RAM, processed the speech
recognition and user tracking data obtained using the Kinect
for Windows SDK 2.0 library. The three PCs communicated
via laboratory Ethernet.

C. Algorithms

Vision and speech were used as inputs for development
of several modalities for human-robot interaction, but also
for the interaction of the robot with the environment (e.g.,
recognition of the shoes). Some authors associate modalities
with the type of perception, e.g. vision, sound, etc.; however
we use a more detailed definition of modality as a channel
for a certain type of message between the user and the robot,
such as posture, gesture, etc., which can be developed from
the same sensory input, such as vision. Verbal interaction
between the user and the robot was implemented through
speech recognition and speech synthesis algorithms. Visual
interaction consisted of user tracking, pointing recognition
and posture recognition. An additional modality was deictic
expression recognition that combined speech and pointing
recognition. Finally, adaptation to users, or personalization,
consists of calibrating each person’s pointing gesture and
adjusting the robot’s position to suit the user ergonomically.
User personalization method is described in Section III.

1) Speech Recognition: Speech was used for bidirectional
communication between the user and the robot. Through
speech recognition the robot was able to understand user’s
voice commands to start or finish the task, correct its be-
havior or learn user preferences. The implementation of the
speech-recognition algorithm was made through the Microsoft
Speech Platform SDK 11 engine, which transcribes spoken
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utterances to text. A grammar model was created in XML-
format to define the utterances specific to assisted-dressing
scenario. Each utterance was associated with a semantic tag,
which was retrieved when the utterance was recognized. A
set of the utterances and associated semantic tags used in the
experiments is given in Table II.

2) Speech Synthesis: Robot feedback is an important as-
pect of HRI as it allows the user to understand the robot’s
current state and actions. It is used to inform the user about
the progress of the dressing task and necessary actions; for
example, after a shoe is picked up, the dressing assistance will
not continue until the user extends the foot towards the robot.
Robot verbal feedback is also used to confirm whether a user
command was correctly recognized, which contributes to user
safety but also allows a timely intervention by the user in order
to correct the robot’s behaviour. A text-to-speech algorithm
was implemented in Python, and relies on the gTTS package
using the Google’s Text-to-Speech API. The algorithm takes a
text string as input and converts it into a speech transcription in
mp3 format reproduced by the speakers. Similarly to speech
recognition, a vocabulary of utterances was defined specific
to the assisted-dressing scenario. Examples of the utterances
are: “ready to help”, “taking the {color} shoe”, “please,
approach”, etc.

3) User Tracking: The ability to track and follow user’s
body parts, such as a foot or a hand, is necessary to perform
the proposed assisted-dressing task. Microsoft Kinect SDK
provides tracking of 25 body joints, with their position and
orientation, at a 10 Hz frame rate [24]. Specifically, tracking
of the position of the foot and the orientation of the knee-
ankle axis were implemented for a proper positioning of the
shoe (see Fig. 8), but also to ensure collision avoidance and
to keep the interaction safe.

4) Pointing Recognition: The use of pointing gestures for
robot control proved to be an accepted way of interaction
for inexperienced users [25]. Various pointing recognition
methods have been proposed in literature, which were tailored
according to system’s sensing abilities, e.g., finger tracking
[26], or task requirements, e.g., distance of the pointing
target [27]. Our previous studies showed that the pointing
recognition using the position of the elbow and wrist joints can
successfully be applied to robot control in close human-robot
interaction [28], [29]. The user-tracking algorithm described in
Section II-C3 provides the position of the arm joints in real-

TABLE II
SPOKEN UTTERANCES WITH ASSOCIATED SEMANTIC TAGS AND ACTIONS

Spoken utterance Semantic tag Robot action

“begin” start waits for user to select a shoe
“calibrate pointing” pointing starts calibration
“take this shoe” take picks up the shoe pointed at
“take the {color} shoe” {color} picks up the {color} shoe
“dress me” dress waits for dressing posture
“move {direction}” {direction} moves end-effector {direction}
“stop” stop stops moving
“that’s ok” ok releases shoe from gripper
“abort” abort returns to home position

time, hence it was possible to implement the same method in
the current study.

The estimation of the user pointing target was applied in
combination with speech to form deictic expressions, which
allowed more diverse and intuitive interaction with the user.
For example, the user could point to a desired shoe while
saying “take this shoe!”, and the shoe closest to the pointing
target would be selected, as shown in Fig. 7a. Even though
the reference to the color using speech seems to be easier and
simpler when distinguishing the shoes, the pointing gesture is
likely to provide a more reliable alternative solution in real life
situations when the colors might not be descriptive enough to
discriminate different objects; for example, there may be more
than one pair of shoes of the same color, or the user may not
remember the exact name of the color, etc.

The computation of the pointing target was performed in the
robot frame of reference. Let pe = (xe, ye, ze) be the position
of the user’s elbow and pw = (xw, yw, zw) the position of
the user’s wrist, both obtained from the Kinect 2 applying
the user skeleton-tracking algorithm. The pointing direction is
computed as a straight line:

s = pe + λ(pw − pe) (1)

where λ ∈ <. In the proposed dressing scenario, the shoes
are placed on a platform that is parallel to the ground floor
at the constant height, z = h. After substituting this value in
(1), the pointing target, pt = (xt, yt, zt), which is found at the
intersection of the pointing line with the shoe plane is given
by:

xt = xe +
h− ze
zw − ze

(xw − xe),

yt = ye +
h− ze
zw − ze

(yw − ye),

zt = h.

(2)

Finally, let S = {blue, red, green, yellow} be a set of the
available shoes on the platform, and ps, s ∈ S, their respective
locations that are obtained with the shoe-recognition algorithm
described later in this section. The target shoe st ∈ S is
selected as the closest one from the pointing target:

st = arg min
s∈S

(|pt − ps|) (3)

A graphical representation of shoe selection is shown in
Fig. 7a, where for demonstration purposes the blue shoe was
selected by the user.

5) Posture recognition: Posture recognition was developed
to detect the user’s readiness to be dressed after the shoe
selection phase. The algorithm is able to recognize when the
user’s right leg is extended towards the robot by analysing the
position of the knee and the ankle joints. The leg is considered
to be extended when the ankle joint passes the perpendicular
axis of the femur bone by more than 0.05 m respect to the
knee joint, which is shown in Fig. 4.

Posture recognition evaluates the user’s intention to be
dressed but it also contributes to user safety. The algorithm
was running at 10 Hz, and a threshold was used to detect the
change in posture. If the user withdraws the foot, the robot



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 5

Fig. 4. Dressing posture recognition using relative ankle and knee positions.

returns to the home position and waits for the next instruction.
The posture recognition algorithm is executed after the shoe
selection phase, only when the user verbally confirms intention
to be dressed by saying “dress me”.

6) Shoe Recognition: For the proposed assisted-dressing
scenario, shoe manipulation was simplified by attaching a
ribbon to the top of a shoe so that the gripper can grasp
the shoe from above (see Fig. 3b). The ribbons were of
size 3cm×17cm, with rectangular 3cm×6cm color markers
placed in the central segment of the ribbon. The recognition
of the markers was implemented using the OpenCV image-
processing library that takes both RGB and depth images
provided by the Kinect 1 to compute the color and position of
different segments in the image. The Kinect 1 was mounted
above the shoe platform providing a top view of the shoes. The
experimental set consisted of four shoes marked with blue,
green, red and yellow markers shown in Fig. 5.

The RGB images obtained with the Kinect 1 were first
converted to HSV format. The colors in the image were
clustered according to their HSV values and their centroids
were computed. The HSV values of the markers used in the
experiments were obtained from the test sample images and
their ranges are given in Table III. Depth images obtained
with the Kinect 1 were used to compute the coordinates
of the markers’ centroids in the camera reference system.
The positions of the markers were transformed to the robot
reference system and set as the corresponding shoe’s gripping

(a) (b)

Fig. 5. Shoe recognition: (a) simulated experimental setup, and (b) real-world
view from the Kinect camera.

TABLE III
HSV VALUES RANGE FOR SHOE MARKER RECOGNITION

Hue Saturation Value

blue [97, 110] [70, 150] [100, 255]
red [167, 179] [150, 220] [100, 255]
green [48, 58] [70, 130] [100, 255]
yellow [20, 30] [110, 170] [100, 255]

points. It is important to note that the algorithm was executed
each time the user requested a shoe from the robot. The marker
positions were used to define the shoes gripping points, but
also to inform the user if the requested shoe had already been
picked up and is no longer available on the platform. The
described implementation made the system more robust to
unexpected user behavior.

7) Robot Motion Planning: Shoe grasping and positioning
to enable comfortable insertion of the foot by the user required
accurate robot movement. To reach a desired point in robot’s
workspace, the end-effector directional points provided in
Cartesian space were transformed into robot joints positions
that satisfy the constraints implemented through an inverse
kinematics (IK) algorithm [30]. The robot operated in a
compliant mode to ensure user safety. Predefined positions of
the robot’s end-effector were associated with different robot
states. In the home position shown in Fig. 5, the robot waited
for the user to initiate the task. After receiving a requests
to pick up a shoe, it computed the position of the shoe
marker and verified that the selected shoe was reachable.
To ensure successful grasping and avoid collision with other
shoes, the robot gripper was guided through a set of predefined
directional points above the selected shoe’s marker. After the
user’s request to be dressed, the robot delivered the shoe to
the delivery position (see Fig. 8), at a safe distance from the
user’s right foot. This distance was empirically obtained from
the test trials. It was computed with respect to the position of
the user’s ankle in the knee frame of reference, at dxy = 0.4m
in the xy plane taking into account the orientation of the right
leg along the knee-ankle axis, and dz = 0.5m in the z-axis.
The adjustment of the delivery position was a part of robot
personalization method described in Section III-B.

The robot was capable of adjusting the delivery position
by following the user’s foot, which consisted in maintaining
the distance and adjusting the orientation of the gripper. The
preliminary tests showed that the recognition of the foot
orientation was unreliable. For this reason, the axis passing
through the ankle and knee joints was used as a reference. Let
pa = (xa, ya, za) and pk = (xk, yk, zk) be the positions of the
user’s ankle and knee, respectively. The position of the ankle
with respect to the knee p

(k)
a = (x

(k)
a , y

(k)
a , z

(k)
a ) is computed

as:

p(k)
a = pa − pk (4)

The angle between the knee and ankle with respect to the
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Fig. 6. Decision-making module diagram.

robot’s x-axis is then given by:

β = tan−1
(y(k)a

x
(k)
a

)

+


π, if (x(k)a < 0) and (y(k)a > 0)

−π, if (x(k)a < 0) and (y(k)a < 0)

0, otherwise.

(5)

And for the case of x(k)a = 0:

β =


π/2, if (y(k)a > 0)

−π/2, if (y(k)a < 0)

0, otherwise.

(6)

By knowing the angle and distances in the xy plane and
z axis, the robot end-effector position pr = (xr, yr, zr) can
now be computed:

xr = xa + dxy cosβ

yr = ya + dxy sinβ

zr = za + dz

(7)

The position is continuously updated allowing the robot to
follow the user’s foot, while keeping a predefined distance for
safety.

8) Decision-Making Module: The decision-making mod-
ule is implemented as a finite-state machine, as shown in
the diagram in Fig. 6. It integrates all the above-described
algorithms, and defines the robot behavior with eight possible
states: Abort, Stop, Pick, Wait posture, Follow, Wait finish,
Finish, and Pointing. Transitions between the states are evoked
by the interaction events detected by any of the interaction
modalities, and these events are also shown in the diagram.
In case of inconsistent user input, the robot remains in the
current state and via spoken feedback informs the user about
the issue and requests a new input.

III. ROBOT PERSONALIZATION

To develop a personalized robot dressing assistant, a method
consisting of user pointing calibration and robot position ad-
justment was proposed. Pointing calibration improves the ac-
curacy of the pointing recognition during shoe selection, while
the robot position adjustment allows the users to modify the

(a) (b)

Fig. 7. Computation of the pointing target for the blue shoe: The user angle,
θu, is computed as the angle of the elbow-wrist axis in the robot frame of
reference. The corrected angle, θc, is computed using a linear fitting function
whose parameters A and B are obtained during the pointing calibration
procedure.

shoe delivery position for a better comfort. This is especially
important for users with mobility issues who may perform
pointing and foot positioning differently, in accordance with
their limitations.

A. Pointing Calibration

Pointing is performed differently by each user, and the
estimation of the pointing target may largely differ from
the one that is perceived by the user. For this reason, a
pointing calibration algorithm was proposed that compensates
the user’s pointing error and takes into account specific task
requirements. Preliminary experiments showed user consis-
tency in pointing. It is important to note that users were in
a seated position that restricted their pointing gesture, which
in the proposed scenario ensured successful repeatability of the
pointing action. The calibration procedure is initiated by the
user and it is described in Algoritm 1. It can be performed as
many times as needed, although for this study it was performed
only once before the assisted-dressing experiment.

During calibration, the robot asks the user to point to all four
shoes in a predefined order. The user points to each shoe and
confirms the pointing by voice. The robot stores the pointing
target associated with its corresponding shoe, and confirms
this to the user. For each target, the algorithm computes two
angles in the robot frame of reference: the user angle, θus ,

Fig. 8. Robot shoe delivery requires tracking and following of the user’s
ankle in real-time. During personalization, the user can use voice commands
to adjust the position of the robot.
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Algorithm 1 Pointing calibration
1: {A,B} ← {1, 0} // default parameters values
2: if “pointing” then // user says “calibrate pointing”
3: shoes ← {blue, red, green, yellow}
4: user angles ← {}
5: corrected angles ← {}
6: for all shoe in shoes do // user points to a shoe
7: θu ← get pointing angle()
8: θc ← get shoe angle(shoe)
9: user angles ← append θu

10: corrected angles ← append θc // robot says “OK”
11: end for
12: {A,B} ← linear fitting(user angles, corrected angles)
13: end if
14: θc ← Aθu +B // applying correction

and the corrected angle, θcs, s ∈ {blue, red, green, yellow},
as shown in Fig. 7b. The user angle is computed from the
straight line passing through the elbow and wrist joints and
the robot’s x-axis; similarly, the corrected angle is computed
as the straight line connecting the elbow and the shoe s and
the x-axis. The values obtained in preliminary trials suggested
a close-to-linear relationship between the two sets of angles,
θcs and θus :

θc = Aθu +B. (8)

During experiments, individual user’s pointing calibration
results, i.e., the four values of θcs and θus obtained for four
colored markers, were used to compute the parameters A and
B of the linear fitting function. Let pu = (xu, yu, zu) be
the difference between the wrist and elbow positions, pu =
pw − pe, and pc = (xc, yc, zc) the difference between the
shoe position and the elbow, pc = ps − pe. The user angle,
θus (xu, yu), and corrected angle, θcs(xc, yc), are then computed
the same as in (5) and (6), by substituting x(k)a and y(k)a with
xu and yu, and xc and yc, respectively.

The parameters A and B can now be computed from these
two sets of angles applying a linear regression model defined
in (8). The same equation will be used to correct the user’s
pointing angle during the experiments. The corrected pointing
target in the shoe plane, pc

t = (xct , y
c
t , z

c
t ), is then computed

using the polar coordinates with the user’s elbow joint, pe,
as the origin. The distance of the corrected pointing target is
given by:

dct =
√
(xct − xe)2 + (yct − ye)2 (9)

Finally, the corrected pointing target coordinates can be com-
puted:

xct = dct cos θ
c,

yct = dct sin θ
c,

zct = h.

(10)

where h is the height of the shoe platform. It is important
to note that the pointing calibration algorithm corrects the ac-
curacy of the user, but not the precision. Hence, the efficiency
of the pointing calibration depends on the individual user’s
consistency in performing the pointing gestures.

Algorithm 2 Robot position adjustment
1: robot pos ← initial pos
2: while ¬ “ok” do // user says “ok”
3: if direction then // user says direction
4: adjustment direction ← direction
5: while ¬ “stop” do // user says “stop”
6: robot pos ← robot pos + adjustment direction
7: end while
8: end if
9: end while

10: initial pos ← robot pos

In the experiments in which only the speech modality was
used, no calibration was required, so the fitting parameters
were set to A = 1 and B = 0, such that θu = θc. Hence, no
correction of the pointing target was performed.

B. Robot Position Adjustment

A predefined shoe-delivery position may not fit all the users
as it may require an additional effort to place the foot inside
the shoe. To reduce the user workload, particularly the physical
effort, a robot position adjustment algorithm is proposed. The
algorithm takes user requests to modify the distance (in the
xy plane) and the height (along the z-axis) of the robot end-
effector from the ankle joint, as shown in Fig. 8. The following
requests given by voice are defined: “move forward”, “move
back”, “move up”, and “move down”. The procedure of the
position adjustment is described in Algorithm 2. The robot
modifies the end-effector position along the requested direction
until the user says “stop”. The modification in any direction
can be repeated until the user is satisfied with the final position
and confirms it by saying “that’s ok”, or the end-effector
reaches a safety limit (dxy = (0.2 m, 0.6 m), dz = (0 m, 0.5
m)). The robot position adjustment can be performed as many
times as needed, however, for the purpose of this study it was
performed only once.

Both pointing calibration and adjusted robot end-effector
position were associated with a particular user and recorded
for future dressing tasks, until changed again on user request.
The Kinect 2 allows skeleton recognition and tracking of up
to six users in the sensor’s field of view. Each user’s skeleton
information has an associated userID that can be used to
consistently recognize and track a specific user; in our case,
this was the user closest to the robot.

IV. EXPERIMENTS

The developed autonomous robot dressing assistant was
tested in experiments with users who had no experience in
robotics. The robot’s task was to pick and deliver a shoe to
the user’s right foot. However, in each trial the participants
were required to repeat this task with the robot twice, in order
to increase the level of difficulty to the one of the real dressing
task. The experiments were designed to evaluate performance
and user workload under different conditions. The following
sections describe the experimental setup, tasks, user profiles
and evaluation metrics.
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A. Experimental Setup

The proposed experimental setup consisted of a WAM
robot with gripper, Kinect 1 and Kinect 2 cameras, and a
platform on which the shoes were placed, as shown in Fig. 2.
Two pair of shoes were used marked with four colors: blue,
green, red, and yellow. The distance between the shoes was
0.2m. The Kinect 1 was positioned above the platform facing
downwards to allow the visual recognition of the colored
shoe markers. Its location in the robot reference system was
(x, y, z) = (0.38m, 0.07m, 1.16m), and its orientation given
by its Euler angles was (α, β, γ) = (139◦, 80◦, 37◦). The
Kinect 2 was used to recognize speech, and track the user
movements. It was placed in front of the user, at an angle
that prevents occlusion of the foot by the WAM robot during
dressing. Its position in the robot reference system was set
to (x, y, z) =(2.03m, 0.57m, 0.53m) and its orientation in the
Euler angles was (α, β, γ) = (0◦, 0◦, 121◦). The entire system
was manually calibrated to minimize the robot positioning
errors. The manual measurements were verified by visualizing
the scenario in the ROS framework, through Rviz. The user
was seated on a wheeled platform, allowing the distance
from the robot to be adjusted. However, two constraints were
considered: the user had to remain inside the detection range
of the Kinect 2 camera and the right foot, when extended, had
to be inside the robot’s workspace.

The dressing task consists of the following steps, which
were provided as instructions to the users involved in the
experiments:
• Start: The robot is in the home position and after the

user’s “begin” confirms with “ready to help”.
• Shoe selection: The user selects one of the available

shoes, either by pointing to the shoe and saying “take
this shoe” or using a voice command to specify the shoe’s
color, for instance “take the green shoe”.

• Choice correction: If the robot picks up a wrong shoe,
the user can correct it by repeating the first step.

• Shoe delivery: The dressing is initiated by the voice
command “dress me”. The robot waits for the user to
extend the right foot (the posture is recognized), after
which it approaches the user’s foot at a safe distance,
taking into account the orientation of the user’s ankle
and knee joints (see details in Section II-C7).

• Finish: The robot follows the user’s foot while maintain-
ing the safe distance until the user says “stop”. The user
can now safely place the foot inside the shoe. The task
finishes when the user says “that’s ok”, after which the
robot releases the shoe from the gripper and returns to
the home position.

Fine shoe fitting by the robot may be added to finalize
the dressing task, however, due to its complexity it is not
considered in this study but as a part of future work.

B. Participants

The robot assistant was evaluated in experiments with 12
participants (8 males and 4 females) of similar educational
level (6 electrical engineers, 3 computer scientist, 2 chemist
and 1 biologist) and age (between 22 and 29), with no

experience in robotics. The goal of the experiments was to
assist the participant with selecting and putting on a shoe.
To add complexity to the task, the participants were asked
to select two shoes from the set, the blue and green one,
to complete the task. The difficulty of choosing each shoe
depended on its distance from the user and the pointing angle
required to select it, so for a fair comparison, all the users
were asked to choose the same shoes.

To evaluate the effect of personalization on robot perfor-
mance and user workload, the participants were divided into
two groups of 6 participants, each group consisting of 2 female
and 4 male participants. The participants from the Group 1
performed the task with the default robot setup, i.e. without
personalization. The participants from the Group 2 were
asked to perform the pointing calibration and robot position
adjustment (described in Section III) before performing the
dressing task. In both groups, the order of experiments was
changed for subgroups of 3 participants for counter-balancing.

To study the effect of robot personalization on the type of
interaction modality, both groups of participants performed
two experiments. In the first experiment, only the use of
voice commands was allowed in selecting the shoes, while in
the second experiment a combination of pointing and speech
(deictic expression) was required to make a selection. Each
experiment consisted of 5 trials, in each of which the user
was asked to select and put on two shoes.

C. Evaluation
Several metrics were used to evaluate the performance of

the robot and the workload of the participants. The quantitative
metrics used to evaluate the performance were the task suc-
cess, task completion time, and number of corrections. Task
success is defined by:

Si = Ni/2 · 100%,∀i = 1 . . . 10 (11)

where Ni represents the number of successfully delivered
shoes, and i is the number of the trial. Task completion time is
defined as the overall duration of a single trial. The number of
corrections refers to the number of times the participant must
repeat the request to the robot because it grasped the wrong
shoe.

For a qualitative evaluation, the participants were asked to
fill in the raw NASA-TLX questionnaire after each experiment.
The questionnaire evaluates six dimensions of user workload:
mental demand, physical demand, temporal demand, perfor-
mance, effort and frustration, values from 0 to 100 [31]. The
overall workload is computed as the average of the above-
mentioned six dimensions.

A mixed ANOVA test was conducted using the personaliza-
tion condition as a between-subject factor, and the interaction
modality as a within-subject factor divided in two levels
(speech and pointing/deictic). Statistical significance was com-
puted for all the above-mentioned performance metrics. The
results were considered significant for p ≤ 0.05.

V. RESULTS AND DISCUSSION

For a total of 120 trials performed by 12 participants,
97.5% were successfully accomplished. In 3 trials that were
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Fig. 9. Effect of the interaction modality and robot personalization on the
number of corrections during shoe selection. Error bars represent the standard
deviation of the mean. Note: Group 1 - without personalization, Group 2 -
with personalization.

classified as failures, the participants successfully guided the
robot during the shoe selection and delivery, but failed to
firmly place their foot inside the shoe, which resulted in the
shoe being dropped on the ground. This suggests that the task
was relatively easy to perform regardless of the interaction
modality used to perform the shoe selection, and whether the
robot personalization was performed or not.

Nevertheless, both type of modality and robot personaliza-
tion condition influenced the task performance. The results of
the ANOVA test show that there was a statistically significant
effect of the type of modality on the average number of
corrections, F (1, 10) = 5.022, p = 0.049. Furthermore, the
pointing calibration reduced the number of corrections in
the Group 2 by 79.2% compared to the results obtained by
the Group 1, as shown in Fig. 9. The difference between
the groups was statistically significant as determined by the
ANOVA test (F (1, 10) = 10.011, p = 0.01). In fact, the
Group 2 reported a similar number of corrections for both
modalities, meaning that after calibration, the use of pointing
gestures was as accurate as speech.

The effects of the interaction modality and robot person-
alization on task completion time are shown in Fig. 10. It
can be noted that the task completion time was approximately
the same in both groups when the speech modality was used.
However, as a result of personalization when the pointing
modality was used, the Group 2 required on average 23.3%
less time than the Group 1 to complete the task. It can also
be noted that for the Group 2, the task completion time
was similar regardless of the modality used. On the contrary,
the Group 1 on average performed the task 24.2% slower
with pointing than when the speech was used, indicating
that pointing was less accurate without previous calibration.
Although the ANOVA test results did not demonstrate sta-
tistically significant effect of the type of modality on the
average task completion time, the effect of personalization was
statistically significant, F (1, 10) = 4.945, p = 0.05.

The results for the six dimensions of user workload obtained
with the NASA-TLX questionnaires are shown in Fig. 11. The
type of modality had statistically significant effect on the user
physical demand (F (1, 10) = 5.248, p = 0.045) and user
performance (F (1, 10) = 4.817, p = 0.053). On average, the
Group 2 who performed robot personalization experienced less
overall workload than the Group 1: 3.2% when using speech,
and 5.4% when pointing was used; however, the effect of
personalization on user workload was not proved statistically
significant by the ANOVA test. It should be noted though,
that the user satisfaction analysis would be more reliable over
a long-term interaction study that would also include a larger
number of participants. For example, the pointing calibration
and robot position adjustment may add both physical and
mental demand to some users in a short experiment since
they increase its complexity, but would prove beneficial over
a longer period of interaction.

Though some of the results did not prove statistically
significant, they are here presented to describe the behavioural
trend of the participants. In comparison with the Group 1,
the Group 2 experienced less physical demand (5.0% with
pointing), temporal demand (5.0% with speech and 8.3%
with pointing), and frustration (10.0% with pointing). The
personalization performed by the Group 2 also led to a better
performance (19.1% with speech and 8.3% with pointing).
Although the personalization had no statistically significant
effect on the level of user effort, it can be noted that the
pointing modality required approximately 10% higher effort
than speech, for both groups. Indeed, pointing was combined
with speech to form deictic expressions, therefore, the final
effort is expected to be higher.

VI. CONCLUSIONS

Multiple modalities can add diversity and expressive power
to human-robot interaction, but also result in a higher level
of engagement that could positively impact the user’s level
of concentration on the task and thus reduce errors or safety

Fig. 10. Effect of the interaction modality and robot personalization on the
task completion time. Error bars represent the standard deviation of the mean.
Note: Group 1 - without personalization, Group 2 - with personalization.
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(d) (e) (f)

Fig. 11. Effect of the interaction modality and robot personalization on the six dimensions of workload. Note that here higher performance values indicate
worse performance. Error bars represent the standard deviation of the mean. Note: Group 1 - without personalization, Group 2 - with personalization.

concerns from distraction, loss of interest or even boredom.
This can be of high importance for the users that require
assistance with the activities of daily living such as dressing.
For example, pointing can be used to make more precise
requests if speech proves limited when choosing from a
pile of similar shoes. A combination of modalities can have
synergistic benefits, as in the case of deictic expressions. Also,
more specifically, redundancy in the input to the system can
improve accuracy. For example, speech-recognition in a noisy
environment will be error prone.

In this work, we exploited the concept of multimodality
to develop personalized interaction with a robot assisstant for
support in dressing. The robot was able to adapt to the users’
individual requirements by performing pointing calibration
and gripper position adjustment, which allowed more accurate
shoe selection and more comfortable shoe positioning. It
is important to note that the implementation of the robot
personalization could be modified to improve its flexibility.
Firstly the system could adapt while performing the dressing
task. For example, the user would be encouraged to point to a
specific shoe or garment and vocalize the specific name. Given
that the location of the user and the shoe are known in real
time, the correction of the pointing target could be determined
in this real scenario rather than a separate calibration routine.
Secondly, a simple geometric model of the user could be
implemented that adapted the correction angle with movement
of the user or the garment, overcoming issue with linear
mapping. However, in the scenario proposed in this work, we
are considering users in a seated position for which the linear
mapping of the pointing targets proved suitable.

Even though adding modalities to the robotic system in-

creases its complexity, in both system development and evalua-
tion, our results showed that the robot was able to successfully
perform the dressing task while reducing the overall user
workload, as a result of personalization. Future work will
include development of a framework that can intelligently
manage the use of interaction modalities in each interaction
event and transitions between them.
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[11] Chance, G., Jevtić, A., Caleb-Solly, P., Dogramadzi, S., A quantitative
analysis of dressing dynamics for robotic dressing assistance. Frontiers
in Robotics and AI, 4(13), 1-14 (2017)
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