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This work introduces an interactive methodology to analize, desing and simulate sliding model controllers for R2 linear systems.
The work reviews sliding mode basic concepts and design methodologies and describes an interactive tool which has been developed
to support teaching in this field. The tool helps students by generating a nice graphical and interactive display of most relevant
concepts. This fact can be used so that students build their own intuition about the role of different parameters in a sliding mode
controller.

Described application has been coded with Sysquake using an event-driven solver technique. Sysquake allows using precise
integration methods in real time and handling interactivity in a simple manner.
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I. INTRODUCTION

Sliding Modes based Control (SMC) is becoming a very
used technique in recent times. It has been applied in different
fields such as, among others, power electronics [1], magnetic
levitation systems [2] or electromechanical systems [3], [4].
The reasons can be found in the robustness offered against
uncertainty and disturbances in both linear and non-linear sys-
tems. Therefore, this technique is increasingly being included
in university studies, especially in Masters.

The key idea behind SMC is imposing a closed-loop dy-
namics of lower order than that of the plant, which defines a
surface in the original state space. The control policy is based
on switching between two predefined values accordingly to
the surface side where the system is in each instant of time
[5], [6], [7], [8].

The analysis of SMC is usually based on differential ge-
ometric ideas and other sophisticated mathematical concepts.
Consequently, many students have difficulties in assimilating
SMC principles, in particular those who do not have strong
mathematical background, which is the case in most engi-
neering studies at present. Fortunately, most SMC principles
have a nice geometric visualization. A way to support students
learning is taking profit from these graphical representations.

Nowadays, computers offer great graphical and computa-
tional capabilities, even mobile phones and tablets can produce
nice figures obtained after computer simulations. Visualization
is a very relevant sense which contributes to build intuition
and attract students attention in a given topic and help them
to improve their understanding of difficult concepts [9], [10],
[11], [12], [13], [14]. Although nice graphical representations
are a very important pedagogical tool which has been exploited
by teachers from old times, current computers allow to build
dynamic graphical representations which are updated in real-
time taking into account the user activity. This allows interac-
tivity to enter the scene.

Interactivity has proven to be a very important way humans
use to improve their knowledge about the environment. En-
gineering and control education, in particular, are also trying
to take profit from it to improve learning mechanism; conse-
quently, interactivity is one of most relevant concepts which
is being exploited in control education nowadays [15], [16].
Some examples are, the Interactive Learning Modules [13],
[17] or FreePIDTools [18] which where designed to introduce
students to PID control, SISO-QFTIT (Robust QFT based
control) or LCSD (Linear Control System Design) which
have been introduced to interactively design robust control
systems [9], SISO-GPCIT and MIMO-GPCIT [19] which have
been used to introduce students to Generalized Predictive
Control, ITTSAE is a set of interactive tools designed to
analyze Time Series [20], also dead-time compensators have
been analyzed using interactive methods[21] between others.
Similarly, several introductory control books are distributed
jointly with a set of graphical and interactive applications to
illustrate most relevant concepts [22][12], [23][24].

This paper describes a methodology to introduce students
to the analysis and design of SMC for R2 linear systems. The
methodology is supported with a graphical and interactive tool
which can be used by the professor in his lectures in order to
transform static drawings in slides or blackboard into attractive
figures updated in real-time. Interactivity allows to visualize
cause-effect relations when modifying controller parameters.
Additionally, the students can use the tool during self-study
or to solve homework exercises proposed by the professor.

One of the main characteristics of SMC is that the control
action is discontinuous, as it switches between two different
values. This kind of systems cannot be solved efficiently using
regular solvers [25]. An accurate resolution would require to
use very small simulation steps so that switching times are
obtained with precision. Since this approach makes interac-
tively simulating almost impossible, an event-based integration
[25], [14] is used in this work. Modern versions of simulation
tools have capabilities to implement this type of solving
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method. Tools like MATLAB [26], Easy Java Simulations
(EJS) [27] and Sysquake [28] are concrete examples. EJS
has been previously used to simulate systems containing SMC
controllers [14]. Differently, in this work Sysquake has been
used to take profit from its improved visualization methods and
its efficient solvers which allow to perform highly interactive
simulations with an attractive and appealing visualization.

SMC is a nonlinear control methodology, consequently and
differently from linear control systems, concepts like initial
conditions and region of attraction [29] play a very important
role; unfortunately computing the region of attraction is not
a simple issue in the general case. In this paper an original
methodology to compute the region of attraction of the system
is developed. This methodology has been implemented in the
described tool.

The paper is organized as follows. Section II introduces
most relevant concepts used to design and analyze sliding
mode controllers for linear planar systems. Section III de-
scribes how the application has been implemented and its main
functionalities. Section IV contains two examples showing
how the application is used to analyze given problems. Finally,
some conclusions about this work are included in Section VI.

II. SLIDING MODE CONTROL IN PLANAR SYSTEMS

In this work we focus on 2D linear systems, which can be
defined as

ẋ = Ax + bu (1)

where x ∈ R2 is the state vector, u is the input, u ∈ R,
A ∈ R2×2 the state transition matrix and b ∈ R2×1 the input
vector. The solution of linear systems is well-known. Linear
systems can be written using different realizations, each one of
them offers equivalent ways to write the same system. In this
work, for simplicity reasons and without loss of generality,
matrix A is written as

A =

(
0 1
a21 a22

)
, (2)

where the components of the second row are the opposite
sign of the coefficients of the characteristic polynomial, that
is, CA(λ) = λ2 − a22λ− a21. The zeros of CA(λ) are the
eigenvalues of A. These values define the shape of the solution
of (1).

In conventional SMC, the control action, u, is a piecewise
continuous action, i.e., the sign of an affine function:

u =

{
1 if σ(x) > 0
−1 if σ(x) < 0

(3)

where σ(x), is usually an affine function defined as

σ(x) = γx + δ. (4)

Note that σ(x) = 0 is a line, γ = (γ1, γ2) ∈ R2 is a normal
vector to the line and δ ∈ R a scalar value to place the line
over the plane (Figure 1).

As it can be seen from the definition, the control input u
takes two values only. As a consequence, the dynamics (not
the trajectories) are piecewise continuous. Furthermore, note
that they are not defined on the line σ(x) = 0. However, in
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Figure 1. Linear sliding surface definition in the phase plane (x1-x1).

some subsets of σ(x) = 0 trajectories chatter around σ(x) = 0
and, ideally, they evolve over the line. This kind of dynamics
are referred to as sliding modes or sliding regimes.

In a more formal manner, it is said that there exists sliding
regime in a subset R ⊂ {x ∈ R2 |σ(x) = 0}, if there exists a
neighborhood O of R in R2 such that all trajectories starting
in O converge to R and remain in it. If finally, the trajectories
leave R, they do it through the border ∂R ⊂ {x ∈ R2 |σ(x) =
0}.

A. Sliding Regime Conditions

At this point, two natural questions arise:
• Under which conditions do sliding modes exist?
• Presuming that sliding modes exist, what dynamics do

they fulfill?
In this section the sliding regime existence problem for the

system defined by (1), (3) and (4) is studied. The line defined
by σ (x) = 0 in (4) decomposes R2 in two half-planes (Figure
1):

π− = {x ∈ Rn|σ (x) < 0}
π+ = {x ∈ Rn|σ (x) > 0} .

According to the control input, (3), different vector fields act
on π− and π+. These vector fields are f− and f+, respectively,
and they are defined by f− = Ax − b and f+ = Ax + b.
Both f− and f+ are smooth vector fields on all R2. Figure
2 shows different dynamics close to σ(x) = 0 depending on
the relative position of f− and γ, and f+ and γ. In Figure
2.a, trajectories leave σ(x) = 0, which acts as a repeller; in
Figure 2.b, trajectories cross σ(x) = 0; finally, in Figure 2.c,
trajectories point forward σ(x) = 0, which acts as an attractor.
Sliding modes take place in the last case.
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Figure 2. Different possible phase plots close to the switching surface: (a) σ(x) = 0 acts as a repeller, (b) trajectories cross σ(x) = 0 and (c) σ(x) = 0
acts as an attractor.
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Figure 3. Vector fields direction around the sliding surface when a sliding
regime exists.

The time derivative of σ over the trajectories can be com-
puted as:

σ̇ =
∂σ

∂x
ẋ.

Usually the scalar product is noted as < ·, · > and the gradient
vector ∇σ , ∂σ

∂x . Using this notation time derivative of σ over
the trajectories can be written as: σ̇ = 〈∇σ, ẋ〉. For the sliding
surface defined in (4), ∇σ = γ while ẋ will be f− in π− and
f+ in π+.

A necessary and sufficient condition for the existence of a
sliding regime in a subset R of σ(x) = 0 is that σ̇ < 0 when
σ > 0 and that σ̇ > 0 when σ < 0 [7]. These conditions
guarantee that the system trajectories converge to σ(x) = 0,
i.e. the sliding surface acts an attractor (Figure 2.c).

Consequently, for the case of (1), (3) and (4), a sufficient
condition for the existence of a sliding regime in a subset R
of σ(x) = 0 is given by:〈

γ, f−
〉
> 0 and

〈
γ, f+

〉
< 0. (5)

Figure 3 shows an schematic representation of these condi-
tions. Note that thanks to f−, f+ and σ (x) = 0 are smooth,
inequalities in (5) hold in a neighborhood of R.

B. Sliding mode existence and ideal sliding dynamics
In order to analyze the closed-loop behavior it is necessary

to understand the dynamics in sliding modes. Two different

methods to address this issue can be found in the literature:
Filippov approach [30], and the equivalent control method
introduced by V. Utkin [7].

Filippov approach defines the dynamics at a given point
x ∈ R as the intersection between the convex hull spanned
by f− and f+ with the tangent manifold to σ (x) = 0 at x;
in our particular case, σ (x) = 0 itself. The equivalent control
approach defines the equivalent control as the required control
action that makes R flow-invariant (i.e. trajectories starting in
R remain in R). Both approaches provide the same solution in
affine systems as the ones we deal with. The main theoretical
results in this section will be presented using the equivalent
control approach.

Let assume that for t ≥ t0 the system is in sliding regime,
i.e., σ (x(t)) = 0, and remains in it during a time interval t ∈
[t0, t0 +ε). During this interval σ (x(t)) = 0 and dσ(x(t))

dt = 0
as well. The latter equation allows obtaining the equivalent
control, i.e., a continuous control action that forces trajectories
of (1) to remain in σ (x(t)) = 0. Namely,

0 =
dσ(x(t))

dt
= 〈∇σ, ẋ〉 = 〈∇σ,Ax + bueq〉 (6)

then,

ueq (x) , −〈∇σ,Ax〉
〈∇σ,b〉 . (7)

Equation (7) yields a necessary condition for the existence
of ueq . Namely,

〈∇σ,b〉 6= 0. (8)

It is named transversality condition and it states that the vector
field b should not be tangent to the sliding surface. This is
equivalent to require for the system (1) with output (4) to be
relative degree 1.

Transversality condition is a necessary and sufficient con-
dition for sliding modes to exist if there are no constrains on
u. If (8) holds, but (5) does not, σ(x) should be replaced by
−σ(x).

The equivalent control, ueq (x), corresponds to a continuous
ideal control action which would produce the same results
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than the switching control law, (3), once the sliding regime is
achieved. As the control action, (3), is bounded the achievable
equivalent control action will also be bounded [7], [31]:

− 1 < ueq (x) < 1. (9)

Consequently, (9) becomes a necessary and sufficient for the
sliding regime existence and it can be used to obtain the sliding
domain on σ(x) = 0, R.

The dynamics on R (ideal sliding dynamics) can also be
given by

ẋ = Ax + bueq (10)
0 = σ(x)

which leads to a first-order dynamics on the switching line.
One of the main tasks in SMC is to define a sliding surface

σ (x) = 0 so that the closed-loop system (1)-(3)-(4) fulfills
given specifications.

C. Design hints
As previously stated, ideal sliding dynamics can be defined

by (10). Although this expression is complete, it is difficult to
use it to design the switching surface. An alternative approach
already mentioned is to manipulate (10) in order to obtain the
dynamics in terms of x1 or x2. Under the assumption that
γ2 6= 0, σ (x(t)) = 0 can be solved for x2, the line can be
parametrized by x1, and the sliding dynamics can be defined
through x1 only.

If a2 6= 01, (10) is equivalent to

ẋ1 = β11x1 + β12 (11)

or alternatively, equivalent to:

ẋ2 = β21x2 + β22 (12)

where βij are values depending on the switching line and the
system parameters. Using the switching surface parameters as
design parameters it is possible to set βij to the desired values,
which results in setting the sliding dynamics.

Another approach is to encompass the problem of regulating
an output defined by

y = ρx (13)

to a desired value, yss, by designing an appropriate switching
line that will depend on the output relative degree. Two cases
must be distinguished.
• ρb 6= 0 (relative degree 1). In this case, it is possible

to set the value of y to yss, i.e. y = yss. Take γ = ρ
and δ = −yss as surface parameters. Whenever the ideal
sliding dynamics is stable, we will achieve y = yss. Note
that this method does neither allow to determine the ideal
sliding dynamics nor its stability, they can be computed
through the equivalent control method.

• ρb = 0 and ρAb 6= 0 (relative degree 2). In this case, it
is possible to impose the following output dynamics:

τ ẏ + y = yss. (14)

Which in the original coordinate system becomes γ =
τρA + ρ and δ = −yss.

1If a2 = 0 only certain parametrizations might be applicable

D. Region of attraction

Conditions under which sliding regimes exist were analyzed
in the previous section. Unfortunately, deduced conditions are
local and only provide relevant information in a region close
to the sliding surface. This information might not be enough
in practical applications. Furthermore, it is difficult to obtain
an analytical criterion which allows to determine the basin of
attraction of R, i.e., the initial conditions of those trajectories
that impact on R in finite time.

These attraction regions are of great relevance from a
practical point of view. Let us define

η− =
{
x0 ∈ π−|x(0) = x0, ẋ = f−, ∃t > 0|x(t) ∈ R

}
(15)

η+ =
{
x0 ∈ π+|x(0) = x0, ẋ = f+, ∃t > 0|x(t) ∈ R

}
. (16)

η = η−
⋃
η+ is a subset of the basin of attraction of R.

In particular, it corresponds to the region of attraction that
generates a sliding regime after hitting the switching surface
once.

Computing the attraction zone might not be an easy prob-
lem. Fortunately, computing its boundaries, ∂η− and ∂η+,
might be easier. These boundaries are composed of solutions
to (1)-(3)-(4) [29] and can be decomposed in different compo-
nents that will be analyzed below. For simplicity reasons the
analysis is only described for ∂η−. The reasoning would be
exactly the same for the case of ∂η+.

The boundary of η−, ∂η−, is composed of the following
components:

• R, which is a line segment, a subset of σ(x) = 0. Its
boundary can be obtained by combining the sliding sur-
face equation, and the equivalent control limits, ueq(x) =
1 and ueq(x) = −1, respectively. This boundary consists
of two points : x1 and x−1 (see Figure 4.a).

• f−x1 , f−x−1 , which are two trajectories reaching x1 and x−1

from π−. These trajectories can be obtained by evaluating
ẋ = f− with x(0) = x1 and x(0) = x−1, respectively,
in backwards times. These curves can be analytically
obtained by evaluating the linear system solution.
The relation between these two curves and ∂η− can take
different forms:

– f−x1 and f−x−1 intersect σ(x) = 0. In this case, only
a segment of f−x1 and f−x−1 belongs to the boundary
and a segment of σ(x) = 0, R′, closes the boundary
(see Figure 4.b).
This structure appears when the eigenvalues of A
belong to C, −A has eigenvalues on C+ or −A has
all its eigenvalues in C−, and the equilibrium point
of ẋ = −Ax− b, −A−1 · b belongs to π+.

– f−x1 and f−x−1 tend to a finite point, x′ ∈ π−, as
t→ −∞ (see Figure 4.c).
This structure appears when the eigenvalues of −A
belong to C− and the equilibrium point of ẋ =
−Ax− b, x′ = −A−1 · b belongs to π−.

– f−x1 and f−x−1 tend to infinite as t→ −∞ (see Figure
4.d).
This structure appears when −A has real eigenvalues
in C+.
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Figure 4. Attraction zone components. (a) R is always a component of the attraction zone boundary, its limits are x1 and x−1; (b) in some cases f−
x1

and f−
x−1 intersect σ(x) = 0; (c) in some cases f−

x1 and f−
x−1 converge to point in x′ ∈ π−; (d) in some cases f−

x1 and f−
x−1 tend to infinite without

intersecting σ(x) = 0.

• Line segments: when the eigenvalues of −A are real,
its eigenvectors define a decomposition of R2. This
decomposition is defined by lines intersecting in the equi-
librium point, A−1b, and aligned with the eigenvectors
directions. These lines are, in some cases, part of ∂η−.

Combining all these components and computing its intersec-
tions it is possible to build ∂η− for each particular case.

III. VARIABLE STRUCTURE SYSTEM INTERACTIVE
SIMULATION

Developing an interactive application that analyzes the
behavior of systems defined by (1)-(3) implies solving a
discontinuous set of differential equations. Using a regular
ODE solver to address this problem implies using very small
discretization intervals, which leads to a slow simulation. In
addition, this approach may generate erroneous results2. In
order to obtain the results in a time which allows interactivity
and assures correct results another approach must be used.

An approach to solve (1)-(3) in an efficient and correct man-
ner is to identify the different continuous dynamics appearing
in the system, solve those latter using regular methods, and
switch between them at proper time instants. This approach is
usually named event-based simulation [25]. This methodology

2This may be important when the system is in a sliding regime.

will be used in the development of the simulation environment
described in this work. It has already been used to simu-
late hybrid systems [32] and systems with complex sliding
regimes [33].

In this work, Sysquake [28] has been used as develop-
ment tool. This software supports event-based simulation,
by defining the vector field functions, state events detection
function, and state events management function. The vector
field function defines the vector field that must be integrated
in each time, depending on the value of a configuration
variable; the state event detection function corresponds to a
function which equals 0 when an event is reached; finally the
state events management function is called when an event
is detected, this function determines which is the next set
of equations to be used by fixing the configuration variable
value. All these functions are integrated in single integration
procedure.

The system (1)-(3), contains three different continuous
regimes:

1) The system is moving in π−, in this configuration the
vector field to be solved is defined by f−.

2) The system is moving in π+, in this configuration the
vector field to be solved is defined by f+.

3) The system is moving over R, in this configuration the
vector field to be solved is defined by (10).
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Figure 5. Event-based simulation structure used to simulate the closed-loop system.

It is important to state that differently from the two
previous cases, (10) leads to a Differential Algebraic
Equation system (DAE). To solve these equations a DAE
solver [34] is needed. Unfortunately, Sysquake has not
such a solver.
Solving

ẋ = Ax + b · ueq(x) (17)

with appropriate initial conditions (σ(x) = 0) would be
ideally enough. Unfortunately, when solved with a real
ODE solver, the solution trajectory would diverge from
the switching surface after sometime due to numerical
problems. To avoid this problem a regularization scheme
is used [35], i.e. equation (17) is replaced by the
following one:

ẋ = Ax + b · ueq + γ · σ (x) ·
(
∂σ (x)

∂x

)T
. (18)

The new system is equal to (17) with the addition of a
regularization term, composed by the product of a vector
normal to the switching surface, the switching surface
and a scalar term to be tuned. The solution of (18) is
exactly the same than that of (17) when the trajectory
is over the switching surface. When the trajectory drifts
from the surface a component appears which takes the
trajectory back to the switching surface.

This procedure allows to obtain the solution of (10) with
a regular ODE solver and without increasing too much
the complexity of the equations to be solved.

In order to determine when the solver needs to change from
one vector field to another, it is necessary to determine when
the trajectory moves from π− to π+ or R and viceversa. These
transitions can be related with a set of events:

1) The trajectory hits the switching surface, i.e., σ(x) = 0.
2) The equivalent control reaches its limit ueq(x) = 1 or

ueq(x) = −1. These two cases can be integrated in a
single function, i.e., |ueq(x)| = 1.

Both events are mutually excluding, consequently only one
event must be detected at each time. Once an event is detected,
it is possible to uniquely determine the following state from
the previous state, the detected concrete event and the value of
x. Figure 5 shows the flow diagram used to obtain the system
trajectories.

Following the described methodology, an interactive tool
named SMCITOOL (Sliding Mode Control Interactive Tool)
has been designed and implemented to be used to illustrate
most rellevant concepts in sliding mode control. SMCITOOL
can be dowloaded from :
https://sites.google.com/site/ramoncostacastello/smcitool

Figure 6 shows the complete view of the application. The
interface is composed of four main blocks: the upper left

https://sites.google.com/site/ramoncostacastello/smcitool
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Figure 6. SMCITOOL: Application components. The view shows a case where no sliding regime exists. The closed-loop system describes a limit cycle.The
systems trajectories are continuously moving from π− to π+.

(Textual definition) one allows to describe the plant (A,b)
and the sliding surface both using a graphical or textual
approach; the lower left part (Control action, states and
output evolution) shows the evolution of most relevant closed-
loop variables (control action, u, states x and output, y); the
upper right part (Event evolution) contains a time diagram
describing the events that are generated during the simulation;
and finally, the lower right part (Closed-loop phase plane)
contains a phase diagram that shows the sliding surface,
σ(x) = 0, the trajectory starting at a given initial condition,
the flow lines and the attraction zones. All the elements are
interactive and are updated in real time.

In the following, the main functionalities of each part will
be described:

• Textual definition: In this section it is possible to define
the sliding surface and the system using text fields or
sliders. Using a check button it is possible to select
between three possibilities:

– Output : The components of ρ, (13), yss and τ , (14),
can be defined. For relative degree 2 outputs, also the
value of τ , (14), can be defined.
From these values, the values of γ and δ, (4), are
automatically computed.

– Surface: The values of γ and δ, (4), can be defined
using text fields or sliders.

– Model: The eigenvalues of A and the values of the
components of b can be introduced using textfields
and sliders.

In the bottom of this section there exist two buttons,
one named ”start” and the other named ”stop”. When
pressing the start button, an animation which moves a
circle over the trajectory begins. The evolution of the
circle over the trajectory is proportional to the simulation
time (takes 10s to move from the initial conditions to
the last point). When the circle reaches the last point, the
animation automatically begins again until the stop button
is pressed or any other interactive element is modified.

• Graphical definition : In this part a complex plane is
shown, over it the eigenvalues of A (red crosses) and the
components of b (red circle) are shown. Both elements
can be modified by dragging them.
Over this complex plane the equivalent dynamic pole is
shown (green cross). This is presented only if a sliding
regime exist.

• Control action, states and output evolution: This part
is divided in two figures. The upper one represents the
control action. When the trajectories are over a sliding
regime the equivalent control is shown. The lower one
can display the state variables (x1,x2) and the output (y)
against time. Also the Ideal dynamics (the one defined
over the switching surface by yss and τ in (14)) is also
shown, for the state variables and the output. Over the
output, two control points (gray circles) are included to
interactively define τ and yss respectively.

• Event evolution: This part shows the time instant for
which an event is generated during the simulation. Differ-
ent colors are used for different events types. A green bar
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is used to visualize hitting the switching surface without
entering in a sliding regime, a blue bar is used to visualize
hitting the switching surface entering in a sliding regime
and a light blue bar is used to visualize the ending of a
sliding regime.

• Closed-loop phase plane: This figure contains the
trajectory (pink curve) which the closed-loop system
describes over the phase plane (defined by x1-x2). The
initial conditions (pink circle) can be interactively modi-
fied by dragging them. The switching surface is drawn in
green. This line can be interactively modified by dragging
it, it can be rotated over a control point (small green
square). Along the switching surface a black arrow line
which corresponds to γ. The control point can also be
modified by dragging it to the desired point.
Finally, the figure upper part contains several check
button that can be used to customize the figure:

– Equilibrium point: when it is active the closed-loop
equilibrium point is drawn (red star). This equilib-
rium point may be stable or unstable and might be
inside our outside R.

– Sliding zone: when this option is active the region
where sliding regime exist, R, is drawn in blue.

– Vector field: when this option is active different
arrows showing the vector field direction are shown
over the phase plane.

– Attraction: when this option is active the region of
attraction, η, is shown over the phase plane.

Many figures contain black triangles which can be used to
change the scale.

It is important to note that due to the interactivity all
the information is automatically updated when any change is
applied.

IV. EXAMPLES

A. Example 1

System (1) is defined by:

A =

(
0 1

−4.25 −1

)
b =

(
0
−5

)
.

The control goal is to regulate the value of the output :

y = x1 = (1, 0)x = ρx

to yss = 0.75.
As ρb = 0, the output relative degree is two. Consequently,

it is possible to impose a convergence dynamics once the
sliding regime is achieved:

τ
dy

dt
+ y = yss, (19)

Note that dy
dt = x2, the sliding surface becomes:

τ · x2 + x1 = yss. (20)

Which can be rewritten as:

σ (x) = γ · x− yss (21)

where γ = [1, τ ]. At this point τ is selected as 0.5 s.

In order to analyze the closed-loop behavior, firstly the
transversality condition is validated:

〈∇σ,b〉 = −5τ 6= 0.

Consequently, a sliding regime might exist. Secondly, the
equivalent control is computed:

ueq = −0.85x1 + 0.2
(1− τ)

τ
x2.

From (20), it is possible to determine that over the switching
surface: x2 = yss−x1

τ ; consequently over the switching surface
the equivalent control becomes:

ūeq =

(
−0.85− 0.2

1− τ
τ2

)
x1 + 0.2

(1− τ)

τ2
yss.

The bounds for R are obtained by equaling ueq = ±1, so:

−5 τ2 − yss τ + yss
17
4 τ

2 − τ + 1
≤ x1 ≤

5 τ2 − yss τ + yss
17
4 τ

2 − τ + 1.

Which for τ = 0.5 and yss = 0.75 becomes:

− 0.56 ≤ x1 ≤ 1.04. (22)

Consequently, sliding regime will exist around the desired
operation point y = x1 = yss = 0.75.

In Figure 7, it can be seen the SMCITOOL output for the
case under study when initial conditions (x1(0),x2(0)) =
(2, 0) are selected. As the initial conditions are outside the
attraction zone in π+, the trajectory hits the switching surface
outside R so no sliding regime is produced (this corresponds to
the first event). When crossing to π−, the trajectory enters the
attraction zone and after some time it hits the switching surface
(second event) inside R and the sliding regime is produced. As
the equivalent dynamics has been designed to be stable and
the equilibrium point is inside R, the output asymptotically
reaches yss.

As it can be seen in the left lower part, the control action
begins equal to 1 because the trajectory begins in π+, after
the first event it turns into −1, and finally when the sliding
regime begins the control action corresponds to the equivalent
control.

In case the desired value for y changes from 0.75 to 1.25
implies that x1 moves outside the range where the stability
condition, (22), is fulfilled. This implies that the desired
equilibrium point lies outside the region where sliding regime
exist so the closed-loop system will not reach the desired point.
Figure 8 shows the closed-loop evolution for this case. For
the same initial conditions as in the previous case, trajectory
hit the switching surface in a region where no sliding regime
exist, thus the control action switches from 1 to -1. Finally,
the trajectory reaches and equilibrium point in π− which is
different from the expected (yss). Therefore, the designed
control system does not fulfill the specifications.

V. EXAMPLE 2

System (1) is defined by:

A =

(
0 1

1.4 −1.3

)
b =

(
4
3

)
.
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Figure 7. SMCITOOL: The view shows the case described in Example 1 for yss = 0.75. Trajectory begins in π+, hits the sliding surface and enters π−;
after some time it hits the sliding surface again and then enters the sliding regime. As the dynamics over the sliding surface is stable (the pole can be seen
in green in the pole placement section) and the equilibrium point is in R, the output tends asymptotically to yss.

and the control goal is to regulate the output:

y = ρx = [−0.53,−0.848]x

to yss = −1.275.
This is an unstable linear system (the eigenvalues of A are

−2 and 0.7) and the output relative degree is one (ρb 6= 0).
Consequently, it is only possible to regulate the value of y to
yss. The switching surface is defined as (γ = ρ, δ = −yss):

σ (x) = ρ · x− yss. (23)

In order to analyze the closed-loop behavior, firstly the
transversality condition is analyzed:

〈∇σ,b〉 = −4.664 6= 0.

Consequently, sliding regime might exist. Secondly, the equiv-
alent control is obtained:

ueq = −0.2545x1 + 0.1227x2.

Which over the switching surface becomes:

ūeq = −0.33125x1 − 0.14473yss.

The bounds for the sliding region, R, can be obtained by
solving ūeq = 1 and ūeq = −1. From this, the sliding region
corresponds to:

−3.0188− 0.4369yss < x1 < 3.0188− 0.4369yss.

Which for yss = −1.275 is:

− 2.4618 < x1 < 3.5759. (24)

The dynamics over the switching surface, (10), can be
written as:

ẋ1 = −1.95x1 − 1.7581yss,

which is a stable system with an equilibrium point at x1 =
−0.9016yss, which for yss = −1.275 is 1.14956 which in
inside the interval defined in (24). As a consequence a stable
sliding regime will exist is the control goal will be achieved.

Figure 9 shows the SMCITOOL output for the case
under study and yss = −1.275 with initial conditions
(x1(0),x2(0)) = (5.1,−5.1) placed in π+. As the initial
conditions are outside the attraction zone in π+, after some
time the trajectory hits the sliding surface outside R, but this
time the trajectory is inside the attraction zone in π−. After
certain time the trajectory will hit R and as the equivalent
dynamics is stable and the equilibrium point is in R, the
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Figure 8. SMCITOOL: The view shows the case described in Example 1 for yss = 0.125. Trajectory begins in π+, hits the sliding surface and enters π−;
after some time it hits the sliding surface again and then enters the sliding regime. The trajectories lie over the sliding surface until the equivalent control
reaches its lower limit, at this point another event is produced and trajectories return to π− and converge to the equilibrium point of ẋ = f−.

trajectory remains in R. It is important to mention that in this
case the system converges to the desired equilibrium point in
finite time. As it can be seen in the lower left part of Figure
9, although y reaches yss in finite time, the states converge
asymptotically to the equilibrium point.

VI. CONCLUSIONS

In this work a methodology to introduce most relevant
concepts behind sliding mode control has been presented. The
methodology is almost self-contained and it does not assume
any prior knowledge about the topic.

Planar sliding mode control has a very rich graphical
representation, to take profit from this, a completely graphic
and interactive tool has been designed to support the design
and teaching duties. This tool uses an efficient event-based
simulation approach which computes the solution trajectory
very fast making it possible to interact with it. This tool allows
to introduce students and designers to complex concepts in a
simple and intuitive manner.

One of the functionalities of this tool is to determine the
region of attraction of the sliding region. It is computed using
an original methodology described in the paper.

Finally a couple of examples, have been included, to show
how this tool can be used to analyze and design SMC planar
systems.
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“interactive learning modules for pid control. In IFAC Proceedings,
volume 39, pages 7–12.

[14] N. Carrero Candelas, R. Costa-Castelló, S. Dormido, and E. Fossas.
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