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Abstract

This paper proposes a set-membership state estimator and a zonotopic Kalman observer for discrete-time descriptor systems.
Both approaches are developed in a set-based context considering system disturbances, measurement noise, and unknown in-
puts. This set-membership state estimation approach determines the set of consistent states with the model and measurements
by constructing a parameterized intersection zonotope. Two methods to minimize the size of this intersection zonotope are
provided: one inspired by Kalman filtering and the other based on solving an optimization problem involving a series of linear
matrix inequalities. Additionally, we propose a zonotopic Kalman observer for discrete-time descriptor systems. Moreover,
the relationship between both approaches is discussed. In particular, it is proved that the zonotopic Kalman observer in the
current estimation type is equivalent to the set-membership approach. Finally, a numerical example is used to illustrate and
compare the effectiveness of the proposed approaches.
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1 Introduction

In many industrial applications involving distribution or collection networks (as e.g. water and electrical networks),
mass and energy balance static equations must hold. A standard model including only the dynamical part (described
by ordinary differential/difference equations) is not enough to represent system dynamics subject to static relations
among system variables. Such systems, known as descriptor systems (also known as singular, implicit or differential-
algebraic systems), are better represented by a set of differential and algebraic equations describing the generalized
dynamic and static behaviors. In the literature, descriptor models have been considered to address a large amount
of applications, such as water distribution networks [23], chemical systems [4], electrical circuits [8], [19], aircraft
systems [21], biological systems [28] as well as economic systems [27]. For monitoring purposes and for developing
control strategies, state estimation is usually required. Some research works on state estimation for discrete-time
descriptor systems have been carried out (see as e.g. [10], [11], where system states are estimated by using different
versions of Kalman filtering).
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Research on set-based state estimation has been quite active for the last decades, e.g. [1], [7], [12], [17], [18], [22] among
others. In the literature, set-based state estimation approaches can be classified according to whether they follow
a set-membership or an interval observer-based paradigm. A set-membership approach relies on over-bounding the
uncertain estimated states considering unknown-but-bounded uncertainties [20]. An interval observer-based approach
bounds the set of estimated states by means of an observer structure in which the gain is designed assuming that
uncertainties are modeled in a deterministic way (as e.g. using intervals for bounding them [9]) or in a stochastic
way (as e.g. using the Kalman filtering [13], [14]). From the application point of view, the set-based approaches are
very popular in the fault diagnosis framework, e.g. [16], [26], [24].

Zonotopes are a special class of geometrical sets. The symmetry properties of zonotopes help to reduce the compu-
tational load of using them in an iterative way. Worst-case state estimation for dynamical systems using zonotopes
is investigated in [17]. A state bounding observer based on zonotopes is introduced in [5]. The zonotopic observer in
combination with Kalman filtering is addressed in [6], [7]. Moreover, a set-membership approach based on zonotopes
is proposed for dynamical systems in [1], [2].

1.1 Contribution

The main contribution of this paper is to propose a set-membership state estimator and a zonotopic Kalman observer
for discrete-time descriptor systems. Basically, three types of system uncertainties are considered: unknown inputs
and unknown-but-bounded system disturbances and measurement noise. One limitation for the use of zonotopic
approaches in real applications is that some system disturbances are unknown and it may not be possible to bound
them in a predefined zonotope as a-prior knowledge. To overcome this problem, two classes of unknown system dis-
turbances are considered: (i) bounded disturbances in a zonotope; (ii) unbounded disturbances, which are considered
to be unknown inputs and can be decoupled in the observer design.

For the proposed set-membership approach, the consistent states with measurements are enclosed by a parameterized
intersection zonotope. To reduce the size of the intersection zonotope, the FW -radius [6] and W -radius [15] criteria
are considered. The FW -radius criterion is used through the Kalman filtering procedure while the W -radius criterion
is taken into account via an optimization problem including linear matrix inequalities (LMIs). For the designed
zonotopic Kalman observer, we present the explicit solution of the optimal Kalman gain based on the FW -radius
criterion. Moreover, the relationship between the proposed set-membership approach and zonotopic Kalman observer
is discussed.

1.2 Outline

The paper is organized as follows. The problem statement is expressed in Section 2. The set-membership approach
for discrete-time descriptor systems is proposed in Section 3 and the zonotopic Kalman observer for discrete-time
descriptor systems is designed in Section 4. The relationship between both approaches is discussed in Section 5.
A numerical example is provided to illustrate the effectiveness of both approaches and comparison results are also
shown in Section 6. Finally, conclusions are presented in Section 7.

Notation. An m-order zonotope Z ∈ Rn (m ≥ n) is defined by a hypercube Bm = [−1,+1]
m

affine projection
with the center p ∈ Rn and the generator matrix H ∈ Rn×m as

Z = 〈p,H〉 = {p+Hz, z ∈ Bm} . (1)

Denote the Minkowski sum as ⊕ and the linear image product as �. The zonotope Z in (1) can also be defined
by Z = p⊕HBm. Besides, the following properties hold:

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉, (2a)

L� 〈p,H〉 = 〈Lp,LH〉, (2b)

〈p,H〉 ⊆ 〈p, rs(H)〉, (2c)

where L is a matrix of appropriate dimension. 〈p, rs(H)〉 is called interval hull of the zonotope Z = 〈p,H〉 and rs(H)
returns a diagonal matrix with diagonal elements of rs(H)i,i =

∑m
j=1 |Hi,j | for i = 1, . . . , n.
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For Z = 〈p,H〉, the weighted zonotope reduction operator proposed in [7] is denoted by ↓q,W (H) satisfying the
inclusion property 〈p,H〉 ⊆ 〈p, ↓q,W (H)〉, where q ≥ n specifies the maximum number of columns of ↓q,W (H)
and W is a weighting matrix of appropriate dimension.

For X ∈ Rn×n, we use tr(X) =
∑n
i=1Xii and rank(X) to denote the trace and the rank of X, and if X is non-

singular, we use X−1 to denote the inverse matrix of X. vec(X) denotes the vectorization of X. X � 0 denotes
positive definiteness if the scalar xTXx is positive for arbitrary non-zero column vector x of real numbers. Similarly,
X � 0 denotes positive semi-definiteness. If X is symmetric, we use ? to denote a symmetric element in X. We
use Im to denote an identity matrix of dimension m. For two matrices X and Y , the Kronecker product of these two
matrices is denoted by X ⊗ Y .

Let X, A, B and C be matrices of appropriate dimensions. The following matrix calculus regarding the matrix trace
holds:

∂

∂X
tr
(
AXTB

)
= ATBT , (3a)

∂

∂X
tr
(
AXBXTC

)
= BXTCA+BTXTATCT . (3b)

For H ∈ Rn×m, with W ∈ Rn×n and W = WT � 0, the weighted Frobenius norm of H is defined by ‖H‖F,W =√
tr(HTWH) and ‖H‖F =

√
tr(HTH), obtained with W = In, is the non-weighted Frobenius norm. For h ∈ Rn, the

weighted and non-weighted 2-norms of h are denoted by ‖h‖2,W =
√
hTWh and ‖h‖2 =

√
hTh obtained with W = In,

respectively.

2 Problem statement

Consider the discrete-time descriptor linear system as

Exk+1 = Axk +Buk +Dωk +Dddk, (4a)

yk = Cxk + Fυk, (4b)

where x ∈ Rnx denotes the vector of system states, u ∈ Rnu denotes the vector of known inputs, d ∈ Rnd denotes
the vector of unknown inputs, y ∈ Rny denotes the vector of measurement outputs, E ∈ Rnx×nx , A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rnx×nw , Dd ∈ Rnx×nd and F ∈ Rny×nv . Besides, the initial state x0 is given in
the inclusion zonotope X0 = 〈p0, H0〉, where p0 ∈ Rnx and H0 ∈ Rnx×nx are the center and generator matrix of
this zonotope. The system disturbance vector ωk ∈ Rnw and measurement noise vector υk ∈ Rnv are assumed to be
unknown but bounded by zonotopes ωk ∈ W = 〈0, Inw

〉, υk ∈ V = 〈0, Inv
〉, ∀k ∈ N.

For the descriptor system (4), E may be a singular matrix and rank(E) ≤ nx. Assume that the descriptor system (4)
is detectable and the unknown input dk, ∀k ∈ N can be decoupled, that is, matrices E, C and Dd satisfy the following
rank condition:

rank




Inx
⊗

[
E Dd

C 0

]

vec

([
Inx

0

])T


 = nx · rank

([
E Dd

C 0

])
. (5)

Thus, there exists a nonempty set of solutions of matrices T and N satisfying

TE +NC = Inx
, (6a)

TDd = 0. (6b)
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In this paper, we investigate state estimation approaches based on zonotopes for descriptor system (4). We propose
two ways to use zonotope bounding uncertain states with unknown but bounded disturbances and noise as well as
unbounded disturbances (as unknown inputs). For notation simplicity, the discrete-time instant k is omitted and the
time instant k + 1 is replaced by the subscript + while the subscript − stands for the time instant k − 1 in the rest
of the paper.

3 Set-membership approach for discrete-time descriptor systems

In this section, we propose a set-membership state estimation approach based on zonotopes for discrete-time de-
scriptor system (4). This approach uses the structure of the parameterized intersection zonotope for implementing
the measurement consistency test including unknown inputs. Some preliminary definitions are introduced as follows.

Definition 1 (Uncertain state set) Given the descriptor system (4) with x0 ∈ 〈p0, H0〉, ω ∈ W, ∀k ∈ N, the
uncertain state set X̄ is defined by

X̄ =
{
x ∈ Rnx | Ex ∈ AX̄− ⊕Bu− ⊕Ddd⊕DW

}
.

Definition 2 (Measurement state set) Given the descriptor system (4), a measurement output vector y and υ ∈
V, ∀k ∈ N, the measurement state set P is defined by P = {x ∈ Rnx | |Cx− y| ≤ F}.

Definition 3 (Exact uncertain state set) Given the descriptor system (4), a measurement output vector y, ω ∈
W and υ ∈ V, ∀k ∈ N, the exact uncertain state set X is defined by X = X̄ ∩ P.

Since d is a unknown input vector, it is not possible to directly characterize the uncertain state set from Definition 1.
Meanwhile, the goal is to approximate the exact uncertain state set X by an outer approximation of X for the de-
scriptor system (4) through implementing a measurement consistency test. In general, the proposed set-membership
approach includes three steps: (i) prediction step; (ii) measurement step; (iii) correction step.

More specifically, assuming x ∈ X ⊆ X̂ = 〈p̂, Ĥ〉 at time k that also satisfies x ∈ X0 = 〈p0, H0〉 when k =

0, these three steps are implemented as follows: (i) compute the predicted uncertain state set X̂+; (ii) compute

the measurement state set P+ with a measurement output vector y+; (iii) find an intersection zonotope X̂+(Λ)

satisfying {X̂+∩P+} ⊆ X̂+(Λ), where Λ ∈ Rnx×ny is a correction matrix. The structure of this intersection zonotope
is defined as follows.

Theorem 1 (Intersection zonotope for descriptor systems) Given the descriptor system (4), a measurement

output vector y+, x0 ∈ X0, ω ∈ W, υ ∈ V, ∀k ∈ N, x ∈ 〈p̂, Ĥ〉 ⊆ 〈p̂, H̄〉 with H̄ =↓q,W (Ĥ), a correction matrix

Λ ∈ Rnx×ny , T ∈ Rnx×nx and N ∈ Rnx×ny satisfying (6). Then, x+ ∈
{
X̂+ ∩ P+

}
⊆ X̂+(Λ) = 〈p̂+(Λ), Ĥ+(Λ)〉,

where

p̂+(Λ) = (I − ΛC)TAp̂+ (I − ΛC)TBu+ (N + Λ− ΛCN) y+, (7a)

Ĥ+(Λ) =
[
(I − ΛC)TAH̄ (I − ΛC)TD (I − ΛC)NF ΛF

]
. (7b)

PROOF. For any x+ ∈
{
X̂+ ∩ P+

}
, we have x+ ∈ X̂+ and x+ ∈ P+. For the descriptor system (4a) with the

inclusion x ∈ 〈p̂, Ĥ〉 ⊆ 〈p̂, ↓q,W (Ĥ)〉, there exists a vector s1 ∈ Bq+nw such that Ex+ = Ap̂+Bu+ Ddd+
[
AH̄ D

]
s1.

Besides, from x+ ∈ P+, there exists a vector α ∈ Bnv such that

Cx+ − y+ = Fα. (8)

Consider the rank condition (5) is satisfied. With a pair of matrices T and N satisfying (6), (4) and (8) can be
combined leading to

(TE +NC)x+ = TAp̂+ TBu+ TDdd+Ny+ +
[
TAH̄ TD

]
s1 +NFα.
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Set R =
[
TAH̄ TD NF

]
and β =

[
sT1 αT

]T
. According to (6), the above equation can be simplified to be

x+ = TAp̂+ TBu+Ny+ +Rβ. (9)

Therefore, with Λ ∈ Rnx×ny and a correction term ΛCRβ, we add and substitute CRβ in (9) to obtain

x+ = TAp̂+ TBu+Ny+ + ΛCRβ + (I − ΛC)Rβ. (10)

By substituting x+ in (8) by (9), we also have CRβ = y+−CNy+−CTAp̂−CTBu+Fα. And then by replacing CRβ
in (10), we have

x+ = (I − ΛC)TAp̂+ (I − ΛC)TBu

+ (N + Λ− ΛCN) y+ +
[
(I − ΛC)R ΛF

] [β
α

]
.

Thus, we obtain p̂+(Λ) and Ĥ+(Λ) as in (7). 2

Due to the intersection zonotope bounding uncertain states including propagated estimation errors and uncertainties,
we would like to find a suitable correction matrix minimizing the effects of estimation errors and uncertainties by
reducing the size of the intersection zonotope. To measure the size of a zonotope, the FW -radius and the W -radius
are considered as follows.

Definition 4 (FW -radius) Given a weighting matrix W ∈ Rnx×nx , W = WT � 0, the FW -radius of the zono-
tope Z = 〈p,H〉 is defined using the weighted Frobenius norm of H as `F,W = ‖〈p,H〉‖F,W = ‖H‖F,W .

Definition 5 (W -radius) Given a weighting matrix W ∈ Rnx×nx ,W = WT � 0, the W -radius of the zonotope Z =

〈p,H〉 with H ∈ Rnx×r is defined as `W = max
z∈Z
‖z − p‖22,W = max

b∈Br
‖Hb‖22,W .

In the following, we first compute a time-varying Kalman correction matrix based on the FW -radius. On the other
hand, with a W -radius minimization criterion, a correction matrix can be obtained by solving an off-line optimization
problem. This off-line correction matrix can also be updated following an on-line updating procedure.

3.1 Compute the correction matrix via Kalman filtering procedure

From Definition 4, the size of the intersection zonotope X̂+(Λ) can be measured by the FW -radius as

`F,W+
=
∥∥∥Ĥ+(Λ)

∥∥∥2

F,W
= tr

(
ĤT

+(Λ)WĤ+(Λ)
)

= tr
(
WĤ+(Λ)ĤT

+(Λ)
)

= tr
(
WP+(Λ)

)
, (11)

where P+(Λ) = Ĥ+(Λ)ĤT
+(Λ). As in the Kalman filtering procedure described in [7, Theorem 5], a Kalman correction

matrix Λ∗ can be obtained by minimizing `F,W+ of the intersection zonotope 〈p̂+(Λ), Ĥ+(Λ)〉.

Theorem 2 (Kalman correction matrix) Given the intersection zonotope X̂+(Λ) = 〈p̂+(Λ), Ĥ+(Λ)〉 in (7) and
a weighting matrix W = WT � 0. The optimal correction matrix Λ∗ minimizes J = `F,W+

and its explicit solution
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is given by

Λ∗ = LS−1, (12)

L = R̄CT , (13)

S = CR̄CT +Qv, (14)

R̄ = T
(
AP̄AT +Qw

)
TT +NQvN

T , (15)

with P̄ = H̄H̄T , Qw = DDT and Qv = FFT .

PROOF. From (7), we have

P+(Λ) = (I − ΛC)TAP̄ATTT (I − ΛC)
T

+ (I − ΛC)TQwT
T (I − ΛC)

T

+ (I − ΛC)NQvN
T (I − ΛC)

T
+ ΛQvΛ

T .

The criterion J = `F,W+
is being convex with respect to Λ. By setting L, S and R̄ as in (13), (14) and (15), we

take the partial-derivative of J = `F,W+
in (11) with respect to Λ to obtain ∂

∂Λ tr
(
WP+(Λ)

)
= ∂

∂Λ tr
(
WΛSΛT

)
−

2 ∂
∂Λ tr

(
WLΛT

)
. Therefore, Λ∗ is the value of Λ such that ∂

∂Λ tr
(
WP+(Λ)

)
= 0. By using (3a) and (3b), we have

SΛ∗TW + STΛ∗TWT − 2LTWT = 0. Since that S is also symmetric, we then obtain WΛ∗S = WL, which leads
to (12). 2

From Theorem 2, the optimal correction matrix Λ∗ is independent of the weighting matrix W . Hence, W can be set
as free and we can also use the non-weighted Frobenius norm to measure the zonotope size as the F -radius.

3.2 Compute the correction matrix using optimization-based methods

From Definition 5, the size of the intersection zonotope X̂+(Λ) can also be measured by the W -radius as

`W+ = max
z∈B(q+nx+2ny)

∥∥∥Ĥ+(Λ)z
∥∥∥2

2,W

= zT ĤT
+(Λ)WĤ+(Λ)z. (16)

A W -radius minimization criterion and the corresponding LMI condition are presented in the following theorem.

Theorem 3 (W -radius minimization criterion) Given the intersection zonotope X̂+(Λ) = 〈p̂+(Λ), Ĥ+(Λ)〉
in (7), γ ∈ (0, 1) and ε > 0. The zonotope minimization criterion

`W+
≤ γ`W + ε, (17)

holds if there exist matrices W ∈ Rnx , W = WT � 0, Y ∈ Rnx×ny , diagonal matrices Γ ∈ Rnx×nx , Υ ∈ Rny×ny ,
Ω ∈ Rny×ny such that 

γW ? ? ? ?

0 Γ ? ? ?

0 0 Υ ? ?

0 0 0 Ω ?

(W − Y C)TA (W − Y C)TD (W − Y C)NF Y F W


� 0, (18)
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Γ � 0, Υ � 0, Ω � 0, (19)

tr(Γ ) + tr(Υ ) + tr(Ω) < ε. (20)

PROOF. By combining (16) and (17), we have

max
z∈B(q+nx+2ny)

∥∥∥Ĥ+(Λ)z
∥∥∥2

2,W
− max
z̄∈Bq

γ
∥∥H̄z̄∥∥2

2,W
− ε ≤ 0.

For any H̄ andz̄ ∈ Bq, max
z̄∈Bq

∥∥H̄z̄∥∥2

2,W
≥
∥∥H̄z̄∥∥2

2,W
. Set z =

[
z̄T bT1 bT2 bT3

]T
∈ B(q+nw+2nv) with z̄ ∈ Bq, b1 ∈ Bnw ,

b2 ∈ Bnv and b3 ∈ Bnv . Then, we obtain a sufficient condition for any z ∈ B(q+nw+2nv) and z̄ ∈ Bq

‖Ĥ+(Λ)z‖22,W − γ
∥∥H̄z̄∥∥2

2,W
− ε < 0. (21)

Recall Ĥ+(Λ) in (7b) and set Y = WΛ. Let us denote

R̃ =
[
(W − Y C)TA (W − Y C)TD (W − Y C)NF Y F

]
. (22)

Therefore, (21) can be reformulated as


H̄z̄

b1

b2

b3


T

R̃TW−1R̃


H̄z̄

b1

b2

b3

− γz̄T H̄TWH̄z̄ − ε < 0, (23)

for any z̄ ∈ Bq, b1 ∈ Bnw , b2 ∈ Bnv and b3 ∈ Bnv . If Γ , Υ and Ω are diagonal positive semi-definite matrices, then
we have bT1 Γb1 =

∑nx

i=1 b
2
1Γi ≤ tr(Γ ), bT2 Υb2 =

∑ny

i=1 b
2
2Υi ≤ tr(Υ ), bT3 Ωb3 =

∑ny

i=1 b
2
3Ωi ≤ tr(Ω), for any b1 ∈ Bnx ,

b2 ∈ Bny and b3 ∈ Bny , where Γi, Υi and Ωi are each diagonal element of Γ , Υ and Ω. Therefore, we obtain

tr(Γ )− bT1 Γb1 ≥ 0,∀b1 ∈ Bnx , (24a)

tr(Υ )− bT2 Υb2 ≥ 0,∀b2 ∈ Bny , (24b)

tr(Ω)− bT3 Ωb3 ≥ 0,∀b3 ∈ Bny . (24c)

By adding (24) to (23), we obtain a sufficient condition of (23)


H̄z̄

b1

b2

b3


T

R̃TW−1R̃


H̄z̄

b1

b2

b3

− γz̄T H̄TWH̄z̄

+ tr(Γ )− bT1 Γb1 + tr(Υ )− bT2 Υb2
+ tr(Ω)− bT3 Ωb3 − ε < 0.
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If (20) holds, then we obtain


H̄z̄

b1

b2

b3


T R̃TW−1R̃−


γW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω






H̄z̄

b1

b2

b3

 < 0.

Again, from the above inequality, we have a sufficient condition
γW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω

− R̃TW−1R̃ � 0.

By using the Schur complement and R̃ in (22), we obtain (18). 2

Proposition 1 (Ultimate bound of the W -radius) Given the intersection zonotope X̂+(Λ) = 〈p̂+(Λ), Ĥ+(Λ)〉
in (7), γ ∈ (0, 1) and ε > 0. If the criterion (17) holds, then the W -radius of intersection zonotope X̂+(Λ) is
ultimately bounded by

`W,∞ ≤
ε

1− γ
. (25)

PROOF. With given γ ∈ (0, 1) and ε > 0, we take k → ∞ in (17) to obtain `W,∞ ≤ γ`W,∞ + ε that implies the
ultimate bound (25) of `W . 2

Since (25) characterizes an ellipsoid with given γ ∈ (0, 1) and ε > 0, in order to minimize the ultimate bound `W,∞,
we can maximize a norm of W . For instance, we choose to maximize tr(W ). Therefore, the optimization problem to
find the off-line correction matrix Λf can be expressed as

min
W,Y,Γ,Υ,Ω

− tr(W ), (26)

subject to (18)-(20). The optimal solution of the optimization problem (26) gives Λf = W−1Y .

To tighten the size of the intersection zonotope during iterations, we also introduce an on-line method to update the
correction matrix Λo with the weighting matrix W obtained by solving (26).

Theorem 4 Given the intersection zonotope X̂+(Λ) = 〈p̂+(Λ), Ĥ+(Λ)〉 in (7) and the matrix W obtained by solv-
ing (26). If there exists a diagonal matrix M ∈ Rnx×nx such that[

M ?

WĤ+(Λ) W

]
� 0, (27)

then `W+
in (16) is bounded by

`W+
< max
z∈B(q+nx+2ny)

‖Mz‖22 . (28)
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PROOF. According to [3], the vertices of the intersection zonotope X̂+(Λ) can be approximated by using a diagonal
matrix. With a diagonal matrix M ∈ Rnx×nx , a sufficient condition of (28) can be obtained as

zT ĤT
+(Λ)WĤ+(Λ)z < zTMz, ∀z ∈ B(q+nx+2ny).

Then, from above, we have a sufficient condition M − ĤT
+ (Λ)WĤ+(Λ) � 0. By using the Schur complement, we

obtain (27). 2

At each time step, minimizing the size of the intersection zonotope measured by the W -radius `W can be implemented
by minimizing the trace of the diagonal matrix M . Therefore, the on-line updating correction matrix Λo can be
obtained by solving the following optimization problem:

min
Λ

tr(M), (29)

subject to (27).

Remark 1 It is worth mentioning that the off-line correction matrix Λf could be already useful for estimating
the states. Hence, sometimes Λo obtained through the on-line updating implementation with (29) does not provide
significant improvements since the state estimations are already satisfactory in terms of degrees of freedom of the
intersection zonotope defined in (7).

4 Zonotopic Kalman observer for discrete-time descriptor systems

In this section, we design a zonotopic Kalman observer for the descriptor system (4). Unlike the set-membership
approach proposed in Section 3, this zonotopic observer structure is defined based on the Luenberger observer
structure.

4.1 Zonotopic observer structure for descriptor systems

With T and N satisfying (6), we consider the Luenberger observer structure for the descriptor system (4) in a
prediction type [25] as

x̂+ = TAx̂+ TBu+ TDω + TDdd+Ny+

−NFυ+ +G (y − Cx̂− Fυ) , (30)

where x̂ ∈ Rnx denotes the estimated state vector, G ∈ Rnx×ny denotes the time-varying observer gain.

For the descriptor system (4), we would like to bound the uncertain system states x, ∀k ∈ N+ in a zonotopic set.
A suitable observer gain G is used to reduce the state estimation error with a measurement output y. We first
recursively define the structure of the zonotopic observer.

Theorem 5 (Prediction-type zonotopic observer for descriptor systems) Given the descriptor system

in (4), measurement output vectors y, y+, x0 ∈ X0, ω ∈ W, υ ∈ V, ∀k ∈ N, x ∈ 〈p̂, Ĥ〉 ⊆ 〈p̂, H̄〉 with H̄ =↓q,W (Ĥ),
T ∈ Rnx×nx and N ∈ Rnx×ny satisfying (6). The zonotope bounding uncertain states can be recursively defined

by x+ ∈ X̂+(G) = 〈p̂+(G), Ĥ+(G)〉 , where

p̂+(G) = (TA−GC) p̂+ TBu+Gy +Ny+, (31a)

Ĥ+(G) =
[
(TA−GC) H̄ TD −NF −GF

]
. (31b)
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PROOF. Assuming that x ∈ 〈p̂, H̄〉, we set x̂ = x ∈ 〈p̂, H̄〉. Since ω ∈ W, υ ∈ V, from (30), we have

x+ ∈ X̂+(G) = 〈p̂+(G), Ĥ+(G)〉
=
(
(TA−GC)� 〈p̂, H̄〉

)
⊕ (TB � 〈u, 0〉)

⊕ (G� 〈y, 0〉)⊕ (N � 〈y+, 0〉)⊕ (TD � 〈0, Inw
〉)

⊕ ((−NF )� 〈0, Inv
〉)⊕ ((−GF )� 〈0, Inv

〉) .

By using properties in (2) to the above equation, we obtain p̂+(G) and Ĥ+(G) as in (31). 2

From the state bounding zonotope in (31), the state estimation error ε+ is bounded by the zonotope ε+ = x+ −
p̂+(G) ∈ Ex = 〈0, Ĥ+(G)〉. The objective for the zonotopic observer design is to find a time-varying observer gain G
to minimize the estimation error, that corresponds to the size of Ex.

4.2 Optimal Kalman observer gain for descriptor systems

As in Theorem 2, the minimization criterion is based on the FW -radius. The optimal observer gain G∗ can be found

by minimizing the FW -radius of Ex, J̃ = tr
(
WP̃+(G)

)
with P̃+(G) = Ĥ+(G)ĤT

+(G).

Theorem 6 (Optimal Kalman observer gain for descriptor systems) Given Ex = 〈0, Ĥ+(G)〉 with Ĥ+(G)

in (31b) and W = WT � 0. The optimal observer gain G∗ minimizes J̃ = tr
(
WP̃+(G)

)
and its explicit solution is

given by

G∗ = TAK, (32)

K = L̃S̃−1, (33)

L̃ = P̃CT , (34)

S̃ = CP̃CT +Qv, (35)

with P̃ = H̄H̄T and Qv = FFT .

PROOF. From (31b), we have P̃+(G) = (TA − GC)H̄H̄T (TA − GC)T + TDDTTT + NFFTNT + GFFTGT .

Since J̃ is convex with respect to G, G∗ is the value of G such that ∂
∂G tr

(
WP̃+(G)

)
= 0. By setting L̃ and S̃ as (34)

and (35), we have ∂
∂G tr

(
WGS̃GT

)
− 2 ∂

∂G tr
(
WTAL̃GT

)
= 0.

Due to the symmetry of S̃, by using (3a) and (3b), we obtain WG∗S̃ = WTAL̃. Set K as in (33). Thus, G∗ can be
found in (32). 2

From Theorem 6, G∗ is also independent of the weighting matrix W . To make use of ↓q,W (·), a weighting matrix W
is required. One selection of W is proposed in the following proposition.

Proposition 2 Given the nominal descriptor system Ex+ = Ax+Bu and y = Cx, matrices T ∈ Rnx×nx and N ∈
Rnx×ny satisfying (6a). The Luenberger observer defined by x̂+ = TAx̂+TBu+ Ḡ(y−Cx̂)+Ny+ is µ-stable (stable
with a decay rate µ) if there exists W ∈ Rnx , W = WT � 0, Y ∈ Rnx×ny , and a scalar µ ∈ (0, 1] such that[

µW ?

WTA− Y C W

]
� 0. (36)
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PROOF. With matrices T and N satisfying (6a), the nominal system dynamics can be expressed as x+ = TAx+
TBu + Ny+. Let us define the state estimation error e = x − x̂. Therefore, we have the error dynamics e+ =
x+ − x̂+ = (TA− ḠC)e.

With W = WT � 0, the Lyapunov candidate function is chosen as V = eTWe. Then, with µ ∈ (0, 1], we
have ∆V = eT+We+ − eTµWe = eT (TA − ḠC)TW (TA − ḠC)e − eTµWe. For e 6= 0, ∆V < 0 gives µW −(
TA− ḠC

)T
W
(
TA− ḠC

)
� 0. By applying the Schur complement lemma with µW � 0 and Y = WḠ, we

obtain (36). 2

For the nominal descriptor system Ex+ = Ax + Bu, the observer gain without taking into account system uncer-
tainties can also be found by satisfying (36) with Ḡ = W−1Y . We will use Ḡ with the zonotopic observer structure
defined in (31) to compare with G∗ in order to assess the state bounding performance.

5 On the relationship between set-membership approach and zonotopic observer

5.1 Relationship between two proposed approaches

Comparing the parameterized intersection zonotope structure proposed in Theorem 1 and the zonotopic observer
structure proposed in Theorem 5, the intersection zonotope is formulated by considering the measurement output y+

to implement the system consistency test while the zonotopic observer includes measurement outputs y and y+.

To find the relationship between these two approaches, we also consider a current estimation-type zonotopic observer
for the descriptor system (4) only containing the current measurement output y+ as follows:

x̂+ = TAx̂+ TBu+ TDdd+ TDω +Ny+

−NFυ+ + Ĝ (y+ − Cx̌+ − Fυ+) , (37)

where Ĝ ∈ Rnx×ny is a time-varying observer gain for the current estimation-type zonotopic observer. x̌+ denotes
the predicted state from the previous observed state x̂ that can be computed by

x̌+ = TAx̂+ TBu+ TDω +Ny+ −NFv+. (38)

Theorem 7 Consider the descriptor system (4). The proposed set-membership approach is equivalent to the current
estimation-type zonotopic observer in the structure of (37).

PROOF. In terms of the zonotopic observer in the current estimation-type, by substituting x̌+ by (38) to (37), we
have

x̂+ =
(
I − ĜC

)
TAx̂+

(
I − ĜC

)
TBu

+
(
I − ĜC

)
TDω +

(
N + Ĝ− ĜCN

)
y+

−
(
I − ĜC

)
NFυ+ − ĜFυ+.

Considering x ∈ 〈p̂, H̄〉 with H̄ =↓q,W (Ĥ), ω ∈ W and υ+ ∈ V, the uncertain state x+ is bounded into the
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zonotope X̃+(Ĝ) = 〈p̃+(Ĝ), H̃+(Ĝ)〉, where

x+ ∈ X̃+(Ĝ) = 〈p̃+(Ĝ), H̃+(Ĝ)〉

=
(

(I − ĜC)TA� 〈p, H̄〉
)
⊕
(

(I − ĜC)TB � 〈u, 0〉
)

⊕
(

(I − ĜC)TD � 〈0, Inw
〉
)

⊕
(

(N + Ĝ− ĜCN)� 〈y+, 0〉
)

⊕
(

(−(I − ĜC))NF � 〈0, Inv 〉
)

⊕
(

(−ĜF )� 〈0, Inv
〉
)
.

By using properties in (2), we obtain p̃+(Ĝ) and H̃+(Ĝ) as follows:

p̃+(Ĝ) = (I − ĜC)TAp+ (I − ĜC)TBu+ (N + Ĝ− ĜCN)y+, (39a)

H̃+(Ĝ) =
[
(I − ĜC)TAH̄ (I − ĜC)TD −(I − ĜC))NF −ĜF

]
. (39b)

By definition of the zonotope, the subtraction sign in the last two terms of (39b) can be removed. Therefore, (7)

and (39) are equivalent with Λ = Ĝ. 2

Remark 2 Since the structure of 〈p̃+(Ĝ), H̃+(Ĝ)〉 is equivalent to the intersection zonotope 〈p̂+(Λ), Ĥ+(Λ)〉 in (7),

the observer gain Ĝ can be obtained by using methods proposed for the set-membership approach in Section 3.

5.2 Extension to dynamical systems with unknown inputs

In the case of rank(E) = nx, the system (4) becomes a dynamical system. The unknown input d can be decoupled
by finding matrices T̄ ∈ Rnx×nx and N̄ ∈ Rnx×ny that satisfy

T̄ + N̄C = Inx
, (40a)

T̄Dd = 0. (40b)

By combining (40a) and (40b), we obtain Dd = N̄CDd and T̄ = Inx
− N̄C. Assume Dd to be full column rank.

The condition to guarantee the existence of T̄ and N̄ is given by rank(Dd) = rank(CDd). In this case, the proposed
set-membership approach and zonotopic Kalman observer in Section 3 and 4 can be applied to dynamical systems
subject to unknown inputs, which can be considered an improvement on the methods presented in [1], [7]. Under this
structure with T̄ and N̄ , the effects of unknown inputs can be decoupled. We reduce the limitation of zonotope-based
approach, that is, the system disturbances are not required to be bounded.

6 Illustrative example

To illustrate the proposed state estimation approaches, a discrete-time descriptor system as defined in (4) is consid-
ered with

E =


1 0 0

0 1 0

0 0 0

 , A =


0.5 0 0

0.8 0.95 0

−1 0.5 1

 , B =


1 0

0 1

0 0

 , Dd =


0

0

0.8

 ,
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Fig. 1. The result by applying the set-membership approach.

C =

[
1 0 1

1 −1 0

]
, D =


0.1 0 0

0 1.5 0

0 0 0.6

 , F =

[
0.5 0

0 1.5

]
.

The input signal u is given by u =

[
0.5sin(t) + 1

−2cos(t)

]
, for t ∈ [0, 10π] with 100 sampling steps. The system disturbances ω

and measurement noise υ are random Gaussian white noise bounded in zonotopes: ω ∈ W = 〈0, I3〉 and υ ∈ 〈0, I2〉,
∀k ∈ N. Since E, C and Dd satisfy the rank condition (5), there exists a solution of matrices T and N satisfying (6).
Therefore, we choose one solution, for instance

T =


0.6667 0.3333 0

0.3333 0.6667 0

−0.6667 −0.3333 0

 , N =


0 0.3333

0 −0.3333

1 −0.3333

 .

The initial state zonotope X0 is given by X0 = 〈p0, H0〉, with p0 = [ 0.5 0.5 0.25 ]
T

and H0 =
[

0.1 0 0
0 1.5 0
0 0 0.6

]
. The real

uncertain initial state vector is selected as x0 = [ 0.5 0.5 0.25 ]
T

. We choose q = 15 in the zonotope reduction operator
to reduce the computation load and simulation time. Simulations have been carried out in a PC with the CPU of
Intel (R) Core (TM) i7-5500U 2.4GHz, 12GB RAM and MATLAB R2015a. As a result, the state estimation results
are shown in Fig. 1 and 2. These plots show that both the set-membership approach and the zonotopic Kalman
observer are able to provide the interval-based state estimation results.

Recall Λ∗ as Kalman correction matrix, Λf obtained by solving the off-line optimization problem (26), Λo ob-
tained by solving the on-line optimization problem (29), G∗ as the optimal Kalman gain and Ḡ with µ = 1 as

the nominal observer gain of the prediction-type zonotopic Kalman observer, and Ĝ as the optimal Kalman gain
of the current estimation type. Besides, the optimal weighting matrix W ∗ is obtained also by solving (26). The
observation error is defined as e: = x: − x̂: = x: − p:, where x̂: ∈ 〈p:, H:〉 and the subscript : represents any time
instant k ∈ N. The mean square error (MSE) between the real uncertain states and observed states can be com-

puted by MSE(e:) =
(

1
N

∑N
k=1

1
nx
‖e:‖22

) 1
2

. Besides, we also compute the root mean squared value of rs(H:) that

is denoted by RMS(rs(H:)). The weighted and non-weighted Frobenius norm, the weighted 2-norm of the segment
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Fig. 2. The result by applying the prediction-type zonotopic Kalman observer.

Table 1
Comparison results with weighted zonotope reduction operator ↓q,W (H)

Approach Λ/G MSE(e:) RMS(rs(H:)) ‖H:‖F ‖H:‖F,W ‖H:‖2,W Time [s]

Λ∗ 0.0355 3.0963 1.5485 0.7070 - -

Set-membership approach Λf 0.0326 2.5443 - - 14.1385 3.809

Λo 0.0287 2.4755 - - 14.1373 46.238

G∗ 0.2528 3.8781 1.9694 1.9594 - -

Zonotopic observer Ḡ 0.3027 5.0544 2.2605 2.2490 - -

Ĝ 0.0355 3.0963 1.5485 0.7070 - -

Table 2
Comparison results with non-weighted zonotope reduction operator ↓q (H)

Approach Λ/G MSE(e:) RMS(rs(H:)) ‖H:‖F ‖H:‖F,W ‖H:‖2,W Time [s]

Λ∗ 0.0539 3.1970 1.5110 0.7070 - -

Set-membership approach Λf 0.0404 2.5542 - - 14.1385 2.909

Λo 0.0365 2.5466 - - 14.1373 44.158

G∗ 0.2118 3.9386 1.9737 1.2672 - -

Zonotopic observer Ḡ 0.2335 5.0927 2.2357 1.9308 - -

Ĝ 0.0539 3.1970 1.5110 0.7070 - -

matrix of zonotopes are computed to compare the sizes of the state zonotopes for all the scenarios. Table 1 and 2
show comparison results of all the cases in the root mean square up to the step 100 with weighted and non-weighted
zonotope reduction operator.

From the MSE(e:) results of Λ∗ and G∗ in Table 1, the performance of the set-membership approach is better than
the zonotopic Kalman observer in prediction-type. This is because the prediction-type observer structure includes two
consecutive-step measurement outputs and noise. Both the measurement noise v and v+ should be over-approximated
by the terms −NF and −GF in (31b). Hence, this could enlarge the size of the zonotope and gives more conservative
estimation intervals. In terms of the real-time implementation of control loops, in both proposed approaches, the
estimate x+ depends on y+. Hence, a state feedback control like u+ = Kx+ cannot be applied at the same time
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as y+ is acquired. However, this real-time synchronization difficulty does not exist when implementing a control
loop based on the zonotopic Kalman filter in prediction-type form for dynamical systems as proposed in [7]. Hence,
a real-time synchronization remains an open problem when implementing a state feedback control loop with the
proposed state estimators for descriptor systems.

From the results with Λf and Λo, the mean-square error and the size of the intersection zonotopes using the on-line
method are smaller than the one using the off-line method. According to RMS(rs(H:)) and ‖H:‖2,W of the set-
membership approach, the on-line method improves the correction matrix Λ with the weighting matrix W computed
off line. Since the optimization problem (29) is implemented on line, the simulation time is longer than the off-line
method. For the prediction-type zonotopic Kalman observer, the optimal Kalman gain G∗ deals with uncertainties
better than the nominal observer gain Ḡ.

Besides, by comparing the first and last rows of Table 1 and 2, it is numerically shown that the set-membership
approach is equivalent to the current estimation-type zonotopic Kalman observer as the discussion in Theorem 7.
From Table 2, all the approaches are run with non-weighted zonotope reduction operator ↓q (H). From results
of RMS(rs(H:)), the size of each zonotope is larger than the case with ↓q,W (H). This is because the non-weighted
zonotope reduction operator can bring more over-approximated results.

7 Conclusion

In this paper, we have proposed a set-membership state estimation approach and a zonotopic Kalman observer
for discrete-time descriptor systems subject to uncertainties and unknown inputs. In the proposed set-membership
approach, we provide several methods for finding the correction matrix to characterize the intersection zonotope. In
the proposed zonotopic Kalman observer, we propose the optimal Kalman observer gain in prediction estimation-type.
Furthermore, we prove that the zonotopic Kalman observer in the current estimation-type structure is equivalent to
the proposed set-membership approach. As a future research, we will extend the results presented in this paper to
non-linear systems using as e.g. an LPV representation.
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