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Abstract: We present an approach for formal controller synthesis of the Barcelona wastewater system.
The goal of the controller is to minimize overflow in the system and to reduce environmental con-
tamination (pollution). Due to the influence of sudden and unpredictable weather changes within the
Mediterranean climate, we propose robust model predictive control strategy. This approach synthesizes
control inputs (i.e., flows through network actuators) that make the system robust to uncertainties in the
weather forecast; control inputs are updated in an online fashion to incorporate the newly available
measurements from the system and the disturbances. We employ signal temporal logic as a formal
mechanism to express the desired behavior of the system. The quantitative semantics of the logic is
then used to encode the desired behavior in both the set of constraints and the objective function of the
optimization problem. We propose a solution approach for the obtained worst-case optimization, which
is based on transforming the nonlinear dynamics of the system into a mixed logical dynamical model.
Then, we employ Monte Carlo sampling and dual reformulation to get a mixed integer linear or quadratic
programming problem. The proposed approach is applied to a catchment of the Barcelona wastewater
system to illustrate its effectiveness.
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1. INTRODUCTION

The infrastructure for water and wastewater management is
being continuously upgraded due to the constant increase in
demand for water and wastewater services as a result of pop-
ulation growth. In order to support this upgrade, the water
industry has been investigating the potential benefits of using
more advanced automatic control strategies. The design and
automatic control of sewer networks pose new challenges to the
control community. The newly designed methodologies should
be able to handle the effect of uncertainties in the amount of
precipitation, the physical and operational constraints of the
network, and the effects of delays and nonlinearities in the
dynamics of the system. These challenges require improving
performance of the traditional control strategies such as on-off
and PID controllers, which are not capable of handling such
issues. Model predictive control (MPC) seems to be a suitable
methodology to control sewer networks as it can deal with these
particular challenges associated with such systems. MPC is an
online control technique that uses a mathematical model of the
considered system to compute the control inputs by minimizing
a cost function (Bemporad et al., 2002b; Lazar et al., 2006;
Maciejowski, 2002; Rawlings and Mayne, 2009). Moreover, it
is capable of incorporating either linear or nonlinear dynamics
of the system as well as handling constraints on inputs, states
and outputs. Hence, the MPC methodology is quite suitable for

the global control of urban sewage systems within a hierarchical
control structure (Schütze et al., 2004; Marinaki and Papageor-
giou, 2005).

The system under investigation in this paper is part of the
Barcelona wastewater system, which is subject to sudden
weather-change events within the Mediterranean climate. We
consider the Barcelona test catchment (BTC) that covers a sur-
face area of 22.6 km2 and represents all the typical elements
of the whole network. The application of deterministic MPC to
Barcelona wastewater system has been investigated in Ocampo-
Martinez (2010) for a portion of this system and its benefits
have been examined toward the potential percentage reductions
in both flooding and pollution in Barcelona sewage network. In
this paper, we build on the work of Ocampo-Martinez (2010)
by including uncertainty in the amount of precipitation as a
bounded disturbance and by formulating a robust MPC opti-
mization problem (Allwright, 1994; Badgwell, 1997; Campo
and Morari, 1987; Kothare et al., 1996; Mayne et al., 2005) to
synthesize control inputs.

In order to specify the desired behavior of a system with contin-
uous dynamics, signal temporal logic (STL) is one of the most
useful languages. In comparison with other temporal logic for-
malisms, STL has the advantage of naturally admitting a quan-
titative semantics. As such, in addition to the binary answer to
the satisfaction question of the specifications, it provides a real



number that indicates the extent to which the specification is
either satisfied or violated. This quantitative semantics associ-
ated to the STL specification is referred to as the robustness
function. Incorporating such temporal specification in the opti-
mization problem formulation enforces the closed-loop system
to satisfy the desired temporal behavior, as it is confirmed by
the simulation results of this paper.

Considering the nonlinear (or hybrid) nature of the network
model, we show that the proposed robust MPC optimization
problem can be formulated as mixed integer linear or quadratic
programming (MILP or MIQP) problems as follows. First,
the nonlinear dynamics of the wastewater network are trans-
formed into a mixed logical dynamical (MLD) model. Then,
the nonlinear expressions in the objective function and the
STL constraints are transformed into mixed integer linear terms
and constraints, respectively. Finally, we employ either dual
reformulation or Monte Carlo method in the inner optimization
problem, i.e., the maximization problem, to get either an MIQP
problem or an MILP problem. In the case of MIQP, we obtain
a non-convex optimization problem, which we solve iteratively
by linear approximation of the quadratic objective function. In
the simulation results, we compare the performance of the dual
reformulation with the Monte Carlo approach and we show the
effect of STL specifications on system behavior.

Related Work. STL has been used for controller synthesis in
a variety of domains for uncertain systems using receding hori-
zon control techniques (Farahani et al., 2017a, 2015; Raman
et al., 2015). Transforming STL constraints into mixed integer
linear constraints has been used in Raman et al. (2014). Several
works related to this wastewater system consider different mod-
els and cope with the design of alternative MPC approaches,
e.g., Joseph-Duran et al. (2014, 2015) and references therein.
Recent works have proposed different approaches for handling
uncertainties in process control. The work reported in Ricardez-
Sandoval et al. (2010) proposes a two-level method to first esti-
mate the worst-case disturbance profile using an uncertain finite
impulse response (FIR) model. This profile is then employed
to simulate the closed-loop nonlinear dynamic process model
for obtaining the worst-case output variability and checking
the feasibility of constraints. Likewise, the work reported in
Gutierrez et al. (2014) proposes an MPC strategy that relies
on nonlinear optimizations. This approach incorporates integer
variables towards performing a modeling selection within the
control structure. In our previous work (Farahani et al., 2017b),
we studied a small part of BTC with only 3 tanks. In the
current paper, we consider the full model of BTC, as presented
in Ocampo-Martinez (2010), to show that our method is both
scalable and efficient for formally synthesizing control inputs
for the system.

Our work is distinct from the previous works on wastewater
systems in a) considering uncertainty in the amount of pre-
cipitation both in the model and in the controller design; b)
employing STL to encode desired properties of the closed-
loop trajectories; c) proposing an approximate solution for the
formulated optimization problem that is scalable and can be
applied to the large dimensional model of the BTC.

The remainder of this paper is organized as follows. In Section
2, the considered model of the BTC is described. In Section
3, the robust MPC formulation is presented together with the
constraints induced by both the model of the system and the
STL specifications. In Section 4, we discuss the MLD model of
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Fig. 1. Considered 9-tank catchment scheme

the system and propose solution approaches to solve the mixed
integer robust MPC optimization problem. In Section 5, the
proposed control approach is applied to the BTC and the main
results are proposed and discussed. Finally, Section 6 draws the
main conclusions of the paper and the possible lines of future
research. In order to keep the discussion of the paper focused,
we summarize STL semantics and the notion of robustness in
the appendices.

2. BARCELONA TEST CATCHMENT MODEL

We consider a portion of the sewer network of Barcelona that is
representative, as it exhibits the main phenomena and the most
common characteristics found in the entire network. The net-
work consists of nine tanks, four control inputs corresponding
to the manipulated flows, and eleven measured disturbances
corresponding to the measurements of rain precipitation. Two
wastewater treatment plants (WWTP) are used to treat the
sewage before it is released to the receiving environment. Fig-
ure 1 shows the part of Barcelona test catchment (BTC) area
considered in this paper. There are two types of tanks in the
model: one real tank (T3), and eight virtual tanks (all tanks
except T3). The BTC has six weir overflow devices Ri, i ∈
{1,2, . . . ,6}, three redirection gates, one retention gate, and five
T-pipes.

Description of the components. A virtual tank is a storage ele-
ment that represents the total volume of sewage inside the sewer
mains associated with a determined sub-catchment (Gelormino
and Ricker, 1994). A real tank is a buffer that stores the wastew-
ater and allows to redirect it towards different pipes in the



Fig. 2. Flow direction in a T-pipe

network. Redirection gates are used to change the direction of
the sewage while retention gates are used to retain the sewage
flow at a certain point in the network. Weir overflow devices are
used to specify the desired direction of the flow while taking
into account the capacity of the pipes.

The role of T-pipes is to merge or split the sewage flows (Figure
2). The equations of flow inside T-pipes at time step k ∈Z+ can
be written as qi(k) = qc,i(k)+q f ,i(k) with

qc,i(k) =
{

qi(k)− q̄i, qi(k)≥ q̄i

0, qi(k)< q̄i
for i = 1, . . . ,5, (1)

where q̄i denotes the maximum flow through pipe i. The out-
flows from redirection gates satisfy the mass conservation equa-
tion qi = qC j ,in−qui, where qC j ,in is the inflow to the redirection
gate C j, j = 1,2,3. Moreover, the outflow of the virtual tank i
is proportional to the tank volume, i.e., qxi(k) = βixi(k) with
βi denoting the volume/flow conversion coefficient and xi(k)
denoting the volume of tank Ti at time step k.

The flow equations in the weir overflow devices Ri, i ∈
{1, . . . ,6}, can be defined as

qRi,out(k) =
{

qRi,in(k), qRi,in(k)≤ q̄Ri

q̄Ri , qRi,in(k)> q̄Ri

for i = 1, . . . ,6, (2)

where qRi,in(k) denotes the sum of inflows entering weir over-
flow device Ri at time step k, qRi,out(k) denotes the outflow
from Ri in the desired direction, and q̄Ri denotes the maximum
capacity of the pipe in the desired direction. Accordingly, the
flow equation of the weir overflow device Ri in the undesired
direction can be obtained by qRi,in(k)− qRi,out(k). For instance
in the case of R1 in Figure 1, qR1,out = qR16 is the outflow and
q̄R1 = q̄R16. The undesired flow direction of R1 is qR1, which
can be obtained as qR1(k) = qR1,in(k)− qR16, with qR1,in(k) =
qu4(k)+q9R1(k)+qx4(k). Unlike the real tank T3, a virtual tank
Ti may have overflow, which is denoted by qxic , and can be
computed as

qxic(k) =

qxic,tot(k)−
1
∆t

x̄i, qxic,tot(k)≥ x̄i/∆t,

0, qxic,tot(k)< x̄i/∆t,
(3)

where qxic,tot(k) denotes the sum of inflow and the current
volume rate minus the outflow of tank Ti at each time step
k, x̄i denotes the maximum capacity of tank Ti, and ∆t is the
sampling time. We consider such overflows only in virtual tanks
T2,T4,T5, and T6, as other tanks do not have overflow in practice
due to their large storing capacities.

Construction of the dynamical model. Changes in the volume
of a tank are proportional to the difference between its inflows
and outflows. The dynamical evolution of the volume of tank Ti
in discrete time is

xi(k+1) = xi(k)+∆t(qin(k)−qout(k)),
where xi(k) is the volume of tank Ti at time step k. For the
system shown in Figure 1, the state equations can be then
written as

x2(k+1) = x2(k)+∆t(W2(k)+qu1(k)−qx1(k)−qx2c(k)),
x3(k+1) = x3(k)+∆t(qu2(k)−qu3(k)),
x4(k+1) = x4(k)+∆t(W3(k)+q1 f (k)+q2 f (k)

+qu3(k)+qx2c −qx4(k)−qx4c(k)),
x5(k+1) = x5(k)+∆t(W6(k)+qR1 f (k)+q2c(k)

+qx4c(k)+q1c−qx5(k)−qx5c(k)),
x6(k+1) = x6(k)+∆t(W7(k)+qR16(k)−qx6(k)−qx6c(k)),
x7(k+1) = x7(k)+∆t(W11(k)+qx5(k)+qR1c(k)+qx6c(k)

−qx7(k)),
x8(k+1) = x8(k)+∆t(W9(k)+qx6(k)+q12(k)−qx8c(k)),
x10(k+1) = x10(k)+∆t(W5(k)+q9 f (k)−qx10(k)),
x11(k+1) = x11(k)+∆t(W10(k)+q12Sc(k)+qR311−qx11(k)),

(4)
where Wi(k) = ϕiSiPi(k), i ∈W , {2,3,5,6,7,9,10,11}, spec-
ifies the amount of rainfall entered in tank Ti, with ϕi denot-
ing the ground absorption coefficient of the i-th catchment, Si
denoting the corresponding surface area, and Pi denoting the
rain intensity. Since the amount of rainfall is uncertain, we treat
each Wi(k) as a disturbance defined as Wi(k) =Wref,i(k)+ei(k),
where Wref,i(k) is a known nominal value obtained through the
weather forecast and ei(k) is an unknown bounded quantity.
Remark 1. The BTC of Ocampo-Martinez (2010) has twelve
tanks (one real and 11 virtual tanks). In our model, we have
not considered tanks T1,T9,T12 corresponding to W1,W4,W8 (cf.
Figure 1) since their dynamics are not influenced by any gate.
As a result of eliminating these three tanks, the corresponding
disturbances are defined as Wj(k) = Pj(k) since there is no
surface to absorb the rain anymore. The inflows from elimi-
nated tanks entering the redirection gates are also considered as
q j,in(k) =Wj(k).

Having the flow equations for each element of the network via
(1)-(3), we can replace them in the state equations (4), which
results in a nonlinear model for the wastewater system of the
form

x(k+1) = fd(x(k),u(k),W (k)), (5)

where x ∈ R9 denote the state vector, u = [qu1 ,qu2 ,qu3 , qu4 ]
T ∈

R4 is the control input vector, and W ∈ R8 is the disturbance
vector. According to the equations (1)-(4), fd(·, ·, ·) will be a
piecewise affine function of the state, input, and disturbance at
each time step k.

We explain the controller synthesis problem for this model in
the next section.

3. ROBUST MODEL PREDICTIVE CONTROL

In the BTC, the goal is to control the inflow and outflow in (both
virtual and real) tanks in order to avoid flooding and contam-
inating Mediterranean sea. The uncertainty in the wastewater
system is in the amount of precipitation that we consider to
be a bounded quantity. The control objectives are to minimize
both flooding on streets (overflows q1c,q2c,qx2c ,qx4c ,qx6c ,qR1c
and q12Sc) and the pollution entering the sea (overflows q9c
and qx5c and flows q7,q8,q10, and q11 in Figure 1) as well as
to minimize the control inputs to save energy consumption in
opening and closing gates. It is also desirable that the overflows
in the controlled network are reduced to zero as soon as possible
whenever they occur.

For this purposes, we employ the control approach of robust
(worst-case) MPC in a shrinking horizon fashion. The choice
for applying shrinking horizon fashion has been made due to the



fact that we are interested in the behavior of the system only in a
given finite time-interval. This approach can be summarized as
follows: at time step one, we obtain a sequence of control inputs
with length N (prediction horizon) to optimize the objective
function; we only apply the first component of the obtained
control sequence to the system and update its state. At the next
time step, the first component of the control sequence is fixed by
the one of the previously calculated optimal control sequence,
and we only optimize for a control sequence of length N− 1.
Hence, the size of control sequence decreases by 1 at each time
step.

In the sequel, we first formulate the objectives as a cost func-
tion. Then, we write the desired temporal property in STL lan-
guage and formulate the closed-loop worst-case optimization
problem. In order to keep the discussion focused, we directly
give the STL specification and refer the reader to Appendix I
for a formal description of the syntaxis and semantics of STL.

Cost function. The cost function for the sewage network at
each time step k is defined as

J(k) = ||ū(k)||1 +q1c(k)+q2c(k)+qx2c(k)+qx4c(k)
+qx6c(k)+qR1c(k)+q12Sc(k)+q9c(k)+qx5c(k)
+q7(k)+q8(k)+q10(k)+q11(k),

(6)

which includes the control inputs, the overflows to the street,
and the pollution entering the sea. We have chosen the one-
norm of the control input, however, it is also possible to
choose quadratic or infinity norms. Note that minimizing
q7(k),q8(k),q10(k),q11(k) results in maximizing the amount of
sewage treatments qT 1(k),qT 2(k) and qT 3(k) at each time step
k.

STL constraint.We require the closed-loop system to have the
following property: always during the time interval [0,N], if
there is an overflow in any of the pipes 1 or 2, then the overflow
in that pipe should eventually be zero within the next k′ time
steps. This desired temporal behavior can be expressed by the
STL specification

ϕ :=2[0,N]

[(
q1c > 0→ 2[1,k′] q1c ≤ 0

)
∧(

q2c > 0→ 2[1,k′] q2c ≤ 0
)]

,
(7)

where always is denoted by 2, q1c > 0 and q2c > 0 are the
amount of overflow in pipes 1 and 2, eventually is denoted by
2, and time intervals are written as subscript (cf. Appendix

I for a formal treatment of STL). The aim of our control
problem is to synthesize an input sequence such that the closed-
loop trajectory satisfies ϕ . We have selected this temporal
specification to avoid the street flooding as much as possible.
Note that a considerable amount of flow enters the streets
through these two pipes. However, it is possible to define
the temporal specification for other flows and/or overflows in
the network depending on the priorities of the network, the
predicted rain profile, or other criteria.

Disturbance set. We assume that there is an uncertainty in the
amount of rain, i.e., Wi(k) = Wref,i(k)+ e(k), where Wref,i(k) is
the amount of rainfall entered tank Ti or a gate at time k for
i = 1, . . . ,11 (cf. Section 2). We gather the uncertainty for time
steps k,k+1, . . . ,N in a vector ē(k) = [eT (k), . . . ,eT (N)]T such
that, for all k, each component of ē(k) belongs to E = {e : Se≤
q}, which is a bounded polyhedral set.

Suppose that we have solved the robust MPC optimization
problem up to time step k− 1 obtaining the optimal control

inputs u∗0, . . . ,u
∗
k−1 and the observed states x∗0, . . . ,x

∗
k . In the fol-

lowing, we formulate the optimization problem that needs to be
solved at time step k. Define ũ(0 : k : N) := [u∗0, . . . ,u

∗
k−1, ū(k)]

T

to be the vector of input variables with ū(k) := [u(k), . . . ,u(N−
1)]T being the vector of input variables to be optimized over.
Let x̃(0 : k : N) = [x∗0, . . . ,x

∗
k , x̄(k+ 1)]T be the vector of states

such that x̄(k+ 1) = [x(k+1), . . . ,x(N)] is the vector of future
states of the system satisfying (5). Substituting state equations
(5) in the trajectory x̃(0 : k : N) makes it a function of un-
known vectors ū(k) and ē(k). To emphasize this, we denote
the trajectory at time step k by ξN(ū(k), ē(k)). Accordingly, for
0≤ k≤N, we can define the robust MPC optimization problem
at time step k as

min
ū(k)

max
ē(k)∈E

N

∑
j=k

J( j) (8a)

subject to

x(τ +1) = fd(x(τ),u(τ),e(τ)), (8b)
Px̄(k)+Qū(k)+Rē(k)+h≤ 0, (8c)
ξN(ū(k), ē(k)) |= ϕ, ∀ ē(k) ∈ E , (8d)

for all k ≤ τ ≤ N, where (8c) includes the constraints on state,
input, and disturbance, in which P,Q,R are appropriately de-
fined constant matrices of suitable dimensions and h is a vector
of known quantities. Also in (8d), the STL specification (7) is
denoted by ϕ . The symbol |= indicates that the trajectory ξN
should satisfy ϕ . Note that (8c) is related to the physical con-
straints of the system, which appear in the inner optimization
problem, while the STL constraint (8d) belongs to the outer
optimization problem.
Remark 2. The optimization problem (8) includes the specifi-
cation (7) as a hard constraint. Alternatively, one may use the
quantitative semantics of the specification known as the robust-
ness function (cf. Appendix I) and include it into the objective
function (6). Adding the robustness function to the objective
function (6) allows us to maximize the robust satisfaction of
the specification. In this way, we have the STL specification
not only as hard constraint, which needs to be satisfied for all
values of e, but also we maximize the robustness of satisfaction
of the STL specification.

The optimization problem (8) is nonlinear due to the hybrid
nature of the wastewater system. We explain in the next section
how to deal with this issue and propose different methods to
solve the formulated robust MPC optimization problem.

4. SOLVING THE ROBUST MPC PROBLEM

In order to solve the optimization problem (8), we transform
the hybrid system model into its equivalent MLD form. An
MLD model is a linear system model with both continuous
and binary variables while having affine constraints on these
variables. The MLD formalism allows the transformation of
logical statements involving continuous variables into mixed in-
teger linear inequalities. We employ the following equivalences
(Bemporad et al., 2002a) to transform the nonlinear dynamics
of the system and nonlinear terms in the objective function into
linear functions and linear constraints:



[ f (x(k))≤0]↔ [δ (k)=1] iff
{

f (x(k))≤M(1−δ (k)),
f (x(k))≥ε+(m−ε)δ (k),

z(k)=δ (k) f (x(k)) iff


z(k)≤Mδ (k),
z(k)≥mδ (k),
z(k)≤ f (x(k))−m(1−δ (k)),
z(k)≥ f (x(k))−M(1−δ (k)),

(9)
where M,m ∈ R are the upper and lower bounds on the linear
function f (x(k)) and ε is the machine precision.

Based on the equivalence relations (9), the MLD model of
(1)-(3) can be obtained by defining the following auxiliary
variables:

• [δi(k) = 1]↔ [qi(k)≥ q̄i], zi(k) = δi(k)qi(k)
for i = 1, . . . ,5,
• [δ j(k) = 1]↔ [qRi,in(k)≤ q̄(·)], z j(k) = δ j(k)qRi,in(k)

for i = 1, . . . ,6 and j = 6, . . . ,11,
• [δ j(k) = 1]↔ [qxic,tot(k)≥ x̄i/∆t], z j(k) = δ j(k)qxic,tot(k)

for i = 2,4,5,6 and j = 12, . . . ,15.

The inequality constraints corresponding to the above auxiliary
variables and logical statements can be obtained according to
(9).
Example 1. Consider the above definition of δ1 and z1 with the
functions f1(x(k)) := q̄1− q1(k) and f2(x(k)) := q1(k), where
q1(k) = Wref,1(k) + e1(k)− u1(k). The associated inequality
constraints can be written as

q̄1−Wref,1(k)− e1(k)+u1(k)≤M(1−δ1(k)),
q̄1−Wref,1(k)− e1(k)+u1(k)≥ ε +(m− ε)δ1(k),
z1(k)≤M′δ1, z1(k)≥ m′δ1,

z1(k)≤Wref,1(k)+ e1(k)−u1(k)−m′(1−δ1(k)),
z1(k)≥Wref,1(k)+ e1(k)−u1(k)−M′(1−δ1(k)),

with m = q̄1−Wref,1(k)− ê1 and M = q̄1 + û1 as the lower and
upper bounds on f1, where û1 is the upper bound of u1 and ê1 is
the upper bound of e1. The lower and upper bounds on f2 can
also be defined as m′ = 0 and M′ =Wref,1(k)+ ê1.

We also transform the STL constraints into mixed-integer lin-
ear constraints by introducing continuous and binary auxil-
iary variables (cf. (Raman et al., 2014)). Denote by z(k) =
[z1(k), . . . ,zr(k)]T and δ (k) = [δ1(k), . . . ,δs(k)]T the vectors
that contain all continuous and binary auxiliary variables, re-
spectively, for the MLD model, the objective function, and the
STL constraints. Using these two vectors, the state equations
and constraints of the MLD model can be written as

x(k+1) = [A B1 B2 B3 B4]χ(k)+B5, (10a)
[E1 E2 E3 E4 E5]χ(k)≤ g, (10b)

with χ(k) , [x(k) u(k) δ (k) z(k) W (k)]T , where A and
Bi, i= 1,2,3,4, are system matrices of suitable dimensions (see
Appendix II) and B5,g are vectors of constant entries. Matrices
Ei, i = 1, . . . ,5, are related to the MLD constraints, the physical
constraints of the system (in this case flow constraints on the
input variables), and the constraints obtained from the STL
transformation.

Let z̃(0 : k : N) = [z∗0, . . . ,z
∗
k−1, z̄(k)] such that z∗0, . . . ,z

∗
k−1 are

the auxiliary variables up to time k−1 uniquely specified based
on x∗τ ,u

∗
τ ,τ < k, and z̄(k) = [z(k), . . . ,z(N−1)] are the auxiliary

variables to be optimized over at time step k (δ̃ (0 : k : N) and
δ̄ (k) are defined similarly). Using these auxiliary variables, the

cost function (6) can be rewritten as
J(ū(k), z̄(k), δ̄ (k), ē(k))=CT

1 ū(k)+CT
2 z̄(k)+CT

3 δ̄ (k)+CT
4 ē(k),

where Ci, i = 1, . . . ,4, are properly defined weighting matrices.

Putting all these transformation together, the worst-case MPC
optimization problem in (8) considering the MLD model of the
system can be written as

min
ū(k),z̄(k),δ̄ (k)

max
ē(k)∈E

J(ū(k), z̄(k), δ̄ (k), ē(k)) (11a)

subject to

Ẽ1x(0)+ Ẽ2ũ(0 : k : N)+ Ẽ3δ̃ (0 : k : N)+ Ẽ4z̃(0 : k : N)

+ Ẽ5ẽ(0 : k : N)≤ g̃, (11b)
where Ẽi, i = 1, . . . ,5 and g̃ are appropriately defined constraint
matrices and vector, respectively. Note that the state constraints
(8b) are now incorporated in the inequality constraints (11b).
Note also that the STL constraints, which are now part of the
constraints in (11b), should hold for all values of ē(k) ∈ E (cf.
(8d)). In the following theorem, we prove that the closed-loop
system satisfies the STL specification by using the shrinking-
horizon technique and by keeping track of the control input and
observed states.
Theorem 1. For the STL formula ϕ and ε , if the optimization
problem (11) is feasible at each time step k, the optimal control
sequence τ∗(0 : N) = [u∗(0), . . . ,u∗(N − 1),z∗(0), . . . , z∗(N −
1),δ ∗(0), . . . ,δ ∗(N−1)] computed on a machine with precision
ε ensures that the closed-loop system satisfies ϕ .

Proof. We have chosen the prediction horizon N such that
N ≥ len(ϕ), where len(ϕ) is defined as the maximum over the
sums of all nested upper bounds on the temporal operators (cf.
Appendix I for details). Since we apply a shrinking-horizon
approach, at each time step k, we fix the previously obtained
optimal input variables. As such, at time step N − 1, which
is the last time step in the closed-loop optimization proce-
dure, the vector of decision variables has the following form:
τ(0 : N) = [u∗(0), . . . ,u∗(N − 2),u(N − 1),z∗(0), . . . ,z∗(N −
2),z(N − 1),δ ∗(0), . . . ,δ ∗(N − 2),δ (N − 1)]T , in which the
only unknown variables are u(N − 1),z(N − 1) and δ (N −
1). Hence, if at this step an optimal input sequence [u∗(N −
1),z∗(N − 1),δ ∗(N − 1)] is obtained, we are assured that the
STL specification is satisfied. �

There are two approaches in the literature for solving robust
MPC optimization problems in the presence of STL specifica-
tions. The first approach, from Raman et al. (2015), is based on
a counterexampleguided inductive synthesis. In this approach,
at each time step, the algorithm starts by guessing the value
of the disturbance signal over the current horizon. It then tries
to synthesize a control input that satisfies the specification in
the face of this disturbance. Once such control input is found,
a new disturbance is sought that thwarts this control input, by
minimizing the robustness of satisfaction to a level at which the
specification is not satisfied. The process repeats until a control
input is found such that there is no disturbance that can prevent
the specification from being satisfied. The major disadvantage
of this approach is that the algorithm may never terminate if the
set of disturbances E is not finite.

The second approach for solving a robust MPC optimization
problem is based on multi-parametric mixed integer linear pro-
gramming (mp-MILP) (Dua and Pistikopoulos, 2000). The ap-
proach tries to find the explicit solution of the inner optimiza-
tion problem as a function of ū(k), z̄(k), δ̄ (k) and then solves



the outer optimization as an MILP problem. As expected, this
approach is not quite efficient when either the size of the opti-
mization variables vector or the prediction horizon N is large.
Moreover, the number of integer variables in the MILP problem
adversely affects the computational time.

For non-trivial STL formulas, the number of integer variables
is large in general, as binary variables are introduced to encode
each min and max operation in the robustness function of the
formula (cf. Appendix I). The number of states and integer
variables related to the MLD model of BTC is also large, which
makes the mp-MILP approach unsuitable. In the following, we
propose two different approaches to solve the worst-case MPC
optimization problem (11): Monte Carlo-based optimization
and dual reformulation of the inner optimization.

4.1 Monte Carlo-based optimization

We use a sampling approach to get an approximate solution for
the inner optimization and solve the outer optimization based
on that (Pardalos and Resende, 2002). Let ē(1)(k), . . . , ē(L)(k)
denote L different realizations of the disturbance belonging to
the set E = {e|Se≤ q} and let

t(k) = max
ē(1)(k),...,ē(L)(k)

(
J(ū(k), z̄(k), δ̄ (k), ē(1)(k)), · · · ,

J(ū(k), z̄(k), δ̄ (k), ē(L)(k))
)
. (12)

The number of realizations L can be selected based on the
desired level of accuracy and computational efficiency (Agili
et al., 2012). The optimization problem (11) can be then rewrit-
ten as

min
ū(k),z̄(k),δ̄ (k),t(k)

t(k) (13)

subject to

t(k)≥ J(ū(k), z̄(k), δ̄ (k), ē(1)(k))
...
t(k)≥ J(ū(k), z̄(k), δ̄ (k), ē(L)(k))

Ẽ1x(0)+ Ẽ2ũ(0 : k : N)+ Ẽ3δ̃ (0 : k : N)+ Ẽ4z̃(0 : k : N)

+ Ẽ5ẽ(1)(0 : k : N)≤ g̃,
...
Ẽ1x(0)+ Ẽ2ũ(0 : k : N)+ Ẽ3δ̃ (0 : k : N)+ Ẽ4z̃(0 : k : N)

+ Ẽ5ẽ(L)(0 : k : N)≤ g̃,
which can be solved as a single MILP problem.

Note that the above Monte Carlo approach is an approximation
method that guarantees satisfaction of the specification with a
high probability and not with probability equals one. This is due
to the fact that it relies on a finite number of disturbance realiza-
tions. Moreover, computational efficiency of the Monte Carlo
approach degrades with the number of sampled realizations,
increasing the number of realizations results in larger number
of constraints and thus a higher computational effort. In order
to address these issues, we propose an alternative approach in
the following to solve optimization problem (11).

4.2 Dual reformulation of the inner optimization problem

We transform the min-max optimization problem into a min-
imization one utilizing the (weak) dual reformulation of the

inner optimization problem (M.Geoffrion, 1971; Wright, 1997).
Such transformation results in an optimization problem that
gives an upper bound on the original problem. As such, the
overall optimization problem can be recast as an MIQP prob-
lem.

Note that encoding the STL specification (7) as a hard con-
straint induces linear constraints in the optimization prob-
lem (11) that should hold for all ē(k) ∈ E (cf. (8d)), and im-
plicitly for all δ̄i(k), and z̄i(k) for i = 1, . . . ,15, since these
variables are uniquely defined as a function of ē(k) and ū(k). A
conventional way of dealing with constraints having universal
quantifiers is the use of Farkas’ lemma (Boyd and Vanden-
berghe, 2004) to replace them by equivalent constraints having
existential quantifiers. However, expressing STL specifications
as hard constraints prevents us to have such a transformation
since Farkas’ lemma does not apply to binary variables. One
way to deal with this issue is to relax the binary variables and
assume that they belong to the interval of [0,1]. Alternatively,
by referring to Remark 2, we can only use robustness of the STL
specification in the objective function and we do not add the
specifications as hard constraints. Therefore, the optimization
problem maximizes the robust satisfaction of the specification,
which results in satisfaction of the STL specification if the
optimal value of robustness is positive. Note that this way has
an advantage over hard-constraint encoding of the specification.
The optimization procedure does not terminate if the specifica-
tion is not satisfiable for the closed-loop system. Instead, it tries
to find control inputs that violate the specification the least.

Hence, we assume in the following that the robustness function
of the STL specification ϕ is included in the objective function
without ϕ being encoded as hard constraint in (11). As such,
we first write the dual reformulation of the inner maximization
problem in the following form:

max
ē(k)

CT
1 ū(k)+CT

2 z̄(k)+CT
3 δ̄ (k)+CT

4 ē(k)+µ
T (q−Sē(k))+

+λ
T (g̃− Ẽ1x(0)− Ẽ2ũ(0 : k : N)− Ẽ3δ̃ (0 : k : N)

− Ẽ4z̃(0 : k : N)− Ẽ5ẽ(0 : k : N)
)
, (14)

where µ and λ are the Lagrange multipliers. Note that for any
choice of µ,λ ≥ 0, the solution of (14) is always greater than
or equal to the solution of the inner maximization problem.
Therefore, we over-approximate the inner optimization prob-
lem (maximization) by its (weak) dual formulation as

min
µ,λ

(
CT

1 −λ
T Ẽ2

)
ū(k)+

(
CT

2 −λ
T Ẽ4

)
z̄(k)

+
(
CT

3 −λ
T Ẽ3

)
δ̄ (k)+µ

T q+λ
T G (15a)

subject to

ST
µ + ẼT

5 λ =C4, µ,λ ≥ 0, (15b)

where G contains all the constant terms that appear in the
multiplier of λ in (14). Using the dual formulation of the inner
optimization problem, (11) can be then replaced by

min
ū(k),z̄(k),δ̄ (k),µ,λ

(
CT

1 −λ
T Ẽ2

)
ū(k)+

(
CT

2 −λ
T Ẽ4

)
z̄(k)

+
(
CT

3 −λ
T Ẽ3

)
δ̄ (k)+µ

T q+λ
T G (16a)

subject to

ST
µ + ẼT

5 λ =C4, µ,λ ≥ 0, (16b)



which is a (non-convex) MIQP problem due to terms λ T
(
Ẽ2ū(k)+

Ẽ4z̄(k)+ Ẽ3δ̄ (k)
)

in (16a). To the best of our knowledge, the
available solvers are not capable of handling non-convex MIQP
problems. Therefore, we apply an approximation technique that
is based on iteratively approximating the non-convex MIQP
problem by an MILP problem using the cutting plane algorithm
reported in Kelley (1960). Note that, since we are solving (16)
using an approximation algorithm, the obtained results are only
suboptimal and, in the case of having an infeasible solution, we
cannot conclude anything about the feasibility of the optimiza-
tion problem (16).

In the next section, we compare the dual reformulation with
the Monte Carlo-based approach. We apply both approaches to
the model of BTC with and without the STL specification to
demonstrate the effectiveness of including the desired temporal
behavior in the optimization using logical specifications.

5. SIMULATION RESULTS

We apply our proposed synthesis techniques to the model of
the BTC presented in Figure 1. The system’s matrices for the
MLD representation of the network (10) are given in Appendix
II. We have chosen the sampling time ∆t = 300 s, according to
the evolution of the real system. The chosen sampling time is
related to the time of concentration 1 determined for the BTC
by its management company.

Fig. 3. Volumes of tanks 2, . . . ,11. The dashed red lines corre-
spond to the minimum and maximum trajectories of the
Monte Carlo-based approach over 100 simulations; the
starred blue line corresponds to the dual approach; the
solid green line corresponds to the upper bound of the tank
volumes.

Recall that the amount of rain entering the systems is de-
fined as W (k)=Wref(k)+e(k). The nominal values of the rain
are Wref(k)=[P1(k),α2P2(k),α4P3(k),P2(k),α10P2(k),α5P3(k),
α6P3(k),P3(k),α8P3(k),α11P4(k),α7P5(k)]T with the rain in-
tensities Pi(k), i = 1, . . . ,5 obtained based on the available
data from the rain gauges in the real system. The parameter
values α2 = 0.5715,α4 = 0.1207,α5 = 0.3152,α6 = 0.1573,
α7 = 0.6806,α8 = 0.1570,α10 = 0.6935,α11 = 0.6377 are
taken from (Ocampo-Martinez, 2010, Table 3.1). We assume
1 Defined as the time required for a water drop to travel from the most remote
catchment to its outlet to the receiving environment (Mays, 2004).

Fig. 4. Control (input) flows in the network. The dashed red
lines correspond to the minimum and maximum trajecto-
ries of the Monte Carlo-based approach over 100 simu-
lations; the starred blue line corresponds to the dual ap-
proach; the dash-dotted magenta line corresponds to the
optimization problem without having STL specification;
the solid red line corresponds to input upper bounds.

the unknown-but-bounded disturbances ei(k) are uniformly dis-
tributed over the interval [0,1]. Moreover, we have the follow-
ing bounds on states and inputs:
x2(k) ∈ [0,43000],x3(k) ∈ [0,35000],x4(k) ∈ [0,26659],
x5(k) ∈ [0,27854],x6(k) ∈ [0,26659],x7(k) ∈ [0,79229],
x8(k) ∈ [0,87407],x10(k) ∈ [0,175220],x11(k) ∈ [0,91442],
u1(k) ∈ [0,11],u2(k) ∈ [0,25],u3(k) ∈ [0,7],u4(k) ∈ [0,29.93],

where the states are in
[
m3
]

and the flows are in
[
m3/min

]
.

Considering the MLD model, we select the objective function
of the optimization problem (11) at each time step k as

J(k) = 0.1C′T1 u(k)+0.9
(
C′T2 z(k)+C′T3 δ (k)

)
−5ρ(x,k),

where C′1,C
′
2,C
′
3 denote the weighting matrices and ρ(x,k) is

the robustness function associated with the STL specification
(7). We select k′ = 5 for the STL specification, which means
once the overflow occurs, the system should eliminate it within
the next 5 time steps (20 minutes). We also select the predic-
tion horizon N = 18 (90 minutes), which results in 92 input
variables, 382 continuous auxiliary variables, and 597 binary
auxiliary variables at the beginning of the optimization proce-
dure.

The Monte Carlo approach of Section 4.1 and the dual refor-
mulation of Section 4.2 are applied to the worst-case MPC op-
timization problem (11). The optimization problems are solved
using the MILP solver from Gurobi in Matlab R2014b on a
2.6 GHz Intel Core i5 processor. The simulation results are
presented in Figures 3-7.

Figures 3 and 4 illustrate the state and input (control) flow for
each tank using both proposed approaches. The closed-loop
simulation using the dual-reformulation approach takes 236.4 s
for the first iteration. Note that the first time step is the longest
one in the shrinking-horizon fashion; as the horizon decreases
at each time step, the computational time reduces as well. In
order to have a fair comparison, we fix the same simulation
time for the Monte Carlo-based approach, which requires 150



samples from the uncertainty vector e. Hence, we repeated the
Monte Carlo simulation 100 times, each time with 150 samples
from the uncertainty vector e. The minimum and maximum
of the resulting 100 trajectories are presented in Figures 3
and 4, and they indicate that the difference between these two
trajectories is quite significant. Making this difference smaller
needs increasing the number of samples, which results in a
considerable increase in the computational time.

As shown in Figure 3, both states and inputs satisfy the con-
straints. Also, flows are guided such that volumes of most of
the tanks, except tank T3, eventually decrease while the one
of tank T3 increases. This is expected as those former tanks
are virtual and it is preferred to keep them as empty as pos-
sible. However, tank T3 is real and should work as a buffer in
the wastewater system to handle the flow routing downstream
while avoiding both overflow and pollution downstream. This
fact, in turn, implies the maximization of the WWTP inflow.
Note that the control flow trajectories obtained from the dual-
reformulation approach are not as smooth as the ones obtained
from the Monte Carlo-based approach. This effect could be the
result of approximating the quadratic objective function and can
be overcome either by adding an extra term in the cost function
where the slew rate is penalized or by adding hard constraints
to the optimization.
Remark 3. The longest computation time to obtain the optimal
control belongs to the first iteration of the whole optimization
problem along the considered simulation scenario (with the
largest number of variables over N), which is 236.4 s. Since
this computational time is less than ∆t = 300 s, our method is
applicable in practice. Note that the computational time can
be further decreased for instance by having a more efficient
solver for a non-convex MIQP problem instead of the iterative
approximation with an MILP problem.

Fig. 5. Overflows in the network that enter the streets. The
dashed red lines correspond to the minimum and maxi-
mum trajectories of the Monte Carlo-based approach over
the 100 simulations; the starred blue line corresponds to
the dual approach; the dash-dotted magenta line corre-
sponds to thesolution of the optimization problem without
having STL specification.

Figure 5 presents the overflows q1c,q2c, and qx6c through
streets. The other overflows, i.e., qx2c ,qx4c ,qR1c, and q12Sc are
zero and are not plotted. In this figure, we present the tra-

jectories obtained using the dual-reformulation approach, the
minimum and maximum trajectories obtained using the Monte
Carlo-based approach, and the trajectories obtained without
including the STL specification. The advantage of having an
STL specification can be seen in this figure. Although, for the
given rain profile, none of these overflows lasts longer than 25
minutes (equivalent to 5 time steps). In the case of having STL
specification, the overflow in q1c is much less than the case
without STL specification and the overflow in q2c is completely
zero once we have STL specification. Additionally, all the other
overflows become much less when we have STL specification.
The overflow qx6c is also zero in the dual-reformulation ap-
proach and varies between zero and the maximum trajectory
in the Monte Carlo approach. If we compare the control flow
of the cases with and without STL specification in Figure 4, we
see that the decrease in the amount of overflows in the entire
network happens by the increase in the amount of control flow
once we have the STL specification. This increase in the control
input is acceptable since our goal is to have as less flooding as
possible in the network.

Figure 6 illustrates the flows q7,q10,q11 and the overflow qx5c
that pollute the Mediterranean sea. Again, we have not plotted
q9c and q8 since they are null. The presented trajectories are
similar to the ones in Figure 5 and confirm that the overflows
are much less in the case of considering the STL specification
in comparison with the case without the STL specification.

Fig. 6. Overflows and flows that enter Mediterranean sea. The
dashed red lines correspond to the minimum and maxi-
mum trajectories of the Monte Carlo-based approach over
the 100 simulations; the starred blue line corresponds to
the dual approach; the dash-dotted magenta line corre-
sponds to the optimization without having STL specifica-
tion.

Finally, Figure 7 shows the WWTP inflows. The obtained
trajectories have a similar trend of increasing and reaching their
maximum in the last 30 to 40 minutes before the end of the
simulation.

6. CONCLUSION

We proposed an effective control approach to manage the
flow in a representative fragment of Barcelona wastewater
network. We formulated the nonlinear dynamics of the flow



Fig. 7. Flows sent to the WWTPs. The dashed red lines cor-
responds to the minimum and maximum trajectories of
the Monte Carlo-based approach over the 100 simulations,
the starred blue line corresponds to the dual-reformulation
approach, and the dash-dotted magenta line corresponds
to the solution of the solution of the optimization problem
without considering the STL specification.

network including the possible overflows in the considered
catchment. The goal of the control scheme is to minimize the
overflow in the main pipes and to maximize the amount of
water treatment. We have employed model predictive control
(MPC) to optimally manage the flow into the network. We
have used signal temporal logic (STL) to specify the desired
temporal behavior of the system with respect to the overflows.
Additionally, we have included the uncertainty in the amount of
precipitation as a bounded disturbance in the nonlinear model.

In order to solve the formulated worst-case MPC optimization
problem with nonlinear state equations and objective function,
we represented the dynamics of the network as a mixed logical
dynamical (MLD) model. Moreover, we proposed two different
techniques to approximately solve the optimization problem
with the MLD model: (i) a Monte Carlo method, which ap-
proximates the solution of the inner optimization problem by
taking samples from the disturbance set, and (ii) the dual re-
formulation, which transforms the min-max optimization prob-
lem into a minimization one. We showed that, by using these
approaches, the resulting optimization problem could be re-
cast as a mixed integer linear programming problem or as a
non-convex mixed integer quadratic programming problem. We
have further compared both proposed approaches in the simu-
lations and have shown that the synthesized closed-loop system
exhibits the desired temporal behavior.

In our future work, we consider performing a fair comparison
between available optimization solvers, interfaced via Matlab
or GAMS, in order to improve the computational efficiency of
solving the formulated optimization problems.
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APPENDIX I: SIGNAL TEMPORAL LOGIC

A run of system (5) is defined as a signal ξ = x(0)x(1)x(2) . . . ,
which is an infinite sequence of states satisfying (5). Hence, a
finite run of system (5) for the time interval [0 : N] can be de-
fined as ξN = x(0)x(1) . . .x(N). We consider STL formulas with
bounded-time temporal operators defined recursively according
to the grammar (Maler and Nickovic, 2004)

ϕ ::=> | π | ¬ϕ | ϕ ∧ψ | ϕU[a,b]ψ,

where> is the true predicate, π is a predicate whose truth value
is determined by the sign of a function, i.e., π = {α(x) ≥ 0}
with α : Rn → R being an affine function of state variables;
ψ is an STL formula; ¬ and ∧ show negation and conjunction
of formulas; and U[a,b] is the until operator with a,b ∈ R≥0.

A run ξ satisfies ϕ at time k, denoted by (ξ ,k) |= ϕ , if the
sequence x(k)x(k + 1) . . . satisfies ϕ . Accordingly, ξ satisfies
ϕ , if (ξ ,0) |= ϕ .

Semantics of STL formulas are defined as follows. Every
run satisfies >. The run ξ satisfies ¬ϕ if it does not sat-
isfy ϕ; it satisfies ϕ ∧ ψ if both ϕ and ψ hold. For a run
ξ = x(0)x(1)x(2) . . . and a predicate π = {α(x)≥ 0}, we have
(ξ ,k) |= π if α(x(k)) ≥ 0. Finally, (ξ ,k) |= ϕU[a,b]ψ if ϕ

holds at every time step starting from time k before ψ holds,
and additionally ψ holds at some time instant between a+ k
and b+ k. Additionally, we derive the other standard operators
as follows. Disjunction ϕ ∨ψ := ¬(¬ϕ ∧¬ψ), the eventually
operator as 2[a,b] ϕ := >U[a,b]ϕ , and the always operator as
2[a,b] ϕ :=¬ 2[a,b]¬ϕ . Thus (ξ , t) |= 2[a,b] ϕ if ϕ holds at some
time instant between a+ k and b+ k and (ξ ,k) |= 2[a,b] ϕ if ϕ

holds at every time instant between a+ k and b+ k.

Formula Horizon. The horizon of an STL formula ϕ is the
smallest n ∈ N such that the following holds for all signals
ξ = x(0)x(1)x(2) . . . and ξ ′ = x′(0)x′(1)x′(2) . . .:

If x(k+ i) = x′(k+ i) for all i ∈ {0, . . . ,n}
Then (ξ ,k) |= ϕ iff (ξ ′,k) |= ϕ.

Thus, in order to determine whether signal ξ satisfies an STL
formula ϕ , we can restrict our attention to the signal prefix
x(0), . . . ,x(∆), where ∆ is the horizon of ϕ . This horizon can
be upper-approximated by a bound, denoted by len(ϕ), defined
to be the maximum over the sums of all nested upper bounds
on the temporal operators. The bound of ϕ , denoted by len(ϕ),
is defined as the maximum over the sums of all nested upper
bounds on the temporal operators. Formally, len(ϕ) is defined
recursively as

ϕ :=>⇒ len(ϕ) = 0, ϕ := π ⇒ len(ϕ) = 0,
ϕ := ¬ϕ1⇒ len(ϕ) = len(ϕ1),

ϕ := ϕ1∧ϕ2⇒ len(ϕ) = max(len(ϕ1), len(ϕ2)),

ϕ := ϕ1 U[a,b] ϕ2⇒ len(ϕ) = b+max(len(ϕ1), len(ϕ2)),

where ϕ1,ϕ2 and ψ are STL formulas. For example, for ϕ =
�[0,4] 2[3,6] π , we have len(ϕ) = 4+ 6 = 10. For a given STL
formula ϕ , it is possible to verify that ξ |= ϕ using only the
finite run x(0)x(1) . . .x(N), where N is equal to len(ϕ).

STL Robustness. In contrast to the above Boolean semantics,
the quantitative semantics of STL (Jin et al., 2013) assigns to
each formula ϕ a real-valued function ρϕ of signal ξ and k such
that ρϕ(ξ ,k) > 0 implies (ξ ,k) |= ϕ . Robustness of a formula
ϕ with respect to a run ξ at time k is defined recursively as

ρ
>(ξ ,k) = +∞,

ρ
π(ξ ,k) = α(x(k)) with π = {α(x)≥ 0},

ρ
¬ϕ(ξ ,k) =−ρ

ϕ(ξ ,k)
ρ

ϕ∧ψ(ξ ,k) = min(ρϕ(ξ ,k),ρψ(ξ ,k)),

ρ
ϕ U[a,b]ψ(ξ ,k)= max

i∈[a,b]

(
min(ρψ(ξ ,k+ i), min

j∈[0,i)
ρ

ϕ(ξ ,k+ j))
)
,

where x(k) refers to signal ξ at time k. The robustness of the de-
rived formula 2[a,b] ϕ can be worked out to be ρ 2[a,b] ϕ(ξ ,k) =
maxi∈[a,b] ρ

ϕ(ξ ,k+i); and similarly for 2[a,b] ϕ as ρ
2[a,b] ϕ(ξ ,k)

= mini∈[a,b] ρ
ϕ(ξ ,k + i). The robustness of an arbitrary STL

formula is computed recursively on the structure of the formula
according to the above definition.



Mixed Integer Linear Encoding. To synthesize a run that
satisfies an STL formula ϕ , we employ the robustness-based
encoding of STL constraints to a mixed integer linear formula-
tion, as in (Raman et al., 2014). We first represent the system
trajectory as a finite sequence of states satisfying the model
dynamics in (5). Then, we encode the formula ϕ with a set of
mixed integer linear constraints. This encoding in possible due
to the assumption that α(x) are affine functions of x.

Recall that the robustness function of an STL specification ϕ

can be computed recursively on the structure of the formula.
The max and min operations can be expressed in a mixed
integer linear formulation using additional binary variables and
a large constant M (commonly called big-M). The interested
reader is referred to Raman et al. (2014) for details of this
encoding, the gist of which follows. For brevity, denote ρϕ(x,k)
by ρ

ϕ

k ; for a given formula ϕ , the mixed integer linear represen-
tation is extended with a variable ρ

ϕ

k and an associated set of
constraints such that having ρ

ϕ

k > 0 under the added constraints
is equivalent to the satisfaction of ϕ at time step k. This is
accomplished by recursively generating mixed integer linear
constraints for every subformula of ϕ according to its structure.
In contrast to these STL constraints, the system constraints
encode valid finite trajectories for a system of the form (5),
and are designed to be satisfied if and only if the trajectory
ξ (x(0), ū(0), d̄(0)) obeys the dynamics in (5).

APPENDIX II: MLD MODEL MATRICES

The system matrices of (10a) and related to the simulation
results in Section 5 are as follows:

A = I9−∆t



β2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−β2 0 β4 0 0 0 0 0 0

0 0 −β4 β5 0 0 0 0 0
0 0 0 0 β6 0 0 0 0
0 0 0 −β5 0 β7 0 0 0
0 0 0 0 −β6 0 β8 0 0
0 0 0 0 0 0 0 β10 0
0 0 0 0 0 0 0 0 β11


,

B1 =



∆t 0 0 0
0 ∆t −∆t 0
−∆t −∆t ∆t 0

0 0 0 ∆t
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0−∆t
0 0 0 0


, B5 =



0
0
0

−∆tq̄R16
∆tq̄R16

0
∆tq̄12

0
∆tq̄R311


,

B3 = ∆t



0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 −1 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 β8 0 0 0


,

B4 = ∆t



0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 0 0 0.3 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0.7 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0


,

B2 =



0 0 x̄2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∆tq̄1 ∆tq̄2 −x̄2 x̄4 0 0 0 0 0 0 0 0 0 0 0
−∆tq̄1 −∆tq̄2 0 x̄4 0 ∆tq̄R1 0 0 x̄5 ∆tq̄R16 0 0 0 0 0

0 0 0 0 0 0 0 x̄6 0 −∆tq̄R16 0 0 0 0 0
0 0 0 0 0 −∆tq̄R1 0 −x̄6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −∆tq̄12 0 0 0 0
0 0 0 0 ∆tq̄9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −∆tq̄12S 0 0 0 0 −∆tqR311 0 0 0


,

where I9 denotes the 9× 9 identity matrix. All the parameters
are taken from Ocampo-Martinez (2010), Table 3.1.


