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Abstract: Although PID control has been widely used in practical engineering, its ability to
reject external disturbance and to handle severe nonlinearities should be further enhanced.
In this paper, we present a simple robust unknown dynamics estimation, which can be easily
incorporated into PID control to achieve satisfactory control performance for a rotomagnet
plant subject to period disturbance. The use of this estimator together with PID control leads
to a feedforward like composite control framework. Unlike other estimators, only low-pass filter
operations on the input and output and simple algebraic operations are needed to construct our
estimator, while exponential convergence can be guaranteed. Numerical simulations are given
to show the validity of the proposed estimator and composite PID control.
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1. INTRODUCTION

In most of control practice and applications, PID control
(Åström and Hägglund, 1995; Moliner and Tanda, 2016)
has always been used due to its simple structure and fair
robustness, which are preferred by engineers. For some
specific systems, many modified or enhanced PID control
structures have further been reported, e.g. cascaded PID
control, anti-windup PID control (Åström and Hägglund,
2006). However, a major well-documented drawback of
PID control lies in its limited ability to handle external
disturbances and severe nonlinearities involved in the
systems (Oviedo et al., 2006). Another issue is that apart
from its wide application, rigorous proof of the closed-
loop control system stability with PID control is not a
trivial task. In fact, only very recent, a rigorous proof of
stability of PID control has been reported for some specific
plant (Zhao and Guo, 2017). This has left huge gap and
unbalance between the application and theoretical studies.

To enhance the ability of disturbance rejection, other al-
ternative control schemes have also been proposed. Among
those schemes, the internal model control (IMC) (Garcia
and Morari, 1982) has been proved to be an effective
solution. In the IMC framework, the feedback signal is the
difference between the plant output and model output,
which allows proving the closed-loop stability. Moreover,
for some specific period disturbance, repetitive control
(RC) (Hillerström and Walgama, 1996) has been devel-
oped based on the internal model principle (IMP) (Francis
and Wonham, 1975). The idea of RC has been applied
to the specific application of a rotomagnet plant that
was built as an educational system (Costa-Castelló et al.,
2005). Also resonance based control is offering interesting
performance for this plant (Costa-Castelló et al., 2012).

On the other hand, to further address the modeling of un-
certainties, a new idea named disturbance observer (DOB)
has been reported (Oh and Chung, 1999). Chen (2004)
designed a generic nonlinear disturbance observer (NDO)
to estimate and compensate for the lumped disturbances
of nonlinear systems. In parallel, an alternative observer
called extended state observer (ESO) was also suggested
by Han Han (1995), where the lumped unknown dynamics
with bounded derivative can be taken as an augmented
system state and thus estimated by using observers (Guo
and Zhao, 2011). The idea of ESO has subsequently in-
corporated into an integrated nonlinear enhanced PID
control framework, active disturbance rejection controller
(ADRC) (Han, 1998), which has recently attracted sig-
nificant attention in both academic and engineering field.
However, it is noted that in all above advanced estimation
methods, the plant model should be known precisely since
the model should be used in the design and implementa-
tion of these estimators. Consequently, if there are non-
trivial modeling uncertainties, the overall control response
based on these estimators could be severely deteriorated.

Very recently, inspired by the principle of unknown input
observer (UIO) (Stotsky and Kolmanovsky, 2002), we have
investigated a new simple yet robust UIO for engine torque
estimation (Na et al., 2017). The salient feature of this
approach lies in its simplicity in implementation, while its
convergence and robustness can be proved as the same
as the sliding model observer (Edwards and Christopher,
1988). Hence, the aim of this paper is to further exploit the
application of this new idea to enhance the performance
of PID control.

In order to further improve the control performance of PID
control while keeping its simplify in the implementation
and allowing to prove the stability (or even convergence),



Figure 1. Rotomagnet device picture.
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Figure 2. Rotomagnet conceptual scheme.

this paper will present an enhanced PID control struc-
ture. In this composite PID control design, a simple yet
robust unknown dynamics estimation is first introduced
to estimate the lumped unknown dynamics that include
the external disturbances and modeling uncertainties. The
design of this estimator is very simple and straightforward
since only low-pass filter operations and simple algebraic
calculations are required, and only one constant (deter-
mining the bandwidth of filter) needs to be selected by the
designer. Hence, the proposed estimator is to some extend
a data-driven based approach, which relaxes the stringent
assumptions on the plant model compared with DOB or
ESO. Then the estimator output can be easily incorpo-
rated into classical PID control (proportional control in
our case) as a feedforward compensator, such that perfect
tracking response can be retained. Rigorous theoretical
studies are carried out to prove the convergence of the pro-
posed estimator, and also the tracking error of the closed-
loop system. Numerical simulations are provided to show
the efficacy of the proposed composite PID control, and
the improved control response over classical PID control.

The paper is organized as follows: Section 2 presents
the modeling of the studied rotor plant and problem
formulations. Section 3 introduces the estimator designs
and the composite control with rigorous stability analysis.
Section 4 gives the numerical simulations, and Section 5
draws conclusions.

2. PROBLEM FORMULATION

This paper will address the disturbance rejection and
tracking control of a rotomagnet device built as a labora-
tory control plant for educational purposes (Costa-Castelló
et al., 2005). The control plant is composed of a pulse
width modulation (PWM) electronic amplifier, a small DC
motor, two permanent magnets, and two fixed electromag-
nets. More specifically, a bar holds a permanent magnet in
each end, with each magnet magnetically oriented in the

opposite way, and attached to a DC motor and two fixed
electromagnets. The rotor plant is shown in Figure 1.

The rotation of the DC motor causes a pulsating load
torque that depends on the mechanical angle θ of the
motor axis. Additionally, the interaction between the fixed
and mobile magnets creates a magnetic field that causes
disturbances, d, on the movement of the bar. As the
magnetic field depends on the relative position between
the different magnets, the torque acting over the bar is 2π-
periodic on the position variable. Under constant mechan-
ical speed operation (ẇ = 0), the pulsating load torque
is a periodic signal, where a fundamental period directly
related to the axis speed (Figure 2). At a fixed angular
speed, any friction, unbalance or asymmetry appearing on
the system generates a periodic disturbance that affects
its dynamical behaviour.

Hence, the purpose of this paper is to design a composite
PID control such that the disturbance perturbing the sys-
tem and unknown dynamics could be handled effectively,
and satisfactory tracking control can be obtained.

To facilitate the control design, a preliminary system
identification process has been conducted as reported in
(Ramos et al., 2013), and the following model is obtained

Y (s) =
k

as+ 1
U(s) +D(s) (1)

where D(s) is the disturbance, U(s) is the control input
(voltage applied on the motor), and Y (s) is the output
(rotation velocity of motor), the constants k, a denote the
amplification of DC motor and the friction coefficient,
respectively.

3. COMPOSITE CONTROLLER ARCHITECTURE

In order to facilitate the control design and performance
analysis, the above transfer function model (1) can be
represented in the time-domain as

ẏ =−a1y + a2u+ d (2)

, F (y, d) + a2u (3)

where y is the measured output variable, u is the control
action, d is an unknown disturbance, and a1 = 1/a and
a2 = k/a are two constants.

Clearly, for the studied plant, the above equations (1)
and (2) cannot cover all dynamics (e.g. pulsating load,
frictions) and the disturbances. All of these dynamics can
be considered as the disturbance d, which will be addressed
in the following control design. Without loss of generality,
we only assume that a2 is known in a priori, which is also
commonly used in other literature (Han, 1995; Oh and
Chung, 1999). In this case, all unknown dynamics can be
lumped in F (y, d) as shown in (3).

Hence, we will first present a new estimator for the
unknown dynamics F (y, d) and compensate its effect over
the system by incorporating the estimator into the PID
control. The proposed composite control structure can be
found in Figure 3.
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Figure 3. Composite control structure.

3.1 Unknown Dynamics Estimator

A difficulty in designing control for system (3) lies in the
unknown lumped uncertainties F (y, d). Different to most
available methods using function approximators (NNs and
FSs) or DOB, with large computational costs and sluggish
response, we will develop a simple and fast unknown
dynamics estimator to estimate F (y, d). Without loss of
generality, in the following analysis it is assumed that
the derivative of F (y, d), Ḟ (y, d), is bounded by ~, i.e.

supt≥0

∣∣∣Ḟ (y, d)
∣∣∣ ≤ ~.

Then to avoid using the derivative of output y, we impose
a low-pass filter on the variable u, y, which can be defined
as:

τ ẏf + yf = y, yf (0) = 0 (4)

τ u̇f + uf = u, uf (0) = 0, (5)

where τ > 0 is the filter time constant (the filter band-
width is defined by 1

τ ).

Then, an implicit relationship between the variables u, y,
and the unknown dynamics F (y, d) can be derived.

Lemma 1. : Consider system (3) and the filter operation
(4), the following auxiliary variable

β =
y − yf
τ
− a2uf − F (6)

is bounded and will decrease to a small set around zero in
an exponential sense for τ > 0. Hence, the manifold β = 0
is an invariant manifold for τ → 0.

Proof. The derivative of β can be derived along (4)-(29)
as

β̇ =
ẏ − ẏf
τ
− a2u̇f − Ḟ = −β

τ
− Ḟ . (7)

We select a Lyapunov candidate as Vβ = β2

2 , then based

on Young’s inequality ±ab ≤ a2τ + b2/τ for τ > 0, its
derivative can be given as

V̇β = ββ̇ = −β
2

τ
− βḞ ≤ −β

2

2τ
+
τ~2

2
≤ −Vβ

τ
+
τ~2

2
. (8)

Hence, we can derive that

Vβ ≤
√
e−t/τVβ(0) + τ2~2/2

and thus β will exponentially converge to a small compact
set bounded by

|β(t)| ≤
√

2Vβ(t) ≤
√
β2(0)e−t/τ + τ2~2.

This implies the boundedness of β for any finite τ > 0.
Moreover, it can be verified that

lim
t→∞

lim
τ→0

β(t) = 0

holds for τ → 0 and/or ~→ 0. Thus, β = 0 is an invariant
manifold. This completes the proof.

The above invariant manifold provides a mapping from the
variables y, u, to the unknown dynamics F (y, d). Hence,
an unknown dynamics estimator can be designed based
on this manifold. From yf and uf , the value of F (y, d) can
be estimated as:

F̂ =
y − yf
τ
− a2uf . (9)

Under the hypothesis that Ḟ is bounded, it can be shown
that F̂ → F as τ → 0 and/or ~ → 0. This can be
summarized as the following thereom:

Theorem 2. The estimation error, eF , F−F̂ , is bounded
by:

|eF (t)| ≤
√
e2F (0)e−t/τ + τ2~2

and thus F → F̂ , i.e. eF (t)→ 0 for τ → 0 and t→∞.

Proof. Firstly, both sides of equation (3) are filtered by
using a low-pass filter (·)f = [·]/(τs + 1) given in (4), so
that

s

τs+ 1
[y] =

1

τs+ 1
[F ] + a2 ·

1

τs+ 1
[u] . (10)

From (4) it can be obtained the following expression

ẏf =
y − yf
τ

= a2uf − Ff (11)

where Ff = 1
τs+1 [F ] is the filtered version of F .

Then it follows from (9) and (11) that F̂ = Ff , that is,
the estimator gives the filtered version of the unknown
dynamics. In this case, we can prove that the estimation
error can be small by using sufficiently small τ . For this
purpose, we derive the estimation error as

eF = F − F̂ =

(
1− 1

τs+ 1

)
[F ] =

τs

τs+ 1
[F ]. (12)

To facilitate the convergence proof, we further represent
the estimation error (12) in the time-domain as

ėF = Ḟ − ˙̂
F = Ḟ − 1

τ
(F − Ff ) = −1

τ
eF + Ḟ . (13)

Select a Lyapunov function as V = 1
2e

2
F , then similar to

the proof of Lemma 1, the derivative V̇ can be given as

V̇ = eF ėF = −1

τ
e2F + eF Ḟ ≤ −

1

τ
V +

τ

2
~2. (14)

Integrating both sides of (14) it is obtained:

V (t) ≤ e−t/τV (0) + τ2~2/2,
so that we can further obtain that

|eF (t)| ≤
√
e2F (0)e−t/τ + τ2~2.

In this case, one can verify that eF (t) → 0 as t → ∞ for
any τ → 0. It is noted that the convergence is faster for
~→ 0. This completes the proof.

It is shown in the above Theorem 2 that the estimation
F̂ can exponentially converge to a small set around the
true value of the unknown lumped uncertainties F , where
the ultimate bound of the residual error depends on the
upper bound of Ḟ and the filter coefficient τ . Hence, one
may verify that precision estimation (with zero error) can



be achieved for constant dynamics (e.g. F = const.).
Moreover, we could set sufficiently small τ to retain
satisfactory estimation performance. However, it is noted
that the constant τ also determines the bandwidth of the
low-pass filter in (4)-(29), and thus affects robustness of
the proposed estimator. Hence, a trade-off should be made
when select filter coefficient τ . In practice, we could set τ
initially small and then increase this value by observing
the smoothness of the estimator output.

Remark 3. : Compared with other estimator, e.g. DOB
(Chen, 2004), ESO (Han, 1995), one can find that the de-
sign, analysis and implementation of the proposed estima-
tor is obviously easier, i.e. only low-pass filter operations
(4) and algebraic calculation (9) are required, and it is
almost input-output data driven. This property allows to
easily incorporate the estimator output F̂ into any classi-
cal control designs that could retain the system stability.
Then, this newly added feedforward compensation can
enhance the overall control response without triggering
instability. For the purpose of demonstration, a simple
proportional control will be used for the studied rotor plant
(1).

3.2 Composite PID control

In this subsection, a feedback control is designed to achieve
tracking by using the estimated dynamics F̂ . The effects
of both the estimation error and the tracking control error
are considered in the stability analysis of the whole closed-
loop system.

Denote the desired trajectory to be tracked as yr, and the
tracking error as

e = yr − y. (15)

Then by using the estimation of F as a feedforward
compensator, a simple controller can be formatted. The
composite controller has the following form:

u = kpe−
1

a2
(F̂ − ẏr). (16)

where e = yr − y is the tracking error, F̂ is the estimation
of lumped unknown dynamics F , which can be online
obtained based on (4) and (29).

Clearly, this composite controller takes the form of a
proportional control kpe with a proportional gain kp > 0,

and a feedforward term F̂−ẏr
a2

with the estimated dynamics

F̂ and trajectory ẏr.

Remark 4. : In the above control (16), the proposed esti-

maiton F̂ is integrated into a simple proportional control,
which is easy to implement. However, it should be that
the proposed estimator F̂ can be incorporated into other
advanced control methods (e.g. adaptive control) in a
similar way, provided that the adopted feedback control
could retain the stability of the nominal closed-loop system
without disturbance F . Moreover, since the rotomagnet
plant, (1), is with low-order, the proportional control (16)
could be used. For high order systems, we can use s = λe+
ė as the feedback signal, which leads to sliding mode type
(or PD like) control as shown in Slotine and Li (2004).

Using the proposed controller, (16), the closed-loop track-
ing error becomes:

ė= ẏr − ẏ = ẏr − F (y, d)− a2u (17)

=−F + kpa2e+ F̂ (18)

=−kpa2e− eF . (19)

The following theorem proves the stability and conver-
gence of the closed-loop system, composed of the controller
(16), the estimator (29) and the plant (3).

Theorem 5. The closed-loop system consisting of system
(3), estimator (29) and controller (16) is uniformly ulti-
mately stable for any bounded unknown dynamics F with

supt≥0

∣∣∣Ḟ ∣∣∣ ≤ ~. Moreover, the estimation error eF and

the tracking error e will exponentially converge to a small
compact set around zero.

Proof. Select a Lyapunov function defined as

V =
1

2
e2 +

1

2
e2F .

The time derivative of V can be calculated along (13)and
(17) as:

V̇ = eė+ eF ėF = −kpa2e2 − eeF −
1

τ
e2F + eF Ḟ . (20)

Then by applying Young’s inequality on the terms eeF and
eF Ḟ , we can further have:

V̇ ≤−(kpa2 −
η

2
)e2 +

1

2η
e2F −

1

τ
e2F +

1

2η
e2F +

η

2
Ḟ 2

≤−(kpa2 −
η

2
)e2 − (

1

τ
− 1

η
)e2 +

η

2
~2

≤−αV +
η

2
~2 (21)

where α = min{2(kpa2 − η/2), 2(1/τ − 1/η)} is a positive
constant for any appropriately chosen parameters kpa2 >
η/2 > τ/2, τ > 0.

Thus, by integrating both sides of (21), we can obtain that:

V (t) ≤ e−αtV (0) + η~2/(2α)

holds and this implies that e and eF will exponentially
converge to a compact set defined by

Ω :=
{
e, eF | |p| ≤

√
η~2/α, |eF | ≤

√
η~2/α

}
.

whose size depends on the upper bounds of ~, the filter
coefficients τ and the feedback gain kp. This completes
the proof.

Remark 6. : In the above control design, we only assume
that the input gain a2 of the rotomagnet plant is known
(this condition is also required in the design of DOB (Chen,
2004) and ESO (Han, 1995)), while the friction dynamics
with a1 are not necessarily known in a priori. However,
if precision knowledge of friction can be obtained, i.e.
a1 is known, the above control design could be easily
reformulated as given below.

In case precision information of a1 is known, it is possible
to change the estimator (29) with (4) to estimate the exact
disturbance d. In this case, the system can be rewritten as

ẏ =−a1y + a2u+ d (22)

= F (y, d)− a1y + a2u (23)



In this case, we denote F (y, d) = d as the unknown
disturbance, and the dynamics −a1y are known.

Then, an appropriate estimation of unknown dynamics
F (y, d) can be given as

F̂ =
y − yf
τ
− a2uf + a1yf . (24)

Then, the control (16) can be changed as

u = kpe−
1

a2
(F̂ − a1y − ẏr). (25)

With the above modifications, similar claims as Theorem
2 and Theorem 5 can be derived. Here, we do not repeat
them again.

4. ALTERNATIVE ESTIMATION AND CONTROL

In the previous section, the trajectory to be tracked,
ẏr, must exist and be used in the control (16), and the
proposed estimator (29) is designed based on the original
system (2). In this section, we will further modify the
design of estimator and thus control based on the error
dynamics. For this purpose, we rewrite the error system
as

ė= ẏr − ẏ = ẏr + a1y − d− a2u (26)

= F (y, yr, d)− a2u (27)

where F (y, yr, d) = ẏr + a1y − d is the lumped dynamics
to be estimated, which cover the friction a1y, external
disturbance d and trajectory ẏr.

Hence, we can redefine the filter operations on the tracking
error e and the input u as

τ ėf + ef = e, ef (0) = 0 (28)

τ u̇f + uf = u, uf (0) = 0, (29)

where τ > 0 is the filter constant.

Then the estimation of unknown dynamics F (y, yr, d) can
be given by

F̂ =
e− ef
τ

+ a2uf . (30)

With the obtained estimation F̂ given in (30), we can
design the control for (26) as

u = kpe+
1

a2
F̂ . (31)

where kp > 0 is the feedback gain, and F̂ is the estimator
given by (30).

Similar stability and convergence analysis as that pre-
sented in Section 3 can be carried out, which will not be
repeated again. Compared to the method shown in Section
3, the estimator and control given in this section only
depends on the error signal e and control signal u, and
thus they are data-driven based method. Moreover, we do
not require the accurate information of ẏr in the control
implementation, which is more suitable in practice. Instead
this has been lumped int unknown dynamics F (y, yr, d)
and then estimated online by using the estimator (30).

5. NUMERICAL SIMULATIONS

Using system identification procedure appropriate param-
eters to describe the rotomagnet system behavior have
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Figure 4. Disturbance signal, d(t), used in the simulations.
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Figure 5. Evolution of the output, y(t), and the reference
yr(t) in the closed-loop system.
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Figure 6. Evolution of the tracking error, e, and unknown
dynamics estimation error eF in the closed-loop sys-
tem.

been obtained (Ramos et al., 2013): k = 16.152 and
a = 0.457.

To analyze the proposed controller performance a distur-
bance similar to that appearing in the real system has
been used. The concrete disturbance is shown in Figure 4
and is composed a 2.5 rad/s sinusoidal and two additional
higher harmonics. A filter with τ = 0.001 and controller
with kp = 1 have been selected.
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in the closed-loop system.

Proposed control scheme (Figure 3) have been imple-
mented to the rotomagne plant subject to previously de-
scribed disturbance. The output and the reference are
shown in Figure 5, as it can be seen after a small transient,
the output is tracking nicely the reference. As it can be
seen in Figure 6 the error is always bound and small.
Finally, Figure 7 show the evolution of the unmodeled
dynamics, F , and its estimation F̂ , as it can be seen
both are almost the same from the beginning. It can be
concluded that propose controller is working very well in
the case under study.

6. CONCLUSIONS

This paper has proposed a simple control scheme which is
composed of a regular PID controller plus a disturbance
observer. The paper has shown a formulation of the
proposed architecture and formal proof of the closed-loop
stability. Also bounds on the estimation error are provided.

Currently, the authors are working to experimentally vali-
date the proposed mechanisms, extend the results to more
generic system and improve the robustness against uncer-
tainty in a1 and a2.
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Demonstration of the internal model principle by digital
repetitive control of an educational laboratory plant.
IEEE Transactions on Education, 48(1), 73–80.
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