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Abstract— Interaction of socially assistive robots with users is
based on social cues coming from different interaction modal-
ities, such as speech or gestures. However, using all modalities
at all times may be inefficient as it can overload the user
with redundant information and increase the task completion
time. Additionally, users may favor certain modalities over the
other as a result of their disability or personal preference. In
this paper, we propose an Adaptive Modality Selection (AMS)
algorithm that chooses modalities depending on the state of
the user and the environment, as well as user preferences. The
variables that describe the environment and the user state are
defined as resources, and we posit that modalities are successful
if certain resources possess specific values during their use.
Besides the resources, the proposed algorithm takes into account
user preferences which it learns while interacting with users.
We tested our algorithm in simulations, and we implemented it
on a robotic system that provides cognitive training, specifically
Sequential memory exercises. Experimental results show that it
is possible to use only a subset of available modalities without
compromising the interaction. Moreover, we see a trend for
users to perform better when interacting with a system with
implemented AMS algorithm.

I. INTRODUCTION

The number of people suffering from dementia is ris-
ing [1]. Consequently, demands for additional care from
trained individuals are also growing. However, the number
of caregivers is not increasing sufficiently to support the
elderly population. Therefore, it is necessary to develop tech-
nological solutions to overcome this problem [2]. Socially
Assistive Robots (SAR) provide a viable solution. Several
papers examined different scenarios and the use of SAR [3],
[4] as well as their application for cognitive training [5].
Moreover, research has shown that SAR yields better results
than other technologies, like tablets [6].

While many applications in robotics have clearly-defined
metrics related to goal attainment, SAR should also consider
social features like trust, engagement, persuasiveness, etc.,
[7], [8] that are difficult to measure. This is why an assistive
robot needs to develop a user profile and adjust its actions
according to it. Moreover, a disability of the user should
significantly modify the behavior of the robot. For example,
the robot should not use speech, or other audio signals, when
interacting with users with hearing problems.

Natural human-human interaction is multimodal [9], and
therefore social robots should also be capable of multimodal
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Fig. 1: Experimental setup for the sequential memory exer-
cise.

interaction [10]. Multiple modalities enable robots to perform
the same action in different ways. However, in certain
situations the choice of modalities is unambiguous. If the
user is not looking at the robot, speech could be used to
obtain the attention of the user. However, often the same
action can be performed in multiple manners. If the user
is looking at the robot, it could do a pointing gesture to
direct user’s attention. Moreover, it could combine speech
and gesture and use both modalities simultaneously. The
exact choice of modalities should depend on the user profile,
which we describe with modality preferences. Using gestures
may seem intrusive to some users, while speech can confuse
or fail when interacting with users with hearing impairment.

In this paper, we propose an Adaptive Modality Selection
(AMS) algorithm for choosing a subset of modalities for
performing actions. The goal of the algorithm is to execute
actions only using modalities that satisfy certain conditions
and that prove to be successful with the particular user. The
success probability of a modality for a certain user defines
the preference for that modality. When choosing preferred
modalities, our algorithm relies on a Bayesian method for
solving Multi-Armed Bandit (MAB), with Thompson sam-
pling [11]. MAB has been used to personalize content on
the web, like news article recommendation [12], it has also
been used for selecting a robot policy [13]. Moreover, MAB
has proven useful for grasp planning in scenarios with high
uncertainty [14].

We describe the environment and the user using variables
defined as resources [15], [16]. Depending on the values
of resources during the use of modalities, we categorize
modalities as successful or unsuccessful. This information



(a) Diagram of a system with the AMS
algorithm.

(b) Executing action A2 that has modality
M2 conflicted with modalities M1 and Mj

over resources R1 and Rk , respectively.

(c) After resolving conflicts for resources be-
tween modalities, the AMS algorithm chose
to use modalities M1 and Mj .

Fig. 2: Example diagram of a system implementing the AMS algorithm while selecting modalities.

is later used to determine the user preference towards that
modality.

We applied the proposed algorithm in a robotic system for
assisting users performing cognitive training, specifically a
Sequential memory exercise (Fig. 1), which can be used as
part of the therapy for people with mild cognitive impairment
or Alzheimer’s disease. The exercise has simple rules and
goals but can be a challenge even for users without cognitive
problems. Users are initially informed about a sequence of
elements, and afterward, they should sort the elements in
the presented order. In our application, the elements are
shapes printed on tokens of the same size. Our robotic system
can perform actions using three modalities: screen, speech,
and gestures. To observe the user and track the progress of
the exercise, the system uses two cameras, a Kinect and a
webcam, and a microphone.

The proposed AMS algorithm enables the system to select
the most successful modalities and remove unwanted redun-
dancies. Initial experimental results show that the users rate
the system with the AMS algorithm similarly to using all
modalities unconditionally. Moreover, we observed a trend
for users to make fewer errors when interacting with the
AMS system.

II. ADAPTIVE MODALITY SELECTION ALGORITHM

The proposed AMS algorithm is defined by sets of actions
A = {A1, A2, ..., An}, modalities M = {M1,M2, ...,Mp},
resources R = {R1, R2, ..., Rq} and their connections. Each
action can be executed using one or more modalities, while
each modality depends on the value of one or more resources.
An example of the relationship between actions, modalities,
and resources can be seen in Fig. 2a. The goal of the AMS
algorithm is to choose a set of modalities to be used for
executing an action. Robot actions are task-specific, and they
are provided to the AMS algorithm, which defines a set of
eligible modalities to execute such actions. For the sequential
memory exercise, the selection of the next robot action is a
result of either user performance or user request (e.g., error
or request for help).

Resources Rk, k ∈ {1, ..., q}, represent variables that de-
scribe the environment and the user state and they are divided
into physical and cognitive. A physical resource is the state of
any object relevant to the robot. Moreover, the occupancy of
the space can be modeled as a physical resource. The second

group of resources describes the cognitive state of the user.
A common use of cognitive resources is to describe the focus
of user attention; for example, when the user is looking at the
screen can be used as an indicator to show certain content
on the screen.

An action Ai is a semantic element specified by the goal
it realizes, and it can be performed with different modalities.
However, depending on the user’s preferences and available
resources, only a subset of modalities is used. One example
of an action in our sequential memory exercise scenario is the
assist action that informs the user of the correct shape for the
current position. The robot can show the correct shape on its
screen, point towards it using its arm, or say the name of the
correct shape. In this case, the action is also characterized by
the name of the correct shape, which is treated as an action
parameter that is passed to the selected modalities.

A modality Mj is one way of instantiating an action, and
each modality depends on certain resources. A modality in
use can change the value of a resource; however, if the
resource gets an undesired value, the modality is regarded
as unsuccessful. Moreover, if a resource value changes from
a desired to an unwanted value, the system should stop the
modality and mark it as unsuccessful. For certain modalities,
it is critical to check the resource state before applying them.
For example, gestures performed by the robotic arm require
the workspace to be unoccupied before the movement starts.
If this is not the case, it can be dangerous to use it. Hence, the
initial values of resources are the eliminating criteria when
selecting some modalities. The time in which a resource
should obtain a relevant value, and the duration it should
hold that value are modality specific.

An important part of the AMS algorithm is the Thompson
method for solving the MAB problem, which the algorithm
uses in two steps. The MAB problem describes situations
when an agent has to choose between different options, called
arms, with each option providing an unknown reward. One
way of solving the MAB problem is Thompson sampling.
In our application, an arm is a modality described by its
preference, which is also the probability it is successful.
Hence, it can be described with a Bernoulli distribution,
and our MAB is Bernoulli bandit problem [11]. Therefore,
the Thompson sampling algorithm will use the Bernoulli
conjugate, Beta distribution, to draw samples from. The
Beta distributions for each arm is defined by the number



of successful and unsuccessful trials. Finally, Thompson
sampling selects the arm with the largest sampled value.

Besides the conditional dependency between modalities
and the values of resources, an important factor in modality
selection is user preference towards a certain modality. Our
algorithm associates and tracks the number of successful nij

s

and unsuccessful nij
u uses for all pairs of actions Ai and

modalities Mj . We define the preference towards modality
Mj for action Ai as the ratio of the number of successful
uses and the total number of uses of that modality for that
action:

pij =
nij
s

nij
s + nij

u

(1)

Firstly, the proposed AMS algorithm checks if all modali-
ties are capable of executing the chosen action Ai by having
their resources in the required initial state. If that condition
is satisfied, the modality is added to the set of potential
modalities Mp. If no modalities pass this step, the system
stops and informs the user.

Secondly, for each potential modality Mj , the system takes
two samples xij and yij with Beta distributions defined by
the number of times the modality was successfully, nij

s,t, or
unsuccessfully, nij

u,t, used to execute the action Ai at the
time t:

xij ∼ Beta(nij
s,t, n

ij
u,t), (2)

yij ∼ Beta(nij
u,t, n

ij
s,t) (3)

If xij > yij , modality Mj is left in the set of potential modal-
ities Mp, and all its resources are added to the set of relevant
resources Rr. Otherwise, the modality Mj is eliminated from
set Mp. This step is regarded as if the system is choosing
between two arms. If the set of potential modalities Mp is
empty after this step, the system creates random variables
xij and yij again, until at least one modality is selected as
potential. Afterward, all relevant resources Rr are checked
for conflicts.

If multiple modalities Mc = {Mc1 ,Mc2 , ...,McN }, re-
quire the same resource, the algorithm selects the modality
Mj :

j = argmax
j∈{c1,c2,...,cN}

xij (4)

and removes other modalities that are in conflict with the
selected modality Mj from the set of potential modalities
Mp. This conflicts-resolving procedure is equivalent to the
Thompson sampling process for the best arm. Furthermore,
this step is repeated until all the conflicts for resources are
resolved. In the end, modalities that remain in the set Mp

are used.
An example diagram of the AMS algorithm is shown in

Fig. 2. In this example, action A2 is executed, and modalities
M1, M2, and Mj are initially added to the set of potential
modalities. However, resources R1 and Rk are required
by multiple modalities (Fig. 2b). After a possible conflict
resolution, the choice of modalities is M1 and Mj as shown
in Fig. 2c.

TABLE I: Randomly generated connections between modal-
ities and resources for the general system simulations.

modality resources modality resources
m0 r7 m5 r2, r3
m1 r0, r7, r8 m6 r4, r5, r7
m2 r1, r6, r7 m7 r1, r2, r8
m3 r0, r1, r2, r3 m8 r3, r5, r7, r9
m4 r1, r4, r7 m9 r7, r9

III. SIMULATION OF AMS SYSTEMS

To examine the properties of the proposed AMS algorithm,
we tested the system in two different types of simulations.
Firstly, we analyzed a general system with ten modalities and
ten resources (Table I). We generated random connections
between modalities and resources, with a constraint that one
modality can depend on the state of at most four resources.
This constraint was put in place to enable the selection of
multiple modalities simultaneously. Secondly, we simulated
users that interact with the robotic system for supervising
sequential memory exercises (Fig. 1). This system can per-
form two actions with three different modalities and three
different resources (Fig. 4). The first set of experiments was
performed to evaluate the overall performance of the system,
while the second set was used to evaluate our use case.

A. Simulation of the General system

The General system (Table I) was tested in three different
conditions for one action that was executed 500 times.
Moreover, we repeated the simulations ten times, and all
figures in Fig. 3 represent the mean value of all simulations.
Firstly, we tested the system instances where all modalities
have a high success probability (p=0.9). The goal was to
test how different modalities are represented, especially the
modalities that have numerous conflicts. Fig. 3a and 3d
show that all modality preferences converge towards the
high values (0.9). However, some modalities with multiple
conflicts require more time, whereas modality m5 is used
more often than others due to a small number of conflicts.
Secondly, we wanted to test how long it takes for the system
to eliminate one unsuccessful modality m0 (p=0.1) while
others have high success probability (p=0.9). Fig. 3b and
3e show that the unsuccessful modality did not converge to
the value 0.1, because the system learned that this modality
has a low probability of success, and therefore was rarely
chosen. Finally, we wanted to see how the system behaves
when half of the modalities has a high success probability
(p=0.9) and the other half has a low success probability
(p=0.1). This simulation shows how fast the system learns
different success probabilities for multiple modalities. A
similar situation occurred as in the previous condition, and
we can see that unsuccessful modalities are filtered out after
a relatively small number of interactions, and are rarely used
afterward.

B. Simulation of the sequential memory exercise

In the simulation of our use case, two actions are executed:
confirm and assist. The former informs users that they
correctly positioned the last token, while the latter advises



(a) Modality preferences in the simulation of
the General system when all modalities have
success probability p=0.9.

(b) Modality preferences in the simulation
of the General system when all modalities
have success rate p=0.9, except modality m0

(p=0.1).

(c) Modality preferences in the simulation of
the General system when modalities with odd
indexes have success probability p=0.9, and
modalities with even indexes have success rate
p=0.1.

(d) Number of successes in the use of given
modalities in the simulation of the General
system when all modalities have success prob-
ability p=0.9.

(e) Number of successes in the use of given
modalities in the simulation of the General
system when all modalities have success rate
p=0.9, except modality m0 (p=0.1).

(f) Number of successes in the use of given
modalities in the simulation of the General
system when modalities with odd indexes have
success probability p=0.9, and modalities with
even indexes have success probability p=0.1.

Fig. 3: The simulation results for the General system.

users about the correct shape. Both actions can be performed
using three different modalities: speech, screen, and gesture.
The screen requires the visual attention of the user, while
gesture requires that the visual attention is on the robotic
arm and that the board space is free. The speech modality
depends on the occupancy of the speaking floor. The diagram
of the simulated system for the sequential memory exercise
is shown in Fig. 4.

The probability of guessing the i-th shape in sequence
pmi is calculated using the assumption that the probability
of correctly selecting a shape linearly deteriorates as the
shape number increases. We model this assumption with

Fig. 4: The diagram of the system for sequential memory
exercises.

Fig. 5: Sequential memory exercise simulation.

a linear function defined by the initial probability pMinit

and deterioration rate for one step pMstep. However, the
probability of correctly guessing pgi must be higher than
the probability that a randomly selected shape is the correct
one. Therefore, if there are n shapes in the sequence, the
probability pgi is calculated as:

pgi = max(pMinit − (i− 1)pMstep,
1

ns − i+ 1
) (5)

Parameters pMinit and pMstep influence how often the assist
action will be used.

We tested the system with users with different profiles
(Table. II) which did ten exercises. The users that have
success probability for all modalities less than 0.5 were not
considered. This condition was put in place because adapting
to users that do not want or cannot interact with the system
is not possible and is not the goal of the proposed algorithm.
Moreover, users that dislike interacting with the system can
lead to a large number of failed actions, thus significantly
increasing the entire simulation process. Therefore, out of
128 possible user profile we eliminated 16, and in the end,
we simulated the exercise with 112 different users. The goal
was to observe how many exercises it would take for the
values of modality preferences to converge. Results show that
the values change insignificantly after only two exercises.

IV. EXPERIMENTS

The main components of our robotic system are a screen,
a WAM robotic arm, headphones, a microphone, a webcam



TABLE II: The possible values of relevant parameters for
different user profiles.

Variable Possible values
screen success probability 0.1, 0.3, 0.7, 0.9
gesture success probability 0.1, 0.3, 0.7, 0.9
speech success probability 0.1, 0.3, 0.7, 0.9
memory profile (pMinit = 0.6, pMstep = 0.05),

(pMinit = 0.9, pMstep = 0.05)

and a Kinect camera (Fig. 1). The screen shows shapes and
textual information, while the WAM robotic arm can perform
various gestures. The headphones can generate utterances,
while the microphone is used for voice recognition. Above
the table is a Kinect camera with dual use. First, it provides
RGB images used for tracking the positions of the tokens,
and secondly, it is used for detecting if the user’s hand is
intruding the board space. The webcam is positioned on the
opposite side of the table, directed towards the user’s face.
The images that the webcam provides are used to detect the
user’s head orientation, needed for detecting visual attention
of the user. Moreover, those images are used to detect if the
user’s mouth is open. If it is open, then the speaking floor
resource should be marked as occupied by the user.

The exercise1 starts by showing shapes on the screen
and speaking their names in a specific order. The goal of
the exercise is to arrange the shapes on the board in the
initially shown order in the shortest time. The user is offered
the possibility to ask for assistance; however, this action
increases the overall exercise time by 15 s. This duration
of time addition was determined by our initial test, as the
maximum before a user makes a guess. To motivate users to
ask for assistance when they are not sure what is the correct
shape, they are penalized with an additional 30 s if they
make a mistake. In case the user doubts what the system
tried to do, he or she can verbally ask the system to repeat
the action. In this case, the system considers the action, and
all used modalities, as unsuccessful.

As in the simulation, the developed system for sequential
memory exercises can execute two actions: confirm and
assist, and it has three modalities and three resources (Fig.
4). Unoccupied board space is an initial condition for the
gesture. In case of the speech, the system demands that the
speaking floor is initially free since we do not want the
robot to speak over the users. Both the gesture and speech
modalities have predefined time periods that need to elapse
for them to be successful. Those periods represent the time
it takes for the modality to successfully fulfill the goal of
the action. In other words, they represent the time a relevant
resource needs to have the desired values so that the system
can successfully finish the action. In case of the speech,
this modality is successful if the speaking floor remains
unoccupied by the user until it finishes speaking the required
information. The gesture modality is successful if the board
space is unoccupied, and the user’s attention is directed
towards the robotic arm so that its gestures are observed.

1A demonstration of an exercise can be seen at: http://www.iri.
upc.edu/groups/perception/AMSAlgorithm.

The screen modality depends on the visual attention of the
user, which does not need to initially have a desired value.
However, it has a predefined time period in which it needs
to obtain its relevant resource (visual attention should be on
the screen). Hence, if the user never looks at the screen, this
modality is considered as a failure.

A. Participants

A total of 12 participants, ages between 22 and 33
(M=26.92, SD=3.94), including students of different degree
levels, and the administrative staff were recruited for the
experiments. The experiments were within-subject with par-
ticipants randomly divided into two groups. The first group
initially performed the first five exercises with the AMS
system followed by five exercises with the baseline system,
while the other group performed in the opposite order. In
the baseline exercises, the system used all modalities for all
actions. The number of exercises was chosen because simu-
lations showed that the AMS system learns user preferences
after a few exercises. Moreover, it enables us to finish the
experiments in a reasonable amount of time for each user (30
min), which is an important factor since we do not want to
make our participants tired. These experiments were intended
to be a ”proof of concept” before testing the system in a
daycare facility with patients with mild dementia.

Before doing the exercise, users were informed about the
rules of the exercise, signed a consent form and they did an
initial exercise to become familiar with the system. During
the initial exercise, we showed them how different modalities
work. Special focus was put on the gesture for the correct
action, since it may not be intuitive for all users. Finally, they
were asked to fill out a questionnaire where they rated the
interaction with the system after the fifth and after the last
exercise. Additionally, we compared the performance in the
experiment regarding the number of errors and the duration
of exercises. At the end of the experiment, the participants
were offered refreshments for their involvement.

B. Experimental results

The main part of the questionnaires are the ten questions
with a seven-point Likert-scale (1 - strongly disagree, 7 -
strongly agree). The first five questions were about the first
five exercise, while the other five about the last five exercises.
The questions were formulated in the same way for both
parts and all participants filled the same questionnaire. The
participants did not know if they were interacting with the
AMS system or the baseline system, they only knew that
the way the system interacts with them is different in the
first five exercises in comparison to the following five. The
results of the questionnaires are presented in Table III. The
difference in responses between the AMS and the baseline
system was insignificant, with the AMS being rated slightly
better in most of the questions. This fact indicates that it is
possible to not use some of the modalities and hence simplify
the complexity of the system. The obtained results show that
all users for all actions have the highest preference towards
speech, followed by the screen and, in the last place the

http://www.iri.upc.edu/groups/perception/AMSAlgorithm
http://www.iri.upc.edu/groups/perception/AMSAlgorithm


TABLE III: The mean values of answers in the questionnaire with a seven-point Likert-scale.

Question AMS Baseline
I liked interacting with the robotic system. 4.92 4.67
The behavior of the robotic system distracted me. 2.33 2.66
I felt comfortable interacting with the robotic system. 4.50 4.58
The feedback and/or assistance of the robotic system was provided in a useful way for doing the exercise. 4.92 5.16
I preferred interacting with the robotic system in the fifth rather than in the first exercise. 4.08 3.75

gesture. Overall, the least preferred modality was the robot
gesture executing the ”correct” action.

Since the total number of errors differs between users, we
calculated the ratio between the total number of errors for
the AMS and the baseline and obtained mean values for the
whole set of users M=0.85, SD=0.38. Because of the high
deviation, it is not possible to make a statistically significant
conclusion that users make fewer errors when interacting
with the AMS system, but the results show a trend in this
direction that we plan to further investigate in our future
work. Additionally, for each user, we computed the ratio
between the exercise completion times using the AMS and
baseline systems. The obtained values (M=0.93, SD=0.17)
show that the systems had similar performance and that the
users were able to finish the exercise slightly faster when
interacting with the AMS system.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose the Adaptive Modality Selection
algorithm for human-robot interaction and its application to
cognitive training. The algorithm enables robotic systems to
use only modalities that satisfy certain conditions, that we de-
scribed as resource states. Through interaction, the algorithm
learns the user’s preferred modalities for executing actions.
To validate the AMS system, we simulated its behavior in a
general system, with random connections between modalities
and resources. The results show the system can successfully
adapt to users by learning their modality preferences.

Afterward, we simulated our use case, a sequential mem-
ory exercise performed by a carefully designed repertoire of
users. The simulated results indicated that a small number
of exercise performances would be enough for the system
to learn the preferences of the users. The experimental
results suggest that it is possible to reduce the number
of used modalities without compromising the interaction.
Furthermore, we saw a trend for users to perform better
when interacting with the AMS system, which, although
promising, needs to be validated with a thorough experimen-
tal design.

Now that we have a reasonably working prototype, we
plan to evaluate it on patients with mild cognitive impairment
in a daycare facility with which we collaborate in the
SOCRATES project. Moreover, we would like to test the
system with users with hearing and vision difficulties. Addi-
tionally, we plan to implement the AMS algorithm on robotic
systems for other forms of cognitive training. Therefore, we
will test the AMS algorithm in different scenarios with a
higher number of actions and a diverse set of modalities.
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