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Shape Basis Interpretation for Monocular
Deformable 3-D Reconstruction

Antonio Agudo and Francesc Moreno-Noguer

Abstract—In this paper, we propose a novel interpretable shape model to encode object non-rigidity. We first use the initial frames of a
monocular video to recover a rest shape, used later to compute a dissimilarity measure based on a distance matrix measurement.
Spectral analysis is then applied to this matrix to obtain a reduced shape basis, that in contrast to existing approaches, can be
physically interpreted. In turn, these pre-computed shape bases are used to linearly span the deformation of a wide variety of objects.
We introduce the low-rank basis into a sequential approach to recover both camera motion and non-rigid shape from the monocular
video, by simply optimizing the weights of the linear combination using bundle adjustment. Since the number of parameters to optimize
per frame is relatively small, specially when physical priors are considered, our approach is fast and can potentially run in real time.
Validation is done in a wide variety of real-world objects, undergoing both inextensible and extensible deformations. Our approach
achieves remarkable robustness to artifacts such as noisy and missing measurements and shows an improved performance to

competing methods.

Index Terms—Deformable Shape Analysis, Dynamic Modeling, Structure from Motion, Low-Rank Representation, Optimization.

1 INTRODUCTION

IGITAL images and videos are nowadays present in
Deveryone’s life and they can be accessed through the
Internet, mainly thanks to the rapid development of record-
ing devices. In this context, many efforts have been done
in developing systems able to perceive in three dimensions.
However, building algorithms that can emulate the human
3D perception has proven to be a much harder task than
initially anticipated. While some degree of success has been
achieved when the object observed by the camera is rigid,
inferring the 3D geometry of the vivid moving real world
is still in its infancy. In these cases, the problem is still
open, since including deformation priors is substantially
more difficult than using simple rigidity, and retrieving
deformable shape is very weakly constrained compared to
retrieving rigid structure. This problem represents an active
research area, and can be exploited in many application do-
mains including multimedia, human-computer interaction,
computer graphics, augmented reality and medical imaging,
to name just a few.

The joint estimation of non-rigid 3D shape and pose
parameters normally results in a non-convex optimization
problem, and the orthogonality constraints on the pose
parameters make the problem even more complicated. This
problem is known as Non-Rigid Structure from Motion
(NRSfM), and in the last decade many efforts have been
made [?], [?], [?], [?], [?], [?], [?] which formulate a number
of assumptions and exploit deformation priors that allow
to retrieve the time-varying 3D configuration of deformable
objects. The main difficulty to resolve the problem is due
to the fact that many different 3D configurations can pro-
duce similar image observations, and hence the reprojection
constraints are not sufficient to achieve a single solution.
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To solve this, most works use additional priors about the
deformation of the object and the motion of the camera [?],
[?1, [?], I?], [?], but only recently, the problem has been
addressed in a sequential manner [?], [?], [?], [?], [?]. In
this case, only the measurements until the current frame are
considered. This represents an even more complex scenario
compared to the batch case because of the intrinsic strong
ill-posedness of the problem. However, this scenario is
paramount for bringing such algorithms to real situations
and recovering live motion (such as in operating rooms,
where an on-line estimation is mandatory to achieve an
interaction between the 3D virtual model and the medical
team) that require fast and potentially real-time solutions at
frame rate. The problem becomes even more challenging
when neither a deformation model nor 3D training data
can be considered. In fact, obtaining adequate and large set
of deformable training data could become a complex and
arduous task in these scenarios.

In this work, we introduce a new shape basis interpre-
tation to encode the deformation of time-varying shapes.
To achieve this, we only need a shape at rest estimation of
the non-rigid object, which can be obtained from an initial
exploration by using the first few images of the monocular
video. From this 3D configuration, we compute a matrix
encoding the distances between every pair of points of the
structure, with the purpose of obtaining a reduced shape
basis through spectral decomposition. We present different
alternatives that exploit the intrinsic information of the
3D shape to model the distance matrix. Once the reduced
shape basis is estimated, we propose a novel method to
physically interpret it in the 3D space. Later, it will be
used to encompass the time-varying configuration of the
object in a low-rank shape subspace in which the weight
coefficients need to be recovered. Compared to competing
algorithms, our method obtains the shape basis at a lower
computational cost, thanks to the eigenvalue problem we
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Fig. 1. 3D Reconstruction of non-rigid objects using our interpretable shape model. We apply our method to retrieve different types of shapes,
deformations, and materials; such as a flag waving in the wind, a smiling face, a sheet of paper under bending or a beating heart. Top: A specific
image of the 2D input monocular video. Bottom: 3D reconstruction of the corresponding image. The reader is referred to the experimental section

for more details. Best viewed in color.

solve is fairly simple. Moreover, our approach is adequate
to encode both in- and extensible continuous deformations,
can be applied on planar and non-planar shapes, and on a
wide variety of objects and materials, without requiring any
3D training data at all (some examples are shown in Fig. ??).
As a limitation, our shape basis is not available to encode
articulated motion.

Observe that although our shape basis is computed con-
sidering only the shape at rest, it has proven experimentally
to be able to encode subsequent shape deformations with-
out the need for additional 3D pre-learned data. It is also
relevant that the proposed shape basis is able to describe
different types of future deformations for the same rest
shape, by fitting the coefficients of the linear shape subspace.

In order to obtain the 3D reconstruction from 2D motion,
we incorporate the low-rank constraint into an on-line Bun-
dle Adjustment (BA) framework. Our method is fast and
may run in real time since the number of parameters per
frame to optimize (i.e., the time-varying shape coefficients
and the camera parameters) is relatively small. The com-
plexity of our sequential approach is linear with the number
of points, so it can handle a wide variety of scenarios,
going from sparse to semi-dense or dense objects. Further,
our method is robust to corrupted measurements such as
missing data and noise, as it is shown in the experimental
section.

The part of this work regarding the use of an inter-
pretable shape model based on distance matrices was al-
ready presented in [?]. Here, we extend our method by
proposing different alternatives to compute the distance
matrix and include more theoretical discussions and com-
parisons with respect to competing techniques. Additional
experimental results to demonstrate the wide range of sce-
narios where our method can be applicable are included
in this version. Firstly, we present experimental results to
show the suitability of our shape basis to code real-world
deformations in 3D. Finally, we validate our approach to
recover the 3D configuration of deformable objects from 2D
data.

The remainder of this paper is organized as follows.
Section II discusses the related work in this field and em-
phasizes our contributions to the shape basis interpretation
and computation that we use to retrieve the non-rigid 3D
reconstruction from a monocular video in a sequential man-
ner. In Section III we introduce the notations and present
different ways to model a distance matrix. After that, in
Section IV we present the novel deformation model based
on the proposed shape basis and its physical interpretation.
In Section V we provide both qualitative and quantitative
evaluation with respect to competing techniques and show
the ability to code 3D real-world deformations by using
different dissimilarity measures. This is followed in Sec-
tion VI by a description of a sequential algorithm we use to
jointly recover motion and time-varying shape from image
streams. In Section VII we present the experimental results
and provide a comparison with respect to state-of-the-art
techniques. Conclusions are described in Section VIII.

2 RELATED WORK

Reconstructing a time-varying 3D shape while estimating
camera pose from solely the observation of 2D point tra-
jectories is a severely under-constrained problem that re-
quires additional prior knowledge. The most popular prior
consists of constraining the surface to lie in a low-rank
shape [?], [?], [?], [?], [?], trajectory [?], [?], [?], shape-
trajectory [?], [?] or force [?] model. Firstly, low-rank shape
models were proposed to encode the time-varying shape
by means of a linear combination of rigid deformation
modes. These models, combined with the orthonormality
constraints on the camera motion, have proven successful in
the 3D reconstruction of many real-world non-rigid objects.
Both unknown shape basis and weight coefficients were
estimated along with camera parameters by factorization-
based algorithms [?], [?], or adding additional priors such
as temporal and spatial smoothness by means of optimiza-
tion techniques [?], [?], [?]. Later, the low-rank constraint
was applied to the temporal evolution of each 3D point
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instead of applying it to the spatial configuration of the
shape basis [?]. To this end, each 3D point evolution was
independently coded by means of a linear combination of
trajectory vectors based on the Discrete Cosine Transform
(DCT). The problem was even further simplified in [?]
where additional static points were used to independently
solve for the camera motion, resulting finally in a linear
problem. The compact DCT representation was also used
to approximate the time-evolving shape basis coefficients in
the shape-trajectory model proposed in [?], [?]. In this case,
temporal smoothness was implicitly imposed on each 3D
point trajectory. More recently, a low-rank force subspace
was proposed in [?] to give a physical interpretation of
previous subspaces, since they were linked with a physical
model.

Many efforts have been made to recover the shape basis
on the fly [?], [?], [?], [?], but the problem quickly becomes
under-constrained when complex deformations, requiring
larger rank values, need to be acquired. In general, it is
not possible to assume that small rank values can represent
the variation of real-world objects. This ambiguity can be
reduced using a pre-defined basis in terms of shape or trajec-
tory which acts as a representative basis while reducing the
amount of parameters to be learned. For pre-defined shape
basis, dimensionality reduction techniques such as Principal
Component Analysis (PCA) [?], [?], [?], have been proposed
in order to reduce the problem complexity and they assume
a relatively large set of training data. Similarly, for 3D face
reconstruction, an active appearance model could be used
to obtain a 3D shape basis from trained 2D shapes [?], [?].
However, the accuracy of these techniques relies on the
appropriateness of the learning data, but this information
is not always available in advance, requiring alternative
methods to obtain pre-defined bases. Modal Analysis (MA)
was also presented to get a physics-based modal family of a
known object [?], or of a rest shape which can be estimated
from an initial exploration [?]. While these methods do not
require training data, they rely on physical deformation
models that have to be defined a priori. Other dimension-
ality reduction techniques include 3D warps [?] or free
form deformation models [?]. Finally, since the trajectory
model needs the full temporal sequence to obtain the pre-
defined trajectory basis [?], this method cannot be applied
to sequential estimation and we discard this subspace.

On the other hand, invariant transformations for
isometric deformations were proposed applying Multi-
Dimensional Scaling (MDS) on distance matrices over a
known template [?], [?], [?], [?] for 3D shape recognition
purposes. In this case, a new configuration is obtained en-
forcing the point-wise euclidean distances by means of the
original point-wise geodesic ones for both 2D and 3D. Sim-
ilar formulations were presented by [?] in order to encode
quasi-isometric deformations for 3D face recognition. The
alternative group of methods known as template-based [?],
[?1, [?], [?], [?] infers a deformed 3D surface from its image
2D projection and a known reference 3D shape. In [?], [?]
the unknown surface was modeled as a linear combination
of rigid deformation modes learned in advance from non-
rigid 3D training data. The need of training data was circum-
vented in [?] by introducing Laplacian meshes. In order to
avoid inherent ambiguities, in-extensibility constraints [?],
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[?1, [?], [?] have been extensively used in the literature
to perform non-rigid reconstruction but only for isometric
deformations, thus limiting their applicability.

Despite all this tremendous advance, none of the previ-
ous approaches to NRSfM process the monocular sequence
in a sequential manner. While sequential real-time SfM [?],
[?], [?] solutions exist for rigid scenes, sequential estima-
tion of non-rigid shape from a single camera remains a
challenging problem. This is mainly due to the fact that
most techniques remain batch and process all frames in the
video at once, after video capture. Recently, this has been
addressed by several sequential formulations [?], [?], [?], [?]
that process the monocular video frame by frame as the data
arrives. However, these methods were only demonstrated
for a small number of landmarks [?], [?], [?], or relied on a
known deformation model [?]. It is worth pointing out that
sequential NRSfM methods are related to template-based
ones since a 3D initial exploration is required for initial-
ization. However, the estimated rest shape is normally less
accurate than a 3D template. Furthermore, most template-
based approaches do not compute the camera motion since
they assume that the deformation modes are aligned with
the camera referential or yield a solution shape for which
the pose is unknown.

In this paper, we exploit the available information from
an initial exploration of the dynamic shape acquired by
a monocular camera, in order to estimate a pre-defined
shape basis that we will use to model its deformation.
Our method employs this exploration to recover a 3D rest
shape that is then exploited to obtain a dissimilarity measure
based on a representation of the shape. We present different
alternatives to code the distance matrix employed to obtain
a reduced shape basis from spectral analysis. Once the
shape basis is estimated, it will be interpreted and used
to code both in- and elastic 3D deformations. To show the
effectiveness of our shape basis, first of all, we provide
experimental validation by fitting 3D real objects. After that,
we provide experimental validation to reconstruct them
from 2D trajectories. Even though we also incorporate a
shape at rest estimation in our formulation, in contrast to
MA [?] and PCA-based formulations [?], [?], neither a defor-
mation model nor non-rigid 3D training data are required
in our case. Our model may be seen as a simplification
of the standard MA, that exploits the geometric properties
without assuming extra prior information to predict future
deformations of the objects. This yields a reduction of the
computational complexity while still being valid for a wide
variety of materials and objects.

3 PRELIMINARIES AND DISTANCE MATRICES

Before proceeding and describing the problem of computing
distance matrices, we define some notations about a 3D
shape configuration.

3.1 Preliminaries

Let us define a 3D rest configuration of a deformable ob-
ject made of p 3D points by means of the matrix S =
[51,82,...,5;,...,5p], where the columns contain the 3D
locations for every single point 5; € R3. The object is
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also represented through a triangular mesh, where every
vertex corresponds to a 3D object point, and the list of
vertexes is defined as S := {s; € R? };’:1, with the index
set of S as N, := {1,...,p}. We also introduce edges,
that represent line segments connecting two different ver-
texes of S, and can be expressed by a tuple of indexes
(4,h), 4, h € Np,j # h. Let £ C N, x N, be the list of
edges with £ := {(j, h)}l—; and n the number of edges.
Eventually, we compute the m-triangular mesh by means
of a Delaunay’s tessellation [?], where the list of triangles is
represented as T C N, x N, x N, with T := {(j, h, )+ } 724
and j,h,l € N,,j # h # 1 # j. In the general case,
Delaunay triangulation is normally computed in the last
frame of the initial frames we use for initialization. For the
dense case, its computation could become trivial, since a
reference frame is required to compute optical flow, where
a regular grid is known as every pixel correspond to a
nodal point. Moreover, it is worth noting that we could take
advantage of having an estimation of the 3D rest shape and
applying alternative connectivity algorithms [?]. Once the
triangulation 7 is available, we obtain the set of edges £.
For later computations, we also define a path between two
generic points §; and sy, as the sequence ©(j, ) = {s;}/_;,
following the piecewise non-directed edges denoted by the
set £ that connect the points j and A in the set S.

3.2 Computing Distance Matrix

We now show how to exploit an initial shape configuration
S —denoted as the shape at rest- in order to obtain a
symmetric p X p distance matrix D. To show the generality
of our approach, we present different alternatives to encode
the inherent geometric properties of a 3D shape and their

corresponding distance matrices.

Euclidean Distance Matrix: We first define the Euclidean
distance matrix D that includes the Euclidean distances
between pairs of points on S as:

Dy = [b1] +1,b" — QSTSF © (1,1,

- Ip} (D
where b = 3°[S® S]" isa p x 1 vector. 1,, and I,, indicate
a p x 1 vector of ones and a p x p identity matrix, respec-
tively. ® represents the Hadamard product, i.e., element-
wise product, and 3 indicates a element-wise square root.
It is worth pointing that the second product lets us to set
a null diagonal, avoiding numerical errors. This matrix is
the same as a geodesic distance matrix for perfectly planar
shapes, and represents a good approximation for quasi-
planar objects (see Fig. 2?).

Manhattan Distance Matrix: We next define the generalized
Manhattan distance matrix D for 3D irregular domains,
that is made of Euclidean distances between pairs of points
following the path of minimal cost from j to h by means of
the Dijkstra’s shortest path:

D = DX Y24, (G, h), )
with:
p—1
dn (5, h) = min " de(5,5 + 1), €)

j=1

4
de(3,10) = 1.41
dn(3,10) = 1.53
d;1(3,10) = 2.00
dy»(3,10) = 1.00
de(3,10) = 1.00

de(3,10) = 1.73
dn(3,10) = 1.84
d1(3,10) = 3.00
dy2(3,10) = 1.50
de(3,10) = 1.00

Fig. 2. Distance comparison. We display a unit square shape by
means of 12 points and a 12-triangle regular mesh, by considering both
planar (red shape) and non-planar (green shape) cases. In both cases,
we represent Euclidean de (j, h), Manhattan d,. (4, k), L1 d;1 (4, k), chi-
squared d,2(j, h) and cosine dc(j, h) distances between the points
(4,h). To establish a comparison, we compute the distance between
the points 3 and 10, being the geodesic distance 1.41 in both cases
(see red line). For the planar case, this distance is well approximated by
Euclidean distance. Manhattan distance can provide good results, but
this solution depends on the nodal connectivity. For non-planar objects,
this effect can be minimized when the number of points is high enough
(in practice, one hundred of them). The rest of analyzed distances show
an intermediate level of estimation, and they can become useful in real
applications as we show later. Best viewed in color.

where D represents the distance assembly operator, i.e.,
this matrix is assembled from distances between points
dm(j,h). As the matrix is symmetric with null diagonal,
only p(p —1)/2 terms need to be considered. The estimation
of this matrix depends on the nodal connectivity, even
though this effect can be reduced when the number of
points is not very reduced. In this case, the matrix is well
suited when a small neighborhood —where the distances
between points are small- is considered, such as into dense
structures.

Geodesic Distance Matrix: We also define the geodesic
distance matrix D¢ over pairs of points on S. To this end,
we use the robust and efficient approach based on heat flow,
as was proposed by [?]. For further details, we refer the
reader to this paper.

L1 Distance Matrix: A distance matrix can also be modeled
by L1 distances. For this purpose, we represent it by Dy, =
[di1,...,dyj,...,dp], where the subindex ,; represents the
J-th column of a matrix and is computed for this case as:

dy = (8" - [Le8]] ] - @)

i=1

where ® denotes the Kronecker product.

Chi-squared Distance Matrix: In this case, the chi-squared
distance between vectors (3D points) is used to model the
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distance matrix D, 2. Again, the j-th column of this matrix
is computed as:

d*j = i [[1;0 = ng] . ST} © [[1;0 © §JT] B ST}

[1,®8]]+ST
where the division operator defines an element-wise oper-
ation. This matrix represents an intermediate level towards
to previous matrices.

,» )

*7

Cosine Distance Matrix: This distance is defined as the
cosine of the included angle between two points, treated
as vectors. The global matrix D¢ can be obtained as:

sT 1"

bz @1,

ST
1
bz ®1]

Dc=1,1] — , (6)

where the division operator defines again an element-wise
operation. This matrix uses a similar information to methods
that impose conformal constraints to penalize changes in
angles [?].

Laplace-Beltrami Matrix: We also define the discrete
Laplace-Beltrami matrix Dy, g that can be constructed from
the well-known cotangent edge weight [?], on a Euclidean
triangular surface. We refer the reader to this paper for
further details.

Some examples of previous distances are showed in
Fig. ?2. In this work, we will model the distance matrix D
by a single matrix in {Dg,Dy;,Dg,Dri,D,2,D¢e,Drp}.
Note that it could also be modeled as a combination of these
matrices. However, we discard this alternative as it is more
computationally demanding.

4 PROPOSED DEFORMATION MODEL

Euclidean and geodesic distance constraints were presented
in [?] to recover isometric transformations on non-rigid
objects over time for monocular 3D reconstruction purposes.
Even though these constraints are very restrictive, they have
proven to be a powerful prior solving the inherent ambigui-
ties of both template-based [?], [?], [?] and template-free [?],
[?] approaches. Despite their popularity, these constraints
cannot be applied to encode elastic deformations, such
as stretching and shearing. To solve this, we depart from
the traditional shape-basis-based techniques and embrace a
different formulation to obtain a shape basis family with a
physical interpretation, without requiring neither training
data nor a deformation model. We just exploit some types
of dissimilarity measures based on representations of the 3D
rest shape (see section ??) to compute a shape basis that is
valid to encode both in- and extensible deformations.

4.1 Shape Basis Computation

First of all, we describe how the non-rigid shape basis is
computed. Following classical MDS [?], [?], a normalization
and double centering is enforced to the distance matrix D
through a centering matrix C = I, — %11,1;. We then obtain

a spectral decomposition of D = —3CDC by sorting out
the following eigenvalue problem:
D¢j = w?¢j7 )

Side views

Fig. 3. Transformation matrix ®. We display an arbitrary mode shape
in red, and the corresponding shape at rest S in black. Before adding
this mode shape over the rest shape (top graph), we have to apply
a rigid transformation ® to interpret the proposed mode shape as
3D displacements over S in the global axis system. To perform a fair
comparison, we also include two side views (defined by the planes II;
and Ilz). The mode shape is correctly interpreted as displacement in
the bottom graph, as it can be observed in the plane 112, after applying
the rigid transformation.

where (1);,w?), j € N, are the tuple of p x 1 eigenvec-
tors and eigenvalues of D, respectively. The eigenvectors
are normalized to enforce the orthonormality conditions
Y, D), = whp e, and ), = ;) with 5, the
Kronecker’s delta, such that |[1,[|2 = 1.

It is worth noting that MDS is normally applied to a
distance matrix to recover new configurations where point-
wise distances remain almost constant [?], [?], i.e., it is em-
ployed to encode non-extensible deformations. In contrast,
in this work, we just use the normalization of previous
approaches before computing the eigenvectors, obtaining a
reduced shape basis (p-order vectors). As we show in next
subsection, we propose a physical interpretation of this basis
to implicitly obtain a full shape basis (3p-order vectors) that
is suitable to code both in- and extensible deformations.

4.2 Shape Basis Interpretation

Coding the deformation of an object by means of a lin-
ear combination of shapes is a common practice in many
fields such as computer graphics, animation and computer
vision [?], [?], [?], [?], [?]. While most techniques use a full
shape basis, we propose using the reduced shape basis,
i.e., the eigenvectors computed in the previous subsection.
To this end, the dynamic 3D displacements U over a rest
shape are represented by a physically interpretable linear
combination of r reduced modes:

U = ®AY, )

where ® € R3*3 is a transformation matrix to align the
shape basis with the rest shape. ¥ € R"*? includes the r
reduced mode shapes associated to a p-points object S as:

z@ PR b1y
r_ 'l,b.g _ ¢:21 711:22 1/):21) )
1#: 1/);1 ¢;2 wlrp
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Finally, A € R3*" is a deformation transformation matrix
that includes the time-varying coefficients in order to inter-
pret each reduced mode shape as:

7; Yal Va2 Yar
A= Vo | = (e 62 V8r | (10)
T Yr1 V12 Yrr

where three different mode shapes —in a 3D space- per
eigenvector in the reduced basis can be obtained. Recall that
each « component is a r X 1 vector that corresponds to a
different interpretation of the reduced basis.

As the principal directions in which our data varies are
not usually aligned with the global axis system (see Fig. ??),
the computed eigenvectors have to be transformed before
applying them to the rest shape. To do this, we first obtain a
3 X 3 covariance matrix E as:

-

==l o] )5 o))

where s, is the mean values vector of all the data points in

the rest shape. Once the covariance matrix is computed, we

obtain the transformation matrix ® by stacking the three

eigenvectors of = together as columns. The properties of

the orthogonal matrices, i.e., ® = <I>_T, will be considered
to obtain ®.

It is worth mentioning that the shape basis was also
coded by p-dimensional vectors in [?], where a 3D-implicit
low-rank shape model was proposed. However, our ap-
proach just employs a distance matrix to obtain the pre-
defined reduced shape basis, using exactly the same ini-
tialization (a rest shape estimation), i.e., it is able to make
the most of the available information. This means that our
approach only needs to estimate the time-varying coeffi-
cients, in contrast to [?] that has to recover the full vectors.
This yields a simplification of the problem (from trilinear
to bilinear) by reducing the number of parameters to be
estimated.

(1D

4.3 Spectral Analysis of the Shape Basis

In order to analyze the shape basis, i.e.,, the computed
eigenvectors of D, we arrange them in a frequency spec-
trum from higher to lower frequency. As it can be seen in
Fig. ?2(left), the eigenvectors with higher frequency dom-
inate the global and smooth deformation since the most
of deformation energy is included in these eigenvectors.
This means that the largest eigenvalues of D contribute the
most to the variance in deformation, justifying our low-rank
shape representation by means of the first eigenvectors (see
Fig. ??(right)). Consequently, in practice, solving the full
eigenvalue problem in Eq. (??) is not required, and only
the first r eigenvectors of D need to be obtained, leading
to a lower computational cost. The three interpretations
of some mode shapes are displayed in Fig. ??, for a rest
shape corresponding to a cylinder with two holes. It is
worth noting that while the competing methods need three
eigenvectors to produce three mode shapes, thanks to our
physical interpretation, we only need one.

4.4 Including Physical Priors

An interesting feature of our model is that we can associate
the entries of the deformation transformation matrix A

=muD, 100 o —— o
140 =auD, 90 ,“ o
-

2 -::‘. ==aD,
“31s mmuD

@Cesunnqunsusnannnsy ok "

o 50 100 1 200 250 0 20 40 60 80 100 120 140 160

Mode Shape Number [1-272] Frequency [rad/s]

Fig. 4. Left: We represent the frequency-major spectrum for a synthetic
cylinder with two holes, by considering Euclidean D and Manhattan
D), distances. Since the object consists of 272 points, we obtain a
reduced shape basis of 272 eigenvectors. Right: Cumulative histogram
of eigenvalues w;. For this particular object, the 93.38% and the 92.28%
of the variance is modeled by considering 15 eigenvectors of Dy and
D)y, respectively.

with physical behaviors. Without loss of generality, physical
knowledge about the deformation of an object can be easily
included to pre-define some of the entries in A. Note that
this observation is a direct consequence of the deformations
we can handle in real applications. For instance, when
we handle deformable objects that cannot follow bending
deformations —like an elastic hair ribbon with planar forces—
the entries in v, may be directly set to zero, i.e., Az, = 0.
On the other hand, if the object cannot follow stretching
deformations -like a sheet of paper or a flag waving in
the wind-, the entries in 7, and 3 should be directly set
to zero (i.e,, A1. = Ao, = 0), because the object surface
cannot undergo in-plane deformations. Every shape inter-
pretation in our model could be considered as an example
of deformation that can be achieved by setting to zero the
rest of entries in A (see some examples in Fig. ??). When no
physical knowledge is known, all entries in A can be consid-
ered. However, we have observed that while the high-order
bending mode shapes can code better shape deformation
since local components are better approximated, high-order
stretching modes are very restrictive and they could include
artifacts and unrealistic shape deformations.

5 SHAPE-BASIS TECHNIQUES COMPARISON

In this section, we present a qualitative comparison against
other techniques in the literature that make use of shape
bases and show the ability of our proposed method to code
real deformations in several types of shapes.

We first consider the type of data these approaches
require to code the shape basis. Similar to MA-based tech-
niques [?], [?], [?], we only require to estimate the resting
shape rather than use deformable 3D training data like
PCA-based methods [?], [?], [?]. As a positive point, our
approach reduces the amount of physical prior knowledge
since it does not need to know a deformation model a priori.
In previous literature [?], [?], [?], the deformation models
are normally used to compute physics-based matrices (such
as stiffness and mass) where some material properties are
known in advance, as it is the case of the Poisson’s ratio.

On the other hand, another relevant point is to analyze
the efficiency in terms of computational complexity. While
our approach solves a p-order eigenvalue problem, a 3p-
order is required in PCA or MA. This means the memory re-
quirements are much smaller in our approach, an important
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Number of mode shape

Interpretations

Fig. 5. Mode-shape interpretation. We display eight mode shapes of the proposed reduced shape basis Y using Euclidean distances over a
cylinder with two holes that we consider as the rest shape (black mesh). As a result to our physical interpretation, we use each eigenvector to obtain
three different interpreted 3D displacements (coded by the same color). Every column corresponds to an eigenvector with different frequency, and
every row, to its specific interpretation: v, v, and .., respectively. For visualization purposes, we use a constant and arbitrary positive weight
by adding the corresponding mode shape to the rest shape. Recall that the effect of subtracting could be obtained using the opposite weight. We
represent the first eight mode shapes in the frequency-major spectrum. The figure is best viewed in color.

advantage for real applications with limited computational
resources [?], and a key factor for dense reconstruction. As a
result of this, our approach also reduces the computational
complexity from f(p,r) = 9p*r to f(p,r) = p*r [?] when
the eigenvalue problem in Eq. (??) is solved. Table ?? pro-
vides a qualitative comparison of our approach with respect
to the most relevant state-of-the-art approaches to obtain
pre-defined shape basis.

5.1 Shape Basis Duality

In the literature, it is standard to represent a shape basis
by means of 3p-order vectors. They can be obtained using
either PCA over a set of training data [?], [?] or exploiting a
physical model over a rest configuration [?], [?]. To perform
a fair comparison, we can compute an equivalent full shape
basis by using our reduced representation as:

U=[Yolj], (12)

where ¥ € R?*"*3" includes the full mode shapes. As a con-
sequence of our physical-interpretation model, we obtain 3r
vectors from r eigenvectors. The 3D displacement can be
then expressed as:

U=&R(¥(), (13)

where ¢ € R3*! contains the 3r weight coefficients of the
linear shape subspace, and R(-) is a permutation operator
to rearrange the entries of a 3p x 1 vector into a 3 X p matrix,
where the j-th column contains the locations of the point j.

5.2 Fitting Real-World Deformations

To empirically show the suitability of our proposed shape
basis to capture real-world deformations, we first use our
technique to fit 3D time-varying objects. Recall that our

Method Quality ‘ Training ‘ Model ‘ Accurate | Complexity ‘

PCA X v v (3p)2r

MA v X v (3p)?r

Ours v v v p2r
TABLE 1

Shape-basis techniques comparison. We present a qualitative
comparison with respect to other methods to obtain a pre-defined
shape basis, by considering learning methods such as PCA [?], [?], [?]
and physics-based ones such as MA [?], [?], [?]. Complexity is
represented by a function f(p, r) with p and » the number of points and
modes, respectively. We indicate strong (v) and weak (X)) qualities.

interpretable model exclusively codes the non-rigid contri-
bution, so any rigid contribution is included in these objects.
To this end, we use three datasets with 3D ground truth
acquired from the motion capture systems!. We denote these
datasets as serviette, carton and face [?]; and they consist of
102 shapes with 63 nodal points, 53 shapes with 81 nodal
points and 100 shapes with 313 nodal points, respectively.

Figure ?? represents the consistent reduction of the 3D
errors as more mode shapes are included in the subspace,
i.e., as more rank r is considered —a few mode shapes reduce
the error by half-. Regarding our dissimilarity measures, we
obtain, on average, the best 3D reconstructions using Eu-
clidean, geodesic, and L1 distances; as well as the Laplace-
Beltrami matrix. An intermediate solution is achieved by
using the Manhattan distance, depending on its solution of
the nodal connectivity.

To establish a fair comparison, we also include MA-
based solutions; and two configurations in order to train

1. This data was acquired with a Vicon motion capture system; and it
contains one sequence of a deforming piece of cloth (serviette data) and
one sequence of a deforming piece of cardboard (carton data). Both are
available from: http://cvlab.epfl.ch/data/dsr.
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Fig. 6. Fitting 3D real-world models: serviette, carton and face datasets. Left: Evolution of the 3D error [%)] as a function of the number of mode
shapes r included in the shape subspace. We represent the solution of our method based on Dg, D, D, D, sz, D;; and D¢ distance
matrices; and the baselines MA [?], PCA-1 and PCA-2 [?]. Right: We represent a specific shape for some cases by using a color code, such that
reddish areas indicate larger errors. For all cases, we display different values of rank » = {10, 40, 120} in the subspace. Best viewed in color.

a PCA-based approach that we denote as PCA-1 and PCA-
2. In both cases, we use the 3D ground truth data to learn
the shape basis, considering the whole data in PCA-1 and
the first 10 samples in PCA-2. It is worth pointing out
that our method consistently outperforms PCA-2, while
performing comparable to MA but without knowing the
deformation model. Particularly, it is relevant our solution
for the face dataset compared to the MA-based solution,
that requires a much smaller number of modes to span
the deformations. PCA-1 shows a well-known result, since
PCA-based methods become very accurate if appropriate
training data are available. However, this requirement may
be hard to obtain in many real scenarios. This limitation is
outperformed by our method, which in contrast just needs a
rest shape estimation without assuming any other prior. In
the same figure, we also display some examples by applying

our dissimilarity measures.

6 SEQUENTIAL NRSFM WITH THE PROPOSED
SHAPE BASIS

We propose using the shape basis resulting from our in-
terpretable algorithm to code the non-rigidity deforming
scene. This section is devoted to describe the details of our
sequential approach to NRSfM, ie., to solve the inverse
problem of estimating the 3D shape from 2D trajectories.

6.1
To simplify the problem, the orthographic camera model is
typically used [?], [?], [?], [?], which is a good approximation
when the object depth is much smaller than the distance

Problem Formulation
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from the camera. Let us assume a 3D shape S/ with p points,
its 2D coordinates onto image frame f can be written as:

f f

f_ |1 U

W= { ;o7

o
1}1 U2 e Up

=R/S'+T/, (@14

where R/ represents a truncated 2 x 3 rotation matrix (i.e.,

R/'R/ T = I5) and T/ stacks p copies of a 2 x 1 translation
vector t/. For the special case of rigid objects, the 3D shape S
remains constant for every frame f, i.e., Uf = 0. However,
our problem consists in incrementally recovering the 3D
reconstruction of a time-varying object S’ along with the
camera pose (R7,t/) from 2D incomplete point trajectories
W/ in a monocular video. The measurement matrix can be
obtained by feature tracking algorithms for the sparse case,
or by means of optical flow for dense correspondences. To
cope with lost tracks due to outliers or occlusions, a binary
vector h/ € {0,1}?*! is also introduced, where the non-
null values indicate the presence of entries in W/. To this

end, we define the matrix M/ = (J:lz @ h'f T . In the next

subsection, we encode the non-rigidity of the structure over
time by incorporating our proposed non-rigid model.

6.2

We now represent the non-rigid shape using a linear sub-
space with pre-defined mode shapes. Recovering the 3D
locations of the time-varying object at every image frame
f boils down to recovering the deformation matrix A in
Eq. (??). Consequently, we only need to retrieve 3r coeffi-
cients for every frame to model the current configuration of
the shape. However, note that we can get off this amount
of coefficients including physical constraints, as it was dis-
cussed in section ??. Finally, we express the projection in
Eq. (??) at frame f as a function of the matrix A as:

Interpreted Deformation Model

w/ =R/ [S + ®A7 r} N (15)

6.3 Non-linear Optimization

We now present our approach to jointly recover the camera
pose and the 3D reconstruction of non-rigid objects. The
outline of the algorithm is shown in Algorithm ??. First of
all, we perform an initial exploration of the object by using
a few frames —a dominant rigid motion is assumed- so as
to initialize and estimate the rest shape S by rigid factoriza-
tion [?], that we will use to obtain a dissimilarity measure.
Note that when the initial frames include strong non-rigid
motion, a bigger camera motion is required for initialization.
In other cases, non-rigid factorization strategies could also
be used for initialization. Once the distance matrix D is
computed as was described in section ??, the matrices ®
and Y are obtained following section ??. Accordingly, our
problem is simplified to the estimation of the shape coeffi-
cients in A’, and the camera parameters (R', t*) per image
frame. This implies the estimation of just a few parameters
per image, which leads to a low computational cost method
that can run in real time. To obtain a sequential estimation
while the data is available —-frame by frame—, we run sparse
bundle adjustment on a sliding temporal window of the last
W frames, as was done in [?], [?], [?]. Particularly, shape
and pose parameters are recovered by minimizing a data

9

Algorithm 1 On-line Bundle Adjustment with a Mode-
Shape-Interpretation model (BA-MSI).

Require: Incomplete 2D trajectories in a monocular video
Ensure: Time-varying 3D shape and camera pose

1: I Initialization
2: LI Rigid Factorization
33 U=0(Eq.??)
4 S = f(W); First few frames
5: LIl Distance Matrix
6: D = {DE7D]\/[aDGaDleDX27D07DLB} (Eqs 7?-
??)
7: LIII Shape Basis Computation
& D= —iCDC
9 Dy, = w?-'zbj, 1<j<r(Eq??)
100 X =[,....9,]"

1: @ = f(S) (Eq.??)

12: II. On-line Estimation

13: U= ®AY (Eq. ??)

14 B={RLt', A" Wi, M}, f-W+1<i<f-1
15: {Rf,tf,Af] = argmin A (W/,M/,S, Y, ®, B)
16: S/ =S+ ®A/Y (Eq. 7?)

term that penalizes deviations of the image measurements
combined with smoothness terms. Considering all observed
points over all frames in the corresgonding temporal win-

dow, our loss function A (Ri7 t?, A") is defined as:

arg min Xf: M & [Wi ~R [S + @Air} - TZ} [&2
RIELAY j_r Yy

f f f
A Y IVialE + A D IVItIE+ A D IVIALR
i=f—W+2 i=f—W+2 i=f—W+2

where || - ||z indicates the Frobenius norm. V* represents
the discrete temporal derivative operator. To guarantee or-
thonormality, we internally parameterize the rotation matri-
ces by means of quaternions R¥(q’).

To prevent ambiguities, first-order temporal smoothness
on both camera and shape parameters are included, which
influence is regulated by A, A;, and A,, respectively. In
practice, these regularization weights are empirically de-
termined and unchanged for all experiments. Recall that
our formulation does not implicitly impose in-extensibility
constraints, allowing us to model both in- and extensible
deformations. We minimize the energy A (Ri, t?, Ai> using
sparse Levenberg-Marquardt. To initialize the model param-

eters for a new incoming frame, we simply apply temporal
smoothness, suchas R = Ri1, ¢t =t~ 1 and A’ = A" L.

7 EXPERIMENTAL RESULTS

We now introduce our experimental evaluation on real
monocular videos, providing both qualitative and quanti-
tative results for a wide variety of objects and shapes, in-
cluding planar and non-planar objects. We also compare our
estimation with respect to state-of-the-art techniques based
on low-rank models, when the 3D ground truth is available.
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Fig. 7. Quantitative evaluation and comparison on flag sequence. Evolution of the 3D error egp as a function of the number of mode shapes
r. We display our solution considering different dissimilarity measures, as well as the sequential baselines BA-FEM [?] and EM-FEM [?]. Leftmost
two columns: Performance for noise-free measurements, and the corresponding zooming view. Rightmost two columns: Performance for noisy

measurements, and the corresponding zooming view.

Fig. 8. Flag sequence. Top: Images #9, #20, #24, #35 and #50 of
a flag waving in a wind. Bottom: 3D reconstruction from a different
viewpoint considering a 40% of missing points. We represent our 3D
estimation with red and blue dots for observed and unobserved points,
respectively. Black circles correspond to the 3D ground truth. We also
show the corresponding 3D reconstruction error esp[%] for each shape.
Best viewed in color.

To achieve this, we report the RMS error across all non-rigid

. c s X 1 ng |IS°=SLoll £
images n ¢, which is defined as: e3p = — > .7/, 15 ~GTlE
g fr 3D = o, Dit1 =

where S’ and St represents the estimated 3D reconstruc-
tion and its 3D ground truth, respectively. Videos of our
experimental validation are provided in the supplemental
material. For all cases, we denote our algorithms as BA-
MSI-AA from bundle adjustment with our mode-shape-
interpretation model, where “AA” codes the distance matrix
employed. For instance, and following section ??, when
Euclidean distances are used our method is denoted as BA-
MSI-DE.

7.1 Motion Capture Data

Firstly, we evaluate our approach on a 594-point sequence
of a flag waving in the wind, provided by [?]. Since this
deformation has little stretching, we can easily apply the
physical constraints discussed in subsection ?? and set to
zero the first two rows of the matrix A. Note that this defor-
mation was also modeled using in-extensibility constraints
in [?] that restates our observation.

We process this video considering the seven dissimilarity
measures that were presented in section ??. In addition, we
also compare our estimation to other sequential methods
based on low-rank models: BA-FEM [?] and EM-FEM [?].
For all cases, we exactly use the same initial exploration
and strategy for initialization, i.e., the rest shape we use is
equal for all evaluated techniques. Furthermore, we include
results adding a zero-mean Gaussian noise to every point
in the object to model noisy measurements, with standard
deviation ¢ = 0.0lmax;{|d.(j,x)|}, where the k-index
corresponds to the centroid of all the points.

Do Method ‘ SBA ‘ PTA ‘ CSF2 ‘ EM-PND‘ KSTA ‘ BA-MSI-DG ‘

[ Flag [[ 710(38) | 1411(2) | 880(2) | 865 | 861(2) | 2.63@0) |
TABLE 2
Quantitative comparison on flag sequence. We provide
esp|%] for shape basis methods SBA [?] and EM-PND [?]; for
the trajectory-based method PTA [?]; and for the
shape-trajectory methods CSF2 [?] and KSTA [?]. For low-rank
methods, we show the basis rank (in brackets) that yielded the
lowest error. Recall that to increase the rank in the subspace,
not always to produce a more accurate solution.

As shown in Fig. ??, our methods produce a consistent
reduction of the error as more mode shapes are consid-
ered. We observe that BA-MSI-DE, BA-MSI-DM and BA-
MSI-DG vyield better results than the rest of dissimilarity
measures for this sequence. Particularly, BA-MSI-DE beats
BA-MSI-DM since the rest shape is quasi-planar and the
points are sparsely distributed, a situation that favors the
modal shapes computed by Euclidean distances. However,
even though BA-MSI-DE and BA-MSI-DG produce similar
solutions, BA-MSI-DG outperforms the rest of the evaluated
dissimilarity measures, showing its superiority to capture
the inherent geometric properties of the 3D shape. BA-MSI-
DC is not included in this experiment since the results are
not accurate enough. Our BA-MSI-DG algorithm consis-
tently outperforms BA-FEM [?] and EM-FEM [?] for both
noise-free and noisy measurements, with the additional
advantage of not requiring a deformation model. Since both
BA-FEM [?] and EM-FEM [?] use the same shape basis,
we attribute this deviation to the optimization framework
which may be also combined with our basis, producing
more accurate solutions.

We now present a quantitative comparison with state-of-
the-art methods that learn the low-rank shape subspace [?],
[?], that use a pre-defined trajectory basis [?]; or the shape-
trajectory alternatives CSF2 [?] and KSTA [?]. The parame-
ters of these methods were set in accordance to their original
papers. A summary of these results are provided in table ??.
It can be seen that our approach consistently outperforms
the other batch baselines [?], [?], [?], [?], even being sequen-
tial. Most of the distance matrices provide more accurate
solutions compared to previous methods.

Finally, we also test our method with respect to random
missing data, annotating the 40% of the points as missing.
Our method is quite robust, with a 3D error of e3p = 2.92%
when 20 shapes are used. In fact, our 3D reconstruction does
not significantly degrade until a breaking point around 80%
of missing data in the measurement matrix. Some instances
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Fig. 9. Run-time comparison. We show run-time to compute the shape
basis for our methods based on Dg, Dy, Dg, D1, D,2, D¢ and
D p maitrices, respectively. We also include MA-based techniques,
such as was used in [?], [?]. For each case, we display the computational
cost to compute the matrices (in green) and to resolve the eigenvalue
problem (in red). Left: Talking face sequence of 56 points. Right: Flag
sequence of 594 points.

of our 3D reconstruction and the corresponding input image
are showed in Fig. ?? for this case.

Regarding computational cost, we analyze the run-time
using non-optimized Matlab code to compute the shape
basis, showing the matrices-computation complexity and
the solution of the eigenvalue problem. For our approaches,
the complexity is defined by the distance matrices, and
for MA-based methods by the stiffness/mass matrices. Fig-
ure ??(right) summarizes these results for two sequences
with 56 and 594 points, respectively. While the computa-
tional complexity to obtain the physical matrices can be
approximated by O(p) (plus the cost of some fixed opera-
tions), where p represents the number of points, solving the
eigenvalue problem has a computational complexity of at
most of O(p?). This means the fixed operations domain the
computational cost whether p is low, but become negligible
for large values of p. Additionally, it can be seen that our
methods have significantly lower computational cost than
MA-based methods to solve the eigenvalue problem. Yet,
while the time for computing the distance matrices is almost
negligible, the computation of the Manhattan matrix can
become more expensive when the number of points in-
creases. This may be reduced using an optimized Dijkstra’s
algorithm in order to compute the corresponding distance
matrix. In any event, comparing to existing approaches and
D)y, the reduction on complexity using the matrices D,
Dg, Dri, D,2, D¢ and Dyp is remarkable. Note that
an optimized implementation to sort out the eigenvalue
problem may result in similar efficiency boosts for every
algorithm, including MA-based algorithms with the corre-
sponding scale factor.

7.2 Real Monocular Video

In this section, we qualitatively evaluate our approach
on several real-world sequences, going from inextensible,
quasi-inextensible and extensible deformations.

We first test a 249-frame real video where a man si-
multaneously talks and moves his head while engaged
in conversation. The sequence has been tracked with an
active appearance model using a 56 point model. With
the purpose of preventing pure-bending deformations, we
use our BA-MSI-DM method with physical constraints.
Since this scenario uses few points, similar results could
be obtained by using BA-MSI-DE. Figure ?? shows the
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Fig. 10. Talking face sequence. Top: Images #51, #70, #142, and #170
of a smiling face with reconstructed mesh. Bottom: Original viewpoint
and side views of our 3D reconstruction.

Fig. 11. American sign language sequence. Top: Images #41, #54,
#69, #79 and #105 of gesturing face with reconstructed mesh. Bottom:
Original viewpoint and side views of our 3D reconstruction with red dots
and blue squares for observed and unobserved points, respectively.
Best viewed in color.

reprojection of the deforming 3D mesh into the image plane
and the corresponding 3D reconstruction for several views
when r = 30 mode shapes are used. For this experiment,
we also show the run-time to compute the shape basis in
Fig. ??(left), observing how our methods have significantly
lower computational cost than competing methods.

We also process a 115-frame real video where a woman
moves her head while talks and hand gesturing. In this
case, we use the incomplete 77 feature annotations pro-
vided by [?], with a 17.4% of structured missing tracks. In
Fig. ?? we display our estimation by using our BA-MSI-DM
method with » = 30 mode shapes. Recall that our method
can handle the structured occlusions on the fly, in contrast
to other state-of-the-art approaches [?], [?], [?] which cannot
handle these artifacts.

To evaluate our approach on human motion, we pro-
cess a back sequence, which consists of 150 frames and
250 feature points [?] where a human back is deforming
sideways and flexing. In this case, we use our BA-MSI-
DG method with » = 30 mode shapes (similar solutions
are obtained by using Euclidean distances), showing some
examples of our 3D reconstruction in Fig. ??. Despite the
very fast deformations, our approach can estimate easily the
time-varying 3D reconstruction.

We next process a 100-frame real video where a sheet of
paper is deformed under bending, relying on the semi-dense
828-point tracks from [?]. Again, this type of material cannot
undergo extensible deformations and physical constraints
on the deformation matrix A are imposed. In this case, we
use our method BA-MSI-DE considering a shape basis with
r = 30 mode shapes. Our qualitative results are shown in
Fig. ??, including the 2D reprojection of the deforming mesh
into the image plane and the corresponding 3D reconstruc-
tion re-texturing the paper surface with a logo. It is worth
noting that the augmentation is performed in a sequential
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Fig. 12. Back sequence. Top: Images #31, #52, #85, #105 and #139 of
a human back deformation with reconstructed mesh. Bottom: General
viewpoint of our 3D reconstruction with red dots and back mesh. Best
viewed in color.

Fig. 13. Paper bending sequence. Top: Images #20, #40, #60, #80 and
#100 of a piece of paper under bending deformations with reconstructed
mesh. Notice how the 3D mesh is correctly projected and bent into the
image. We also show our automatic re-texturing of the paper sequence
that is sequentially executed. Bottom: General view of the textured 3D
reconstruction seen from a different viewpoint. Best viewed in color.

Fig. 14. Heart sequence. Top: Images #12, #36, #49, #66 and #74 of
a beating heart with reconstructed mesh. Bottom: Textured rendering
of the recovered 3D reconstruction from a different viewpoint. In spite of
the very small camera motion, our approach can retrieve accurately the
rhythmic deformations of the heart.

fashion, upon the arrival of new frames.

Finally, we test a challenging 79-frame real video where
a beating heart is captured during bypass surgery. We track
3024 points using [?]. By processing this sequence, we show
the generality of our method to handle extensible objects.
In this case, since obtaining a priori knowledge of the
type of deformation may become very difficult, we do not
impose physical constraints. As the number of points is high
enough, we use our BA-MSI-DM method to optimize the
model parameters with 37(r = 10) weight coefficients on
the linear subspace. Our semi-dense 3D reconstruction is
displayed in Fig. ?2.

8 CONCLUSIONS

In this paper, we have proposed a new shape basis inter-
pretation to model both in- and extensible deformations of
time-varying objects. To this end, we have exploited the
distance information of a rest shape estimated from initial
frames on the video, presenting several alternatives to code
it. The dissimilarity measure of the 3D configuration is
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then used to compute a reduced shape basis at low com-
putational cost by means of spectral analysis and without
assuming any additional model or training data. Thanks to
our 3D physical interpretation, we obtain a shape basis that
is used as a low-rank constraint and that in combination
with simple regularization priors, it provides an effective
and efficient solution to sequentially retrieve non-rigid 3D
shape and motion from monocular video. Our claims have
been experimentally validated on challenging real-world
deformations for a wide variety of objects and materials,
showing accurate results obtained on the fly. Regarding
the real-time capability, our method is fast and scalable
and we consider that it could be a suitable groundwork
for augmented-reality applications in real time. Further
exploring this is part of our future work, as well as adapting
our formulation to handle articulated motion. Other fields,
such as computer graphics animation or medical imaging,
could also benefit from this approach by modeling dynamic
objects as well as transferring real deformations to virtual
ones.
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