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Abstract—Parallel robots with three UPU legs have received
a lot of attention due to the possibility of assembling these legs
so that the robot performs either a pure translational or a pure
rotational motion. Nevertheless, some arrangements, despite their
theoretical interest, are of doubtful practical utility due to their
sensitivity to errors and the presence in their workspaces of
mixed-modes that involve both translations and rotations. The
introduction of some sort of asymmetry has been revealed of
relevance to come up with more robust designs. In this context,
we present an asymmetric 3-UPU robot, that can be reconfigured
to work either as a translational or as a rotational robot by simply
flipping upside down its moving platform.

I. INTRODUCTION

A general-purpose parallel robot has six degrees of freedom

(DOF) to manipulate an object freely in three-dimensional

space. A parallel robot with limited-DOF has fewer than six

DOF. Among all limited-DOF parallel robots, the three-DOF

family has received significant attention from researchers.

Some of them provide the platform with a pure translational

motion [1]–[5] and are of interest in automated assembly,

especially for pick-and-place operations, and in machine tools

as alternative structure to the serial positioning devices. Others

provide the moving platform with a pure relative rotation about

a fixed point [6]–[9] and are used as wrists of manipulators

or, in general, as pointing devices.

The investment cost to purchase a parallel robot for a

particular task could be worth if there is the possibility to

reconfigure it for another task. In this sense, it is interesting to

observe that the 3-UPU architecture, where the prismatic joint

is underlined to denote that it is actuated, can be configured

so that the resulting robot provides the platform with either

translational or rotational motions. This paper focuses on the

possibility of designing a robot with such an architecture that

could be reconfigured to work in either of these two modes.

A static reconfiguration denotes a manual rebuilding of

a robot which might lead to a robot with new kinematic

characteristics and a new workspace [10]–[12]. In this paper,

we present a 3-UPU robot that can be statically reconfigured

to work either as a translational or a rotational robot by simply

flipping upside down its moving platform. Since this kind of

robot consists of universal and prismatic joints only, it is very

attractive from the manufacturing point of view. This operation

can also be simplified by introducing rT joints as explained in

[13].
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Fig. 1: Notation associated with the ith leg of a general 3-UPU

robot.

This paper is organized as follows. In the next section, some

basic notions are reminded and the notation used throughout

the paper is presented. In Section III, the family of 3-UPU

robots is reviewed. The instantaneous kinematics of this family

of robots is analyzed in Section IV, first for the general case

and then particularized to the translational and rotational cases.

In this analysis, the emphasis is put on singularities, more par-

ticularly on constraint singularities. In Section V, the forward

kinematics of 3-UPU robots with different arrangements for

their universal joints is numerically solved using a branch-

and-prune method. This provides an interesting insight into

the effect of rearranging universal joints in 3-UPU robots

that permits to speculate about the ultimate reason for the

better behavior of asymmetric designs. In Section VI, the

reconfigurable robot is presented. Finally, Section VII provides

the conclusions and the prospects for further research.

978-1-5386-6380-6/18/$31.00 c©2018 IEEE



II. NO(TA)TIONS

A 3-UPU parallel robot consists of a fixed base and moving

platform connected by three serial chains, or legs, each of

them having a universal-prismatic-universal joint arranged in

sequence. Fig. 1 shows one of these legs. The universal joints

are passive. Only the prismatic joint are actuated.

With reference to Fig. 1, w1i and w2i are two mutually

orthogonal unit vectors defined by the revolute axes of the

universal joint centered at Ai. Likewise, w3i and w4i are the

two mutually orthogonal unit vectors of the axes of the two

revolute pairs constituting the universal joint centered at Bi.

ai and bi are the position vectors of Ai and Bi, respectively,

in a generic Cartesian reference fixed to the base, whereas p

is the position vector of the origin, O′, of the reference frame

associated with the moving platform. θji, j = 1, . . . , 4, is a

joint variable denoting a rotation angle around the joint-axis

defined by wji, j = 1, . . . , 4, using the right-hand rule. The

length of the ith leg is equal to ‖bi − ai‖, and it will be

denoted li. Moreover, we define

gi = (bi−ai)/li,

hi = w3i×w4i,

ri = w1i×w2i,

si = hi×ri − [gi·(hi×ri)]gi.

Observe that si is just the component of hi×ri perpendicular

to gi.

III. THE REMARKABLE FAMILY OF 3-UPU ROBOTS

In 1996, Tsai proposed a 3-UPU parallel robot with three

translational degrees of freedom in [4]. The axes of the

universal joints of this particular robot, henceforth called Tsai

manipulator, are arranged as follows (see Fig. 2a):

(a1) the axes of the three revolute joints embedded in the

base/platform (shown in green/red Fig. 2a) form a tri-

angle.

(a2) the two triangles are similar.

(a3) for each leg, the axes of the intermediate revolute pairs

are parallel to each other and perpendicular to the axis

of the prismatic pair.

The sensitivity of this robot to geometric parameter vari-

ations and manufacturing tolerances was analyzed in [14],

where it was shown that small torsions in the legs generate

large deviations in the position of the moving platform.

Therefore, applications of the Tsai’s robot are limited by this

pseudo-singular behaviour. The sensitivity of this robot to

other manufacturing errors is studied in [15], [16]. Di Gregorio

studied its singularities in [17]. The same analysis was later

preformed by Joshi and Tsai in [18] using screw calculus.

In 1998, Di Gregorio and Parenti-Castelli [19] studied the

more general 3-RRPRR architecture and, from this analysis,

they arrived at the important conclusion that the geometric

conditions for a 3-UPU robot to have three translational DOFs

can algebraically be expressed as:

(b1) |w1,1 ·w1,2| = |w4,1 ·w4,2|.

(b2) |w1,1 ·w1,3| = |w4,1 ·w4,3|.
(b3) |w1,2 ·w1,3| = |w4,2 ·w4,3|.
(b4) w2,i = ±w3,i, i = 1, 2, 3.

(b5) w1,i = ±w4,i, i = 1, 2, 3.

Another important conclusion in [19] is that the pure

translation of the moving platform does not only depend on

the leg topology, but also on specific mounting conditions. In

this sense, while the above conditions (b1), (b2), (b3), and (b4)

are manufacturing conditions, (b5) is a mounting condition.
As a result of this analysis, Tsai’s robot can be seen as

a particular case of a large family of 3-UPU translational

robots. Another particular translational 3-UPU robot results

if all the revolute-pair axes at the leg endings converge, while

remaining coplanar, toward a single point and every leg has

the two intermediate revolute-pair axes parallel to each other

and perpendicular to the straight line through the universal

joint centers (see Fig. 2b). This particular 3-UPU robot, which

we will call central robot, was studied in [20] and [21]. In

[20], Walter et al. showed that the translational motion of this

robot is rather doubtful due to the presence of at least 16

different assembly modes including the pure translational one.

Thus, it is important to highlight that for a given set of leg

lengths a translational 3-UPU manipulator have, in general,

different assembly modes and, only if the platform is properly

assembled, it can have a pure translational motion.
In 2006, Lu and Hu proposed a family of asymmetrical 3-

UPU robots [22]. This family of robots included a translational

design (see Fig. 2c). Lu and Hu argued that, contrarily to what

happens with the above two symmetrical designs, condition

(b5) is easier to satisfy due to the peculiar joint disposal

of their design, thus concluding that it provides a significant

advantage with respect to Tsai’s robot. In our opinion, as we

explain in Section V, this is not the main reason for the better

behavior of their design.
At this point, we have three 3-UPU robots with identical

pure translational DOFs and an identical actuator arrangement.

Nevertheless, they necessarily differ in terms of singularity

configuration and stiffness due to the different arrangement

of their universal joints. For example, as it is proved in

[23], Tsai’s robot has a singularity plane and a singularity

cylindrical surface, while Lu-Hu’s robot has two singularity

planes.
Observe that condition (b5) means that the axes defined

by the first and the fourth revolute axes in each leg should

be parallel, and, if this condition is satisfied, (b1), (b2) and

(b3) are also satisfied. Thus, the geometric conditions for a

3-UPU robot to have three translational DOFs can be simply

expressed as the conjunction of (b4) and (b5). There is no

need that the axes from different legs intersect in finite points.

Actually, these unnecessary extra geometric constraints seem

to be the ultimate reason for the poor behavior of Tsai’s and

the central 3-UPU robots.
In 2000, Karouia and Hervé showed that a 3-UPU robot,

under some mounting and manufacturing conditions, can pro-

vide its moving platform with spherical motions [24]. These

conditions are as follows (see Fig. 2d):
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Fig. 2: Four 3-UPU robots: (a) Tsai’s robot, (b) central robot, (c) Lu-Hu’s robot, and (d) Hervé’s robot.

(c1) The three revolute pairs axes fixed to the platform (base)

must converge at a point fixed in the platform (base).

(c2) In each leg, the intermediate revolute pair axes must be

parallel to each other and perpendicular to the leg axis

which is the line through the universal joints’ centers.

(c3) The point located at the intersection of the platform’s

revolute pair axes must coincide with the point located at

the intersection of the base’s revolute pair axes.

In this case, (c1) and (c2) are manufacturing conditions,

and (c3) is a mounting condition. Different aspects of the

kinematics of this robot were studied in [25]–[27].

IV. INSTANTANEOUS KINEMATICS AND SINGULARITIES OF

3-UPU ROBOTS

The derivation of the input-output velocity relationships for

6-DOF spatial parallel manipulators, in which the connectivity

of each serial chain limb is equal to the mobility of the end

effector, leads to a satisfactory formulations of their Jacobian

matrices. Nevertheless, this approach is not valid, in general,

for parallel manipulators with less than 6-DOF. In the case of

3-UPU robots, this approach leads to a 3×3 Jacobian matrix

whose analysis cannot predict all possible singularities, as

detailed in [28].

Then, it can be proved for a general 3-UPU robot that:

(
13×3

03×3

)

l̇ =

(
G3×3 K3×3

S3×3 J3×3

)(
ṗ

ω

)

(1)

where 13×3 and 03×3 are the 3× 3 identity and zero matrix,

respectively, l̇ = (l̇1, l̇2, l̇3) is the vector of velocities in the

actuators, ω is the angular velocity of the moving platform,

and

GT [i, :] = gi (2)

KT [i, :] = (bi−p)×gi (3)

ST [i, :] = si (4)

JT [i, :] = (bi−p)×si − li(ri·gi)hi (5)

where A[i, :] denotes the i-th row of A.
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Fig. 3: Trajectories followed by the center of the moving platform, as one leg is extended, for all assembly modes of:

(a) Tsai’s robot, (b) central robot, (c) Lu-Hu’s robot, and (d) Hervé’s robot. The large boxes in dark red correspond to the

initial configurations. Intersections between trajectories do not necessarily correspond to singularities because in these plots

the orientation of the moving platform is not considered.



The derivation of (1) is a bit lengthy and for this reason it

is not included here, but the interested reader can follow the

steps detailed in [29].

If we compare equation (1) with its counterpart in [18], we

realize that they do not coincide. The reason is that, while

in [18] the analysis is particularized to the case in which the

robot is of translational type, equation (1) is general for any

3-UPU robot.

Equation (1) can be rewritten as follows:

l̇ =
(
G3×3 K3×3

)

︸ ︷︷ ︸

Jx

(
ṗ

ω

)

, (6)

03×1 =
(
S3×3 J3×3

)

︸ ︷︷ ︸

Jc

(
ṗ

ω

)

. (7)

Now, equation (6) relates the twist of the moving platform

with the linear velocities of the prismatic actuators. If Jx

—sometimes called Jacobian of actuations— is rank-deficient

for all possible locations of the moving platform, the robot

is said to be architecturally singular. Observe how Jx is

independent on how the universal joints are arranged; it only

depends on the three leg lines.

Equation (7) models the internal constraints. If Jc

—sometimes called Jacobian of constraints— is rank-

deficient, there are non-null twist for the moving platform

that satisfy (7). When this happens, the robot is said to be

in a constraint singularity.

The Jacobian of constraints depends on how the universal

joints are arranged. In a translational 3-UPU robot, w1,i =
w4,i and w2,i = w3,i. In this case, hi and ri are aligned and,

as a consequence, si = 0. Therefore, it can be checked that

Jtranslational
c =





01×3 (b1−a1)
T

01×3 (b2−a2)
T

01×3 (b3−a3)
T



 , (8)

which concurs with the result reported in [18]. Hence, if g1,

g2 and g3 are linearly independent, the only feasible solution

to (7) is ω = (0 0 0)T , as expected.

In a rotational 3-UPU we can make coincident O′ with the

center of rotation without loss of generality. Then, (bi−p) is

aligned with w4i and (ai−p) is aligned with w1i. Moreover,

hi, ri, and gi lie on the plane defined by O′, Ai and Bi. As

a consequence, the triple product gi·(hi×ri) vanishes, and Jc

can be simplified as follows:

Jrotational
c =





(h1×r1)
T 01×3

(h2×r2)
T 01×3

(h3×r3)
T 01×3



 . (9)

Hence, if h1×r1, h2×r2 and h3×r3 are linearly independent,

the only feasible solution to (7) is ṗ = (0 0 0)T , as expected.

When the three planes defined by O′, Ai and Bi, i = 1, 2, 3,

intersect in a single line, vectors h1×r1, h2×r2 and h3×r3
are coplanar and, as a consequence, linearly dependent. In

this case, the rotational robot is in a constraint singularity.

Within this singularity it can also happen that the three leg

lines intersect in a point. If this happens, not only Jc is rank-

deficient but also Jx is. In this pathological situation, the rank

of the full Jacobian is, at most, 4; that is, the robot locally

gains two DOF.

V. THE FORWARD KINEMATICS OF 3-UPU ROBOTS

SOLVED NUMERICALLY

The existence of important differences between the four

robots represented in Fig. 2 becomes apparent by assembling

their models using SolidWorks. Indeed, if we implement the

different parts of the robot and assemble them by introducing

the corresponding geometric constraints, we can drag the

moving platform to observe how the extensible prismatic

actuators evolve. While in the case of the Lu-Hu’s robot

the moving platform can only perform translational motions

if properly assembled in the initial configuration, the Tsai’s

robot, starting from the same configuration, sometimes falls

in a mixed-mode where the platform performs a combined

translational-rotational motion, and the central robot simply

leads to numerical errors that prevents any motion simulation.

This experimental observation is consistent with the theoretical

analyses performed to date that lead to think that the best

option for a practical 3-UPU robot is Lu-Hu’s robot.

For a deeper analysis, we have numerically solved the

forward kinematics of the four models in Fig. 2 using a branch-

and-prune technique [30], [31]. First, we have computed all the

assembly modes for the case in which two legs have the same

lengths and the remaining one is shorter. The exact values

are now irrelevant as we are just interested on a qualitative

analysis of the assembly modes. We can represent the centers

of the moving platform for each assembly mode in the robot

workspace. They appear as dark red boxes in Fig. 3.

Regarding the translational robots, while the number of real

assembly modes is three, both for Tsai’s and the central robot,

this number is nine for Lu-Hu’s robot. Only one configuration

in each set corresponds to the case in which the base and the

moving platform are parallel and hence satisfies the mounting

condition for the corresponding robot to work as a translational

one. Now, if we progressively extend the shorter leg, we can

see how these assembly modes evolve. The center of the

moving platform follows different trajectories depending on

the initial assembly mode. Only one of these trajectories keeps

the moving platform parallel to the base. These trajectories

are shown as sequences of blue boxes in Fig. 3. Observe that

they intersect each other. Nevertheless, these intersections do

not necessarily correspond to intersections in the configuration

space of the moving platform because we are not considering

the orientation of the moving platform in this representation.

Actually, these trajectories can be seen as the projection of

the trajectories in the configuration space (R3 × SO(3)) onto

the workspace (R3). While intersections in the configuration

space correspond to singularities, the intersections in Fig. 3

are not necessarily harmful. Nevertheless, clusters of boxes

around an intersection indicates that they indeed correspond

to an intersection in the configuration space and hence to an



Fig. 4: The proposed reconfigurable 3-UPU robot assembled as translational robot (left), or as rotational robot (right). They

only differ in the way the moving platform is assembled.

actual singularity. These clusters are clearly present in Tsai’s

and in the central robot.

Regarding the Hervé’s rotational robot, we have two assem-

bly modes that follow a trajectories that bifurcates when all

three legs have the same leg lengths. This bifurcation point

corresponds to the constraint singularity already identified for

this robot at the end of Section IV.

The above results allow us to speculate on why the asym-

metric design works better for translational robots. An ar-

bitrary 3-UPU robot has, in general, multiple real assembly

modes. As we introduce geometric constraints in the arrange-

ment of their universal joint —such as coplanarities, axes

intersections, etc.— the number of assembly modes is reduced

because some of them coalesce. Nevertheless, since in practice

none of the introduced geometric constraints can be exactly

satisfied, we have clusters of assembly modes in which the

parallel robot becomes shaky. To avoid this situation, the

best solution is to minimize the number of extra geometric

constraints to be satisfied.

VI. THE PROPOSED RECONFIGURABLE 3-UPU ROBOT

The proposed reconfigurable robot is easily understood by

observing Fig. 4. On the left, we have a 3-UPU robot that

satisfies conditions (b1)-(b5), and, as a consequence, it is a

translational robot. On the right, the robot satisfies conditions

(c1)-(c3), and, as a consequence, it is a rotational robot. The

interesting thing is that both robots only differ in the way the

moving platform is assembled.

In the case in which the robot is assembled to work as

a translational robot, we can repeat an analysis similar to

that described in the previous section. The result is presented

in Fig. 5. Obviously, the represented trajectories not only

depend on the chosen dimensions for the different elements

but also, due to the asymmetry of the robot, on which leg

is extended. An optimization is required to dimension the

elements leading to the largest possible workspace free from

singularities. Nevertheless, this is left as a point for further

research.

In the case in which the robot is assembled to work as

a rotational robot, the result is similar to that presented in

Section IV for Hervé’s robot.

VII. CONCLUSION

We have presented a 3-UPU robot that can be reconfigured

to work either as a translational or a rotational robot by

flipping upside down its moving platform. Although this

reconfiguration is designed to be performed off-line, it can be

potentially implemented dynamically by exchanging the role

of the fixed base and the moving platform and introducing

a binary actuator that turns over three re-orienting elements.

This is certainly a possibility that deserves further attention.

Our current efforts are addressed to the dimensioning of the

robot elements to optimize the volume of its workspace. This

is probably the most important point to translate the presented

conceptual design into a system definition that is suitable for

detailed design and subsequent manufacture.
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