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Abstract: This paper presents a benchmark for the detection and isolation of cyber attacks, which is a
non-linear controlled interconnected system based on a two tank system. In this benchmark, a malicious
attacker wants to remain hidden while stealing water by altering the signals of the sensors of the levels
of the tanks. It is assumed that the attacker can steal water from the tanks using extraction pumps with
pre-established flow rates and, depending on the theft and the type of sensor alteration, different attack
scenarios are proposed.
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1. INTRODUCTION

The fourth industrial revolution has brought new challenges
related to connected systems, smart manufacturers and digital
supply networks. In the last years, the need for a better in-
tegration of computation and physical processes has brought
the scientific community to investigate cyber physical systems
(CPSs). The term cyber physical refers to the presence of dis-
crete processing and communication of information together
with the physical engineered system (Jeschke et al., 2017).
Nowadays, CPSs are found widely in advanced manufacturing
systems, transportation networks, industrial control processes,
and critical infrastructures (Pasqualetti et al., 2013). However,
the increase in efficiency brought by CPSs comes at the cost
of a higher risk in safety and security, due to the possibility
of someone performing malicious attacks, a.k.a. cyber attacks.
These attacks, usually motivated by terrorism, criminality or
sabotage, exploit the system’s vulnerabilities and result in some
kind of disturbance or damage in the physical and in the cy-
ber layers. The interconnected nature of Industry 4.0-driven
operations means that cyber attacks have far more extensive
effects than ever before, and digital systems, computers and
their supply networks may not be prepared for this kind of risks
(Armesto et al., 2016, Waslo et al., 2017). Cyber attacks are
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different from faults due to the fact that they do not affect only
the physical layer of the CPS, but the cyber one as well.

Over the past decade, many concerns have been raised over the
vulnerabilities of industrial control systems to cyber attacks.
For this reason, different events and scenarios have been stud-
ied, and some diagnostic methods have been proposed and eval-
uated. For example, it is worth recalling the Tennessee Eastman
process (Ricker, 1993) for which some experimental work was
conducted in order to analyze the effects of attacks in the pro-
cess control domain (Huang et al., 2009) and test the resilience
against cyber physical assaults (Krotofil and Cárdenas, 2013).
Remarkable attacks to water distribution facilities, such as the
one which affected the Maroochy Water Services (Queensland,
Australia), have contributed to motivate research on cyber se-
curity, leading to the proposal of testbeds such as the water
distribution (WADI) one (Ahmed et al., 2017).

The availability of a benchmark for testing different diagnosis
techniques is beneficial for finding the best strategies to handle
undesired situations. Motivated by the successes of the wind
turbine benchmark proposed by Odgaard et al. (2013), and
later enhanced by Odgaard and Johnson (2013), and of the
wind farm benchmark (Odgaard and Stoustrup, 2013), which
inspired several solutions to the problems of fault diagnosis
(Odgaard and Stoustrup, 2012, Simani and Castaldi, 2013,
Blesa et al., 2015, Sanchez et al., 2015) and fault tolerant
control (Badihi et al., 2014, Blesa et al., 2014, Odgaard and
Stoustrup, 2015, Shi and Patton, 2015), this paper presents a
benchmark based on a two-tank interconnected system useful
for testing different schemes for detection and isolation of
cyber attacks. In particular, the benchmark case study has been
derived from a previously proposed fault diagnosis benchmark
(Bouamama et al., 2001, 2005, Zhang, 2010) by incorporating



a malicious attacker who wants to steal water from the tanks
while remaining hidden through an appropriate alteration of the
measurements coming from the level sensors of the tanks.

The remaining of the paper is structured as follows. In Section
2, the functionality of the benchmark along with its model are
described. Next, in Section 3, the attack scenarios are presented.
Simulation results depicting some relevant variables in the
proposed attack scenarios are shown and discussed in Section
4. Finally, the conclusions are drawn in Section 5.

2. BENCHMARK DESCRIPTION

The benchmark 1 consists of two interconnected tanks, which
are connected to each other through connecting pipes provided
with a valve (see Fig. 1). The first tank, denoted as T1, receives
water from the pump P1, which is controlled by a proportional-
integral (PI) controller. The interconnecting valve Vb is regu-
lated by an ON-OFF controller. On the other hand, the second
tank, denoted as T2, is equipped with the manual outlet valve Vo.
The benchmark model has been derived from the one described
in Bouamama et al. (2001) by incorporating a possible mali-
cious attacker who has the goal of stealing water from the tanks
while going unnoticed thanks to appropriate alterations of the
outputs of the sensors, which hide the attacks. In the modified
benchmark, it is assumed that the thief can extract water from
the tanks using extraction pumps with flow rates Q f 1 and Q f 2,
which move the water from the tanks T1 and T2 to the theft
tanks Tf 1 and Tf 2, respectively. At the same time, it is assumed
that the signals provided by the sensors are sent by wireless
to the PI and ON-OFF controller, and the thief is able to hack
these signals and modify them. Depending on the type of theft
and the type of sensor alteration, different attack scenarios are
obtained, as described in Section 3.

Hereafter, the model of the benchmark is described (see Table
1 for the value of the model parameters). First, the models
of the different subsystems (pump, PI controller, valves and
ON-OFF controller) are provided. Then, the subsystems are
merged in order to obtain the global model of the plant. Note
that the superscript m is used to denote variables for which a
measurement is available. Additionally, the benchmark simula-
tor provides complementary information about the amount of
stolen water volumes in tanks Tf 1 and Tf 2, denoted as Vf 1 and
Vf 2, respectively, and the real (unaltered) values of the water
levels h1 and h2. However, these variables should be assumed
not to be available to the attack detector.

2.1 Model of the pump

Qm
p is the outflow from the pump P1, which is assumed to be

proportional to the PI controller output Um
p . Taking into account

that the flow from the pump is limited by physical constraints,
modeled as a standard saturation nonlinearity, then Qm

p is given
by

Qm
p (t) =


Um

p (t) i f 0 <Um
p (t)< Qp,max

0 i f Um
p (t)≤ 0

Qp,max i f Um
p (t)≥ Qp,max

(1)

1 The benchmark is available at the URL https://cs2ac.upc.edu/en/training-
benchmarks/cyber-attacks-benchmark-simulator
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Fig. 1. Schematic diagram of the two-tank benchmark.

2.2 Model of the PI controller

The water level of the tank T1, denoted as hm
1 , is regulated by a

PI controller, whose output is given by

Um
p (t) = KP

(
h1,re f −hm

1 (t)
)
+KI

∫ t

0

(
h1,re f −hm

1 (τ)
)

dτ (2)

where h1,re f = 0.5m is the set-point for hm
1 , while the propor-

tional and integral gain of the controller are chosen as KP =

10−3 m−1 and KI = 5 · 10−6 (m · s)−1, respectively. Note that
the set-point can be modified by injecting some small pertur-
bations, which could increase the detectability of attacks, as
suggested, e.g., by Scola et al. (2018).

2.3 Model of the valve Vb

The water flow Q12 through the valve Vb is controlled by an ON-
OFF controller. The flow can be calculated using Bernoulli’s
law

Q12(t) =CvbUm
b (t)sign(hm

1 (t)−hm
2 (t))

√∣∣hm
1 (t)−hm

2 (t)
∣∣ (3)

where Um
b ∈ {0,1} is the valve position provided by the con-

troller (0 = OFF, 1 = ON), Cvb denotes the global hydraulic
flow coefficient of the valve Vb and hm

2 is the water level of the
tank T2.

2.4 Model of the ON-OFF controller

The water level hm
2 is regulated by a switching controller, whose

output is given by

Um
b (t) =

{
0 i f 0.09m≤ hm

2 (t)≤ 0.11m
1 i f 0m≤ hm

2 (t)≤ 0.09m (4)

2.5 Model of the valve Vo

The water outflow Qo is controlled by a valve Vo, which is open
in nominal regime

Qo(t) =Cvo

√
hm

2 (t)U
m
o (t) (5)

where Cvo is the global hydraulic flow coefficient of the valve
Vo, and Um

o ∈ {0,1} is the valve position provided by the user
(0 = CLOSED, 1 = OPENED).



Table 1. Model variables and process parameters.

Symbol Description Value Units
Cvb Hydraulic flow coefficient of the valve Vb 1.5938∗10−4 m3/2/s
Cvo Hydraulic flow coefficient of the valve Vo 1.59640∗10−4 m3/2/s

Ai(i=1,2) Cross-section of the cylindric tank Ti 1.54 ·10−2 m2

hi(i=1,2) Water level in the tank Ti variable m
hi,max(i=1,2) Maximum water level in the tank Ti 0.6 m

Qp,max Maximum outflow from the pump P1 0.01 m3/s
Q f i(i=1,2) Flow theft from tanks T1 and T2 under attack 10-4 m3/s

h1,re f Set point of the PI level controller 0.5 m

2.6 Global model of the system

The variation of V1 and V2, which are the water volumes in T1
and T2, respectively, can be calculated as

V̇i(t) = Aiḣm
i (t) = ∑Qin,i(t)−∑Qout,i(t), i = 1,2 (6)

where Ai denotes the cross-section area of the tank Ti, ∑Qin,i is
the sum of all the water inflows into the tank Ti and ∑Qout,i is
the sum of all the water outflows from the tank Ti.

In particular, (6) can be rewritten as
V̇1(t) = Qp(t)−Q12(t)−Q f 1(t) (7)
V̇2(t) = Q12(t)−Qo(t)−Q f 2(t) (8)

with Q f 1 =Q f 2 = 0 when no attack is performed on the system.

Since the water levels h1 and h2 are limited by physical con-
straints, thus

h1(t) = h1,max i f h1(t)≥ 0.6m (9)
h2(t) = h2,max i f h2(t)≥ 0.6m (10)

2.7 System measurements

It is assumed that the available measurements are given by
ym

x = yx + εyx (11)
where yx ∈ {Qp,Up,h1,h2,Ub,Uo} are the measured variables,
and εyx denotes the corresponding measurement noise. The
values of the sensors noises are provided in the file init.m,
located in the directory Benchmark Program Simulation, and
are obtained as uniformly distributed signals.

2.8 Analytical Redundancy Relations

The benchmark is completed by residuals designed for per-
forming a traditional fault diagnosis based on analytical redun-
dancy relations (Staroswiecki and Comtet-Varga, 2001), which
are calculated as

r1(t) =−CvbUm
b (t)sign(hm

1 (t)−hm
2 (t))

√∣∣hm
1 (t)−hm

2 (t)
∣∣ (12)

+Qm
p (t)−Q f 1(t)−A1

dhm
1

dt

r2(t) =CvbUm
b (t)sign(hm

1 (t)−hm
2 (t))

√∣∣hm
1 (t)−hm

2 (t)
∣∣ (13)

−Cvo

√
hm

2 (t)U
m
o (t)−Q f2 (t)−A2

dhm
2

dt

r3(t) =Um
p (t)−KP

(
h1,re f −hm

1 (t)
)
−KI

∫ (
h1,re f −hm

1 (τ)
)

dτ (14)

r4(t) =Qm
p (t)−


Um

p (t) i f 0 <Um
p (t)< Qp,max

0 i f Um
p (t)≤ 0

Qp,max i f Um
p (t)≥ Qp,max

(15)

Note that a discrete-time representation of (12)-(15) is obtained
by applying an Euler discretization with sampling time Ts = 1s.

3. ATTACK SCENARIOS AND DETECTION/ISOLATION
REQUIREMENTS

In this benchmark, a number of attacks are considered, cover-
ing different attack policies. This section presents the different
kinds of attacks affecting the physical and cyber layers (see Ta-
ble 2), as well as the requirements for their successful detection
and isolation.

Table 2. Attack scenarios in the benchmark.

Scenario Physical layer Cyber layer
1 × ×
2

√
×

3
√ √

4
√ √

5
√ √

6
√

×
7

√ √

8
√ √

9
√ √

10
√ √

3.1 Attack scenarios

Scenario 1 - Attackless mode: This scenario corresponds to
the normal behavior of the two-tank system when nobody is
stealing water.

Scenario 2 - Short-term water theft from T1: This scenario is
similar to a leakage fault, the only remarkable difference being
that it is cast maliciously, with the purpose of stealing water
from the tank T1. In this scenario, a pump extracts a constant
flow Q f 1 = 10−4 m3/s between t = 40s and t = 80s without
any alteration of the measurements hm

1 and hm
2 . Note that in this

scenario, the residuals behave similarly to the case of a sudden
leak in the original fault diagnosis benchmark.

Scenario 3 - Short-term water theft from T1 with hiding
signal added to the measurement hm

1 : In this scenario, the
thief uses a pump to extract water with a constant flow Q f 1 =

10−4 m3/s between t = 40s and t = 80s while adding a signal
to the output of the level sensor in tank T1 so that the introduced
signal hides the theft. Thanks to the introduced signal, the water
level in tank T1 seems to remain constant, and the PI controller
works as if nothing had happened providing almost the same
value Um

p as in scenario 1. In particular, the modified value of
hm

1 is given by

hm
1 (t) = h1(t)+ εh1(t)+

1
A1

∫ t

0
Q f 1(τ)dτ (16)

Scenario 4 - Long-term water theft from T1 with hiding
signal added to the measurement hm

1 : This attack scenario is
similar to scenario 3, but the theft duration is extended from



40s to 120s. Due to the large quantity of stolen water, the plant
exhibits some physical functioning problems, since the tank T1
is emptied out, affecting the tank T2 due to the interconnection,
and the consumption of water Qo, which becomes zero.

Scenario 5 - Long-term water theft from T1 with small signal
added to the measurement hm

1 : In this scenario, the thief will
steal water as in the previous scenarios while adding a signal
that deceives the PI controller to force more water to be pumped
inside the system while making harder to detect the theft. In
particular, the modified value of hm

1 is given by

hm
1 (t) = h1(t)+ εh1(t)+

1
A1

∫ t

0
0.5Q f 1(τ)dτ (17)

Scenario 6 - Short-term water theft from T2: This attack
scenario is similar to scenario 2, but it affects T2 instead of T1.

Scenario 7 - Short-term water theft from T2 with hiding
signal added to the measurement hm

2 : This attack scenario
is similar to scenario 3, but it affects T2 instead of T1. In this
case, the thief applies a constant signal Q f 2 = 10−4 m3/s while
adding a signal to the output of the level sensor in tank T2,
which forces the ON-OFF controller to act on the intercon-
necting valve Vb as if nothing had happened. In particular, the
modified value of hm

2 is given by

hm
2 (t) = h2(t)+ εh2(t)+

1
A2

∫ t

0
Q f 2(τ)dτ (18)

Scenario 8 - Long-term water theft from T2 with hiding
signal added to the measurement hm

2 : This scenario is similar
to scenario 4, but the pump corresponding to Q f 2 is used by the
thief instead of the one corresponding to Q f 1.

Scenario 9 - Long-term water theft from T2 with small signal
added to the measurement hm

2 : This scenario is similar to
scenario 5, but the thief steals water from the tank T2 and the
introduced signal is meant to deceive the ON-OFF controller
instead. In this case, the modified value of hm

2 is given by

hm
2 (t) = h2(t)+ εh2(t)+

1
A2

∫ t

0
0.5Q f 2(τ)dτ (19)

Scenario 10 - Replay attack: In this scenario, the thief steals
water when the plant has reached its steady-state. However,
before doing so, he/she records the measurements coming from
the sensors without stealing water from the tanks. Then, in a
subsequent phase of the attack, the thief steals water while
replacing the real data with the recorded one. This type of attack
is very hard to detect, if not impossible, and for this reason
alternative approaches must be employed, see e.g. (Mo and
Sinopoli, 2009, Zhu and Martı́nez, 2014). More specifically, the
water is stolen from t = 160s to t = 200s, while measurements
recorded in the 50s previous to the attack are used to deceive
the controller and the supervision system. At time t = 200s, the
replay attack ends and the controller and the supervision system
are able to see the real data coming from the system.

3.2 Detection and isolation requirements

The effectiveness of different cyber attack detection and isola-
tion techniques can be assessed using the proposed benchmark
by comparing different performance indices. Such a compari-
son would be performed by applying Monte Carlo studies with
a sufficient high number of simulations, each one of which cor-
responding to a different realisation of the measurement noise,

independent from the previous ones. In particular, the effective-
ness of the proposed techniques would be tested by checking
their ability to provide information both about the effect of the
attack being performed (detection) and the exact nature and
location of the attack (isolation). Typical performance indices
are:

• Attack detection time delay tAD: Time needed by the
attack detection method to detect the presence of an attack,
calculated from the time at which the attack begins;

• Attack isolation time delay tAI: Time needed by the at-
tack detection method to isolate whether the attack affects
T1 or T2, calculated from the time at which the attack
begins;

• False negative attack detection rate rFNAD: Percentage
of time during which the system is under attack, but the
detection method determines an attackless situation;

• False positive attack detection rate rFPAD: Percentage
of time during which the system is not being attacked, but
the detection method determines that the system is under
attack;

• Wrong isolation rate rWIR: Percentage of time during
which the isolation method provides a wrong information
about which tank is being affected by the attack, calcu-
lated with respect to the overall time during which an
isolation information is provided;

• Attack estimation accuracy for tank i aAE,i: This index
takes into account the difference between the real stolen
water volume Vf i, i = 1,2, and the estimated stolen water
volume V̂f i, i = 1,2, and it is calculated as

aAE,i =
Vf i−V̂f i

Vf i
(20)

All these indices should be kept positive and as low as possible,
in order to allow for the activation of policies or strategies
to protect the system from the attacks. In addition, another
requirement is the robustness of the proposed methods towards
uncertainties in the model (e.g. due to unknown changes in the
values listed in Table 1).

4. SIMULATION RESULTS

This section provides the plots of some relevant variables that
give more insight about the behavior of the benchmark in the
proposed attack scenarios.

Fig. 2 shows a comparison between the water levels in the
tanks in scenarios 1 and 3. It can be seen that due to the
hiding signal introduced by the thief, hm

1 in scenario 3 (yellow
dashed line) matches h1 in scenario 1 (blue solid line), which
misleads in determining whether someone is stealing water
from the tank or not. It can be seen that the real value of h1
in scenario 3 (red solid line) plummets to a much lower value.
On the other hand, Fig. 3 shows the evolution of the residuals
r1 and r2, which are calculated as in (12)-(13). Notably, r1
and r2 are useful for evaluating the presence of leakages in
tanks T1 and T2, respectively. In fact, they behave as expected
(taking a value different than zero from t = 40s to t = 80s) in
scenario 2 (red solid line) which, as stated in Section 3.1, is
similar to a leakage fault. However, their values in scenario 3
(yellow dashed line) are approximately zero during the attack,
which prevents traditional fault detection and isolation (FDI)
algorithms from detecting correctly the presence of the attack.



0 50 100 150 200 250 300
-0.2

0

0.2

0.4

0.6

W
at

er
 le

ve
l i

n 
ta

nk
 T

1 [m
]

h
1
 nominal

h
1
 attack scenario 3

h
1
m attack scenario 3

0 50 100 150 200 250 300

time [s]

0

0.05

0.1

0.15

W
at

er
 le

ve
l i

n 
ta

nk
 T

2 [m
]

h
2
 nominal

h
2
 attack scenario 3

h
2
m attack scenario 3

Fig. 2. Water level signals in scenarios 1 and 3.
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The water level responses in scenario 5 are shown and com-
pared to the ones in scenario 1 in Fig. 4. It can be seen that
the signal hm

1 sent to the PI controler is similar, although not
identical, to the real h1 in scenario 1. This makes it harder to
diagnose the water theft, as shown by the residuals depicted in
Fig. 5.

Finally, Fig. 6 presents the water level responses in scenarios 1
and 10 (replay attack). This is the hardest attack to detect, since
the measured water levels in both tanks hm

1 and hm
2 are almost

identical to the water levels h1 and h2 in the attackless scenario.

As a consequence, the residuals in scenario 10 during the replay
attack are undistinguishable from the ones when no attack is
being performed (see Fig. 7). When the replay attack ends, one
can see a spike in the residuals due to the discontinuity between
the received data during and after the replay attack. It is evident
that alternative and innovative approaches must be investigated
in order to detect earlier this kind of attacks.

5. CONCLUSIONS

In this paper, a benchmark model for the detection of cyber
attacks has been presented. The benchmark consists in a non-
linear system made up by two interconnected tanks. A mali-
cious attacker, who has the goal of stealing water from the
tanks while going unnoticed thanks to appropriate alterations
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Fig. 4. Water level signals in scenarios 1 and 5.
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Fig. 6. Water level signals in scenarios 1 and 10.

of the outputs of the sensors, has been incorporated. Depending
on the type of theft and the type of sensor alteration, different
attack scenarios have been obtained, which simulate short-term
and long-term water theft from both tanks. Simulation scenarios
have been provided and discussed, highlighting some of the dif-
ficulties with detecting and isolating the proposed cyber attacks
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using traditional FDI techniques. The authors hope that the
proposed benchmark will be useful to the scientific community
for testing different kinds of cyber attack detection and isola-
tion schemes. Furthermore, the authors encourage the design
of secure controllers that improve the resilience of the system
against these attacks.
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Informática industrial, 13(1):103–114, 2016. ISSN 1697-
7920.

H. Badihi, Y. Zhang, and H. Hong. Fuzzy gain-scheduled
active fault-tolerant control of a wind turbine. Journal of
the Franklin Institute, 351(7):3677–3706, 2014.

J. Blesa, D. Rotondo, V. Puig, and F. Nejjari. Fdi and ftc
of wind turbines using the interval observer approach and
virtual actuators/sensors. Control Engineering Practice, 24:
138–155, 2014.
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