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Abstract

An analytic method to compute the solution intervals for the input variables of spatial RCRCR linkages and their
inversions is presented. The input-output equation is formulated as the intersection of a single ellipse with a parame-
terized family of ellipses, both related with the possible values that certain dual angles determined by the configuration
of the mechanism can take. Bounds for the angles of the input pairs of the RCRCR and RRCRC inversions are found
by imposing the tangency of two ellipses, what reduces to analyzing the discriminant of a fourth degree polynomial.
The bounds for the input pair of the RCRRC inversion is found as the intersection of a single ellipse with the enve-
lope of the parameterized family of ellipses. The method provides the bounds of each of the assembly modes of the
mechanism as well as the local extrema that may exist for the input variable.

Keywords: Solution intervals, 3R2C linkages, position analysis, forward and inverse kinematics.

1. Introduction

A core task of Kinematics is that of finding the input-output relationships for mechanisms of interest. While an
input-output equation contains all the essential information relating the input and output variables, some important
aspects relevant for the analysis and synthesis of a mechanism are only implicit in an input-output equation. Thus,
for example, an input-output equation does not make explicit whether a mechanism with given link dimensions can
actually be assembled or not, nor if the mechanism can be assembled in one or more different ways, nor what is the
mobility range of a particular mode of assembly. Such kind of information is directly available when the solution
intervals of the input variables are given explicitly.

The determination of the range of motion of a joint is a classical subject in planar linkages, where the Grashof
rules for planar quadrilaterals are commonly used to decide if a given joint can perform full rotations and to determine
the extreme positions of the non fully rotatable joints. A recent work addressing the determination of the feasible
ranges for joints in planar four-bar linkages is [1]. A more comprehensive study of the solution intervals for variables
in planar and spherical linkages can be found in [2], where the problem is solved in general for arbitrary single-loop
linkages with any number of links joined by R and P pairs. Through the use of the spherical indicatrix, the method has
been extended to find the solution intervals of any spatial single-loop mechanism having at least three translational
d.o.f., as well as of a certain class of spatial mechanisms called triangulable [3]. Further extensions allowed to obtain
the solution intervals for multiple-loop planar and spherical linkages via interval propagation algorithms [4, 5]. The
contribution of the present work is that of obtaining in an analytic way the solution intervals for a spatial linkage not
previously dealt with.

In principle, solution intervals for a given variable can be approximated by repeatedly solving the input-output
equation for the desired variable: depending on whether there are real solutions or not for a given value of the input
variable, it must be included or excluded from a solution interval. Many earlier works on kinematic analysis of
mechanisms used to make a rough estimation of the solution intervals by sampling the input variable with a given
discretization to plot the values obtained for the output variable, and then infer the valid intervals from the figure. For
example, in the analysis of the same RCRCR mechanism used here, in [6] we can read: “we may observe from the
four output curves that there is no solution of [the output angle] within the range 10◦<[input angle] < 80◦”, what is a
very rough approximation of the correct interval (corresponding to θ5 in Table 2).
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More accurate approximations can be obtained by progressively increasing the sampling resolution, as in [7], that,
after plotting the input-output function by initially sampling the input variable by steps of 1◦, the interval bounds
are refined until the third decimal position to give the values 69.350◦< θ1 < 410.471◦ for one assembly mode, and
148.788◦< θ1 < 308.299◦ for the second, in full accordance with the results presented here (see Table 2). The
limitation of this approach is that it can only find the bounding values within the precision of the discretization used
initially and, in the extreme case of a mechanism with isolated solutions or very short solution intervals, they may be
completely missed.

To avoid the potential loss of solutions, numerical approaches have been developed using iterative branch-and-
prune methods to approximate the solution set by a collection of covering boxes defined in the configuration space of
the linkage with a resolution specified by the user [8, 9]. Given such a box covering, approximate solution intervals
can be obtained by projection on the desired variable axis. While this approach grants that no solution is excluded
from the approximation, it works iteratively, and can only provide intervals enclosing the solution with a predefined
precision. Observe that the aim of this approach is different from that of computing intervals guaranteed to contain
the actual value taken by the output variable, which is the goal of interval analysis methods [10]. The goal is, instead,
to accurately determine the range of values that a variable can take to give rise to a feasible configuration.

From a theoretical point of view, the limit positions of a joint correspond to stationary configurations of the
linkage. In [11], a condition for the existence of a stationary configuration is given in terms of the screw system
theory. In [12], this condition is used to derive an extra relationship to determine a limit position for a desired joint
variable in general spatial mechanisms and, in [13], an alternative formulation is presented using the reciprocal screw
system. The method is illustrated with a five-bar RCCRR, but the author refuses to compute numerical solutions due
to its complexity, which would require the simultaneous solution of a system of five equations involving products
of sine and cosine of five unknown angles. A more tractable approach is presented in [14], which uses polynomial
discriminants to bound the solution intervals, but the procedure is only applied to 4-bar mechanisms.

A completely different approach is that of [15], which applies the Morse-Bott theory to determine the maximum
and minimum reach of revolute-jointed manipulators. The interval of possible distances reachable by the manipulator
can be seen as the feasible interval for the length of an extra link connecting the base to the end-point. Unfortunately,
this strategy is not directly applicable to get the solution range for variables of most linkages.

Nowadays, a general and computationally effective procedure to find the solution intervals of arbitrary spatial
mechanisms is still lacking. In the present work we make a further step in this direction by solving the case of the
spatial RCRCR mechanism and its inversions, namely, RCRRC and RRCRC.

The paper is organized as follows: Sections 2 and 3 are a short presentation of the concepts of dual numbers and
their application to kinematics, while Sections 4 and 5 reformulate known results for the derivation of the input-output
functions of the RCRCR mechanism. The novel results are presented in Section 6, where the the bounding values for
the input variables of the mechanism are found analytically, and Section 7 where the solution intervals are determined.
Finally, Section 8 closes the paper with some conclusions.

2. Formulation of kinematic equations with dual numbers

A dual number x̂ is defined as the sum of a real and a dual component x̂ = x + εx0. The dual component is a multiple
of the dual unit ε, which by definition has the property ε2 = 0. The sum and product of two dual numbers are given
by:

x̂ + ŷ = (x + εx0) + (y + εy0) = (x + y) + ε(x0 + y0)
x̂ŷ = (x + εx0)(y + εy0) = xy + ε(xy0 + yx0)

In general, a function of a dual variable can be obtained from its Taylor’s series expansion, which using εn = 0, (n ≥ 2),
gives:

f (x + εx0) = f (x) + εx0
d f
dx

(x)

In particular, the trigonometric functions sin and cos of a dual variable are:

sin x̂ = sin x + εx0 cos x

cos x̂ = cos x − εx0 sin x
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All trigonometric identities valid for real variables are also valid for dual variables.
In the same way that a real value can be used to represent the angle between two vectors in space, a dual number

can be used to represent the angle and perpendicular distance between two lines in space. Thus, the twist angle αi j

and link length ai j describing the fixed parameters of a link can be represented by the dual angle α̂i j = αi j + εai j.
Similarly, the variable parameters of a C pair can be represented by the dual angle θ̂i = θi + εti, where θi is the angular
displacement and ti the joint offset. In the case of a R pair, the same representation is used with the difference that in
this case ti is fixed. A dual rotation of angle α̂ = α + εa and axis k is defined as the composition of a real rotation of
angle α around axis k, and a translation of length a along the same axis.

A spatial transformation involving a translation of vector v = [vx, vy, vz]⊤ and a rotation R can be represented
by a dual-number rotation matrix R̂ = R + εD, where the real component R is an orthogonal matrix corresponding
to the rotation part, and the dual component is D = Pv R, where Pv is a skew-symmetric matrix obtained from the
coordinates of v as [16]:

Pv =

 0 −vz vy

vz 0 −vx

−vy vx 0

 . (1)

In particular, dual rotations about the x and z axes, describing a pair of dual angle θ̂i and a link of dual angle α̂i j,
respectively, can be written as:

R̂x(θ̂i) =

 1 0 0
0 cos θ̂i − sin θ̂i

0 sin θ̂i cos θ̂i

 , R̂z(α̂i j) =

 cos α̂i j − sin α̂i j 0
sin α̂i j cos α̂i j 0

0 0 1

 .
Thanks to the principle of transference of Kotelnikov, the loop equation of a spatial mechanism can be formulated

with dual-number matrices in the same way as its corresponding spherical mechanism is formulated with real matrices.

3. Dual Euler’s decomposition of a spatial transformation

The Euler’s decomposition allows expressing any 3D rotation as the product of three rotations about the x-z-x axes:

R = Rx(φ) Rz(ϕ) Rx(ψ). (2)

This decomposition is not unique since Rx(φ) Rz(ϕ) Rx(ψ) = Rx(φ + π) Rz(−ϕ) Rx(ψ + π), however, we can impose
uniqueness by choosing ϕ ∈ [0, π). Similarly, we can also express any spatial transformation as a product of three
dual angle rotations along the x-z-x axes. Thus, a spatial transformation involving a translation v = [vx, vy, vz]⊤ and a
rotation R can be represented by:

R̂ = R̂x(φ̂) R̂z(ϕ̂) R̂x(ψ̂) = R + εD, (3)

where φ̂ = φ+ εp, ϕ̂ = ϕ+ εq, ψ̂ = ψ+ εr. The dual components p, q, r may be obtained from the relation Pv = D R−1

and using (1) to get the system of equations:
vx = r ∗ cos ϕ + p
vy = r ∗ cosφ sin ϕ − q sinφ
vz = r ∗ sinφ sin ϕ + q cosφ

(4)

Solving for p, q, r we get:

p = vx − (vy cosφ cos ϕ + vz sinφ cos ϕ)/ sin ϕ (5)
q = −vy sinφ + vz cosφ (6)
r = (vy cosφ + vz sinφ)/ sin ϕ. (7)

Note that this solution is not valid when ϕ = 0. In such case R reduces to a rotation around x: Rx(ξ) = Rx(φ + ψ),
and the angles φ and ψ are not uniquely determined by the usual Euler’s decomposition. In this case, the system (4)
becomes: 

vx = r + p
vy = −q sinφ
vz = q cosφ

(8)
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According to the first equation, we can take p as a free parameter, and r = vx − p. In this case, the values of q and φ
are obtained by solving the system of the last two equations as:

q =

√
v2

y + v2
z (9)

φ = arctan(−vy, vz) (10)

and finally, ψ is determined as ψ = ξ − φ.

4. Loop equations for the RCRCR mechanism

The RCRCR mechanism is described by the loop equation:

(R) (C) (R) (C) (R)
I = R̂x(θ̂1) R̂z(α̂12) R̂x(θ̂2) R̂z(α̂23) R̂x(θ̂3) R̂z(α̂34) R̂x(θ̂4) R̂z(α̂45) R̂x(θ̂5) R̂z(α̂51),

(11)

where α̂i j = αi j + εai j and θ̂i = θi + εti are dual angles corresponding to the link dimensions and joint variables,
respectively, and an (R) or (C) above each R̂x operator indicates if the pair is rotational or cylindric, respectively. We
rearrange (11) so as to have a C pair at both ends of the right hand side:

(R) (C) (R) (R) (C)
R̂z(−α̂34) R̂x(−θ̂3) R̂z(−α̂23) = R̂x(θ̂4) R̂z(α̂45) R̂x(θ̂5) R̂z(α̂51) R̂x(θ̂1) R̂z(α̂12) R̂x(θ̂2).

(12)

Applying the dual Euler’s decomposition to both sides, excluding the cylindric pairs of θ̂4 and θ̂2, we write:

R̂z(−α̂34)R̂x(−θ̂3)R̂z(−α̂23) = R̂x(φ̂1) R̂z(ϕ̂1) R̂x(ψ̂1) (13)
R̂z(α̂45) R̂x(θ̂5) R̂z(α̂51) R̂x(θ̂1) R̂z(α̂12) = R̂x(φ̂2) R̂z(ϕ̂2) R̂x(ψ̂2) (14)

and substituting in equation (12):

R̂x(φ̂1) R̂z(ϕ̂1) R̂x(ψ̂1) = R̂x(θ̂4 + φ̂2) R̂z(ϕ̂2) R̂x(ψ̂2 + θ̂2). (15)

Due to the uniqueness of the Euler’s decomposition for ϕ ∈ [0, π), a necessary condition for (15) to be fulfilled is
ϕ̂1 = ±ϕ̂2, which can be expressed equivalently as cos ϕ̂1 = cos ϕ̂2. Note that this condition is also sufficient since θ̂4
and θ̂2 correspond to C pairs, so that their real and dual parts can be chosen to satisfy θ̂4 + φ̂2 = φ̂1 and ψ̂2 + θ̂2 = ψ̂1.
The value of cos ϕ̂1 only depends on the rotational variable θ3, and is given by the (1,1) matrix element of the left hand
side of (13). Writing ϕ̂1 = ϕ1 + εd1, the real and dual parts of cos ϕ̂1 as functions of θ3 are given by:{

cos ϕ1 = A + B cos θ3
d1 sin ϕ1 =C + D cos θ3 + E sin θ3

(16)

with

A = c34c23

B = −s34s23

C = −a23s23c34 − a34s34c23

D = −a34s23c34 − a23s34c23

E = t3s34s23

where ci j = cosαi j and si j = sinαi j.
By its side, the value of cos ϕ̂2 depends on the rotational variables θ1 and θ5, and is given by the (1,1) matrix

element of the left hand side of (14). Writing ϕ̂2 = ϕ2 + εd2, the real and dual parts of cos ϕ̂2 as functions of θ1 and θ5
are given by: {

cos ϕ2 = F +G cos θ1 + H sin θ1
d2 sin ϕ2 = J + K cos θ1 + L sin θ1

(17)

where F,G,H, J,K, L are functions of θ5:
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F = c12c45c51 − c12s45s51 cos θ5
G = −s12c45s51 − s12s45c51 cos θ5
H = s45s12 sin θ5
J = s45s51t5c12 sin θ5 + (s45s51a12s12 − (a45c45s51 + s45c51a51)c12) cos θ5 − c45c51a12s12 − (c45a51s51 + a45s45c51)c12
K = (c51t5 + t1)s45s12 sin θ5 − (c51s45a12c12 + (a45c45c51 − s45s51a51)s12) cos θ5 − c45s51a12c12 − (c45a51c51 − a45s45s51)s12
L = (c45a45s12 + s45a12c12) sin θ5 + (c51t1 + t5)s45s12 cos θ5 + c45s51s12t1

In (17), we collected the terms on θ1 to visualize the linear dependency of ϕ̂2 on sin θ1 and cos θ1. Clearly, the
dependence of ϕ̂2 on sin θ5 and cos θ5 is also linear, since variables θ1 and θ5 play equivalent roles. Using (16) and
(17), the condition cos ϕ̂1 = cos ϕ̂2 gives rise to the system:{

A + B cos θ3 = F +G cos θ1 + H sin θ1
C + D cos θ3 + E sin θ3 = J + K cos θ1 + L sin θ1

(18)

Summarizing, equations (18) are the necessary and sufficient condition for the RCRCR mechanism to close, and only
involve the real variables of the rotational pairs θ1, θ3, and θ5.

5. Input-output functions

We consider the three inversions of the mechanism where the input is the angular variable of a rotational pair: RCRCR,
RRCRC, and RCRRC. For each inversion, the angle of the first R pair is assumed to be the input variable and two
input-output functions are considered, one for each of the other two R pairs. All inversions involve the same loop
equation (18) and, to obtain the input-output function between an input and an output variable, we only need to
eliminate the third variable from the equations. Thus, in what follows, we will refer to the input-output function θ j(θi)
of an RCRCR mechanism, irrespective of the involved inversion, whichever are the input θi and output θ j.

5.1. Input-output function θ1(θ5)
The input-output function θ1(θ5) can be obtained by eliminating θ3 from (18). This can be done by isolating cos θ3
from the first equation, and sin θ3 from the equation obtained with the appropriate combination of the two equations to
eliminate cos θ3, and then using the identity sin2 θ3+cos2 θ3 = 1. The result is a single equation involving a 2nd degree
polynomial in sin θ1 and cos θ1 whose coefficients are in turn 2nd degree polynomials of sin θ5 and cos θ5. Applying
the tangent half-angle substitution T1 = tan(θ1/2), we obtain a fourth-degree polynomial for T1 whose coefficients
depend on θ5. For each given value of the input angle θ5, the corresponding value of θ1 can be obtained computing
the roots of the resulting fourth-degree polynomial.

5.2. Input-output function θ3(θ5)
Once θ1 has been obtained for a given value of the input angle θ5, the corresponding value for θ3 is readily obtained
by substituting the values of θ5 and θ1 in the previously isolated expressions for sin θ3 and cos θ3, from which θ3 is
determined. Alternatively, θ3(θ5) could be directly obtained by eliminating θ1 instead of θ3 in (18) and using a similar
procedure to get a fourth-degree polynomial for T3 = tan(θ3/2) though, in this case, the coefficients of T3 involve 4th
degree polynomials of sin θ5 and cos θ5, making the computation slightly less efficient.

5.3. Input-output function θ5(θ3)
To obtain the input-output function θ5(θ3) we must eliminate θ1 from (18), but in this case, the elimination process
gives rise to expressions for sin θ1 and cos θ1 that are quadratic in sin θ5 and cos θ5, and the identity sin2 θ1+cos2 θ1 = 1
involves a fourth-degree polynomial in sin θ5 and cos θ5, so that computing θ5(θ3) requires finding the roots of an 8th
degree polynomial in T5 = tan(θ5/2) for each input value θ3, what can be done numerically.
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5.4. Input-output functions θ5(θ1), θ3(θ1) and θ1(θ3)
By interchanging the roles of θ1 and θ5 in the above derivations, completely analogous procedures can be applied to
obtain the input-output functions θ5(θ1), θ3(θ1) and θ1(θ3).

Figure 1 shows the different input-output functions obtained by regular sampling of the input variable for a mech-
anism with link dimensions given in Table 1, in coincidence with those shown in [17] and [18]. Only the input-output
functions θ1(θ5), θ3(θ5) and θ1(θ3) are shown since the other three, namely θ1(θ5), θ5(θ3) and θ3(θ1), are respectively
identical to them after interchanging the vertical and horizontal axes.

Table 1: Parameters of the links of the example RCRCR mechanism

α12 = 60◦ α23 = 45◦ α34 = 35◦ α45 = 30◦ α51 = 10◦

a12 = 25 a23 = 30 a34 = 40 a45 = 10 a51 = 32
t1 = 30 t3 = 25 t5 = 0

Figure 1: Input-output functions θ1(θ5), θ3(θ5), and θ1(θ3) for the RCRCR mechanism with the link dimensions of Table 1

6. Determination of the bounding values of the input variables

Equations (16) are the parametric equations of an ellipse in the plane with coordinates (x, y) = (cos ϕ1, d1 sin ϕ1), and
represent the possible values that the dual number cos ϕ̂1(θ3) may take when θ3 takes values in [0, 2π]. Similarly,
equations (17) can be seen as a parameterized family (with parameter θ5) of parametric equations of ellipses (with
parameter θ1) in the plane with coordinates (x, y) = (cos ϕ2, d2 sin ϕ2), and represent the possible values that the dual
number cos ϕ̂2(θ1, θ5) may take when θ1 and θ5 take values in [0, 2π]. In Figure 2, left, the ellipse of the possible
values of cos ϕ̂1(θ3) is represented in blue, and a number of ellipses with different values of parameter θ5 in the family
of ellipses cos ϕ̂2(θ1, θ5) are represented in red for the link parameters of Table 1. Alternatively, equations (17) can
also be seen as a parameterized family (with parameter θ1) of parametric equations of ellipses (with parameter θ5), as
represented in Figure 2, right.

The system of equations (18) imposes the intersection of the ellipse cos ϕ̂1(θ3) with the family of ellipses cos ϕ̂2(θ1, θ5).
Our purpose is the determination of the intervals of values of the input angles, θ1, θ3, or θ5, for which such intersection
exists, which obviously correspond to the feasible values of these variables for the mechanism to close.

6.1. Bounding values of θ5 and θ1

Here, we show the process to find the bounding values of the feasible intervals of θ5. The process to find the bounding
values for θ1 is completely analogous, simply interchanging the roles of θ1 and θ5.

For a fixed value of θ5, the possible values that cos ϕ̂2(θ1, θ5) can take when varying θ1 consist in a single el-
lipse, which may intersect the ellipse cos ϕ̂1(θ3) at a maximum of four points. Since the ellipses cos ϕ̂2(θ1, θ5) change
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Figure 2: Ellipse cos ϕ̂1(θ3) (blue) and family of ellipses cos ϕ̂2(θ1, θ5) (red). Left: Using θ5 as parameter. Right: Using θ1 as parameter.

smoothly with θ5, a necessary condition for a feasible value of θ5 to be a bounding value is that the corresponding el-
lipse becomes tangent to the ellipse cos ϕ̂1(θ3). We can distinguish two cases: that the two ellipses are non-intersecting
and tangent at one point, or that they are tangent at one point and intersecting at two other points1. The first situation
is the only one that can give raise to a transition between contact and non-contact of the ellipses, as corresponds to a
bounding value of θ5. The second situation can only give rise to a change in the number of intersection points, namely,
between 2 and 4, and this corresponds to a value of θ5 bounding just one of the two possible modes of assembly.

An intersection point of the ellipses corresponds to a real root of the quartic for T1 = tan(θ1/2) obtained in Section
5.1, while a tangency point corresponds to a double real root of this quartic. It is a well established result that the
nature of the roots of a quartic of the form ax4 + bx3 + cx2 + dx + e can be assessed by analyzing the signs of the
polynomials of its coefficients defined next:

∆ = 256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e − 27a2d4 + 144ab2ce2 − 6ab2d2e − 80abc2de+
18abcd3 + 16ac4e − 4ac3d2 − 27b4e2 + 18b3cde − 4b3d3 − 4b2c3e + b2c2d2.

D = 64a3e − 16a2c2 + 16ab2c − 16a2bd − 3b4

P = 8ac − 3b2

R = b3 + 8da2 − 4abc

The necessary and sufficient condition for the quartic to have a double root (real or complex) is ∆ = 0. If in
addition the following condition is fulfilled:

(D > 0) ∨ (P > 0 ∧ (D , 0 ∨ R , 0)), (19)

then the quartic has just one double real root and two complex roots, which is just the condition to have a bound of
the input variable. Thus, our first step will be to find the values of θ5 for which ∆ = 0 and then check each of them to
see if condition (19) is satisfied. Note that the expression of ∆ is a 6th degree polynomial of the coefficients, which in
our case are 2nd degree polynomials in sin θ5 and cos θ5, as explained in Section 5.1. If we perform the substitution
T5 = tan(θ5/2) to solve the equation, we end up with a polynomial of degree 24 for T5, whose real roots can be readily
computed with a mathematical software such as Maple.

Figure 3, left, shows, for the example case, the four ellipses cos ϕ̂2(θ1, θ5) tangent to the ellipse cos ϕ̂1(θ3) corre-
sponding to the four real solutions found for θ5 satisfying ∆ = 0. The red ellipses are those for which condition (19)
is fulfilled and correspond to the global bounds of θ5. The green ellipses are those for which condition (19) is not
fulfilled and correspond to the values of the input angle θ5 bounding just one of the two possible modes of assembly
of the mechanism. Similarly, Figure 3, right, shows the ellipses cos ϕ̂2(θ1, θ5) corresponding to the four real solutions

1Unusual singular situations may also occur, including tangency at two different points, and others. Since such situations do not occur for
generic link dimensions, they are not further analyzed here.
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found when the same process is performed for θ1. Table 2 gives the numerical values of the solutions obtained for
both variables.

Figure 3: Ellipses of the family cos ϕ̂2(θ1, θ5) tangent to cos ϕ̂1(θ3). Left: Using θ5 as parameter. Right: Using θ1 as parameter.

Table 2: Values of variables θ5 and θ1 for which the ellipses are tangent.

θ5 θ1

∆ = 0 AND 50.47198◦ 126.86437◦

Condition (19) = True 69.35084◦ 168.41778◦

∆ = 0 AND 148.78672◦ 43.97517◦

Condition (19) = False 307.29956◦ 268.49318◦

6.2. Bounding values of θ3

To find the bounds of θ3 we have to follow a different approach. In this case we have to consider the intersection of the
ellipse cos ϕ̂1(θ3) with the whole family of ellipses cos ϕ̂2(θ1, θ5). The bounding values of θ3 are those corresponding
to the points of the ellipse cos ϕ̂1(θ3) lying at the boundary of the region filled by the ellipses cos ϕ̂2(θ1, θ5) (see Fig.
2), that is, the intersection of cos ϕ̂1(θ3) with the envelope of the ellipses cos ϕ̂2(θ1, θ5).

The envelope curve of a one-parameter family of curves f (x, y, θ) = 0, where θ is the parameter, is commonly
identified with the discriminant curve [19], defined as the set of points satisfying:

f (x, y, θ) = 0

∂ f (x, y, θ)
∂θ

= 0,
(20)

but, since this may include points in the interior of the region filled by the curves, some authors consider as the
envelope the subset of the discriminant curve lying at the boundary of the filled region [20].

In our case, for a given value of the parameter θ5, the system (17) provides the parametric equation of an ellipse
with parameter θ1, and our first step is converting it into a single equation by eliminating θ1. We rewrite (17) by
renaming cos ϕ2 = x and d2 sin ϕ2 = y: {

x = F +G cos θ1 + H sin θ1
y = J + K cos θ1 + L sin θ1

(21)

After eliminating θ1, we get the equation of the parametric family of ellipses cos ϕ̂2(θ1, θ5) in the plane (x, y):

f (x, y, θ5) = (Hx −Gy − KF +GJ)2 + (Lx − Hy − LF + HJ)2 − (LG − HK)2 = 0,
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where the coefficients are functions of θ5, as noted in Section 4. Writing f ′(x, y, θ5) = ∂ f (x, y, θ5)/∂θ5, and applying
the substitution T5 = tan(θ5/2) in both f (x, y, θ5) and f ′(x, y, θ5), we get g(x, y,T5) and g′(x, y,T5), respectively, so
that the discriminant curve of cos ϕ̂2(θ1, θ5) is given by:{

g(x, y,T5) = 0
g′(x, y,T5) = 0. (22)

To find the intersection of the discriminant curve with the ellipse cos ϕ̂1(θ3), we first transform the parametric expres-
sion of the ellipse given by (16) into a single equation through the elimination of θ3. We do this by isolating sin θ3
and cos θ3 and using the identity sin2 θ3 + cos2 θ3 = 1 to get:

E(x, y) = (Ex − EA)2 + (Dx − By − DA + BC)2 − (BE)2 = 0. (23)

where x = cos ϕ1 and y = d1 sin ϕ1. Finally, we can form the system:
g(x, y,T5) = 0
g′(x, y,T5) = 0
E(x, y) = 0

(24)

Solving this system, we get the points (x, y) of the intersection and, since x = cos ϕ1 and y = d1 sin ϕ1, we can obtain
θ3 using (16). Alternatively, the intersection points can be obtained by taking θ1, instead of θ5, as the parameter of
cos ϕ̂2(θ1, θ5).

Figure 4 shows, for our case example, the two discriminant curves of the family of ellipses defined by (22) obtained
by taking θ5 and θ1, respectively, as parameter of cos ϕ̂2(θ1, θ5). The ellipse cos ϕ̂1 defined by (23) is represented in
blue and the intersection points are marked in red. Observe that the two discriminant curves differ in a segment that
appears when the parameter is θ5 but not when the parameter is θ1. This corresponds to a value of θ5 for which the
ellipse in the family degenerates into this segment, a fact that does not happen when the parameter is θ1. Solving the

Figure 4: Intersection of the ellipse cos ϕ̂1(θ3) with the discriminant curve of the family of ellipses cos ϕ̂2(θ1, θ5). Left: cos ϕ̂2(θ1, θ5) parameterized
by θ5. Right: cos ϕ̂2(θ1, θ5) parameterized by θ1

system (24), we obtain 48 solutions, among which 12 are real when the parameter of cos ϕ̂2(θ1, θ5) is θ5, and only 8
when the parameter is θ1 (see Table 3). The four additional real solutions of the first case are in fact just two double
roots, and correspond to the intersections of the ellipse cos ϕ̂1 with the additional segment of the discriminant curve
with parameter θ5. Each one of these solutions corresponds to a value of θ5 which accidentally coincides for two
different configurations with a same value of θ3. This kind of coincidence, however, is not relevant in any way and
does not have any implication on the mobility of the mechanism. Figure 5 shows the linkage with the parameters
given in Table 2 in the configuration corresponding to the extreme position of θ3 = 293.99367◦.
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Table 3: Values of variable θ3 for which the ellipse cos ϕ̂1(θ3) intersects the discriminant curve of cos ϕ̂2(θ1, θ5).

parameter = θ5 parameter = θ1

11.76345◦ 11.76345◦

82.74850◦ 82.74850◦

92.79834◦

142.32368◦ 142.32368◦

150.31604◦ 150.31604◦

230.73735◦ 230.73735◦

239.25964◦ 239.25964◦

244.49660◦

244.75767◦ 244.75767◦

293.99367◦ 293.99367◦

Figure 5: The example RCRCR mechanism in the extreme position of θ3 = 293.99367◦.

7. Determination of the feasible intervals for the input variables

The bounding values obtained in Section 6 partition the domain of each variable into circular intervals which are
either feasible or unfeasible for that variable. It only remains to determine which of these intervals actually contain
the solution values. A direct way to determine if one of the intervals for variable θi is feasible or not consists in
selecting an interior point of the interval and check if it gives rise to some real solution using whichever of the two
input-output functions obtained in Section 6 having θi as the input variable. Next, we apply this procedure to our
example.

7.1. Intervals for θ5 and θ1

For variable θ5 we can use the input-output function θ1(θ5), which is simpler than the alternative θ3(θ5). Since we
have only two bounding values (see Table 2), there are two circular intervals to consider: [50.47198◦, 69.35083◦] and
[69.35083◦, 50.47198◦+360◦]. We check a value in the first interval and see that it gives no solution, so we conclude
that the feasible interval must be θ5 ∈ [69.35083◦, 50.47198◦+360◦]. In a similar way, for variable θ1 we use θ5(θ1)
to determine that the solution interval is θ1 ∈ [168.41778◦, 126.86437◦+360◦]. Thus, a single test for each variable
is enough to determine the right intervals. Additionally, by considering the values in Table 2 not satisfying condition
(19), we can also obtain the intervals allowed for each mode of assembly. We just need to check an interior point in
each resulting interval to see if there are two or four solutions.
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Figure 6 shows, at top, the input-output functions θ1(θ5) and θ3(θ5) for the input variable θ5 with its feasible interval
marked in bold on the horizontal axis. Vertical lines are placed on each extreme value obtained for θ5, showing their
coincidence with the return points of this joint. Red lines correspond to global bounds of the solution interval, while
green lines correspond to bounds of just one mode of assembly. Similarly, Figure 6, bottom, shows the input-output
functions θ5(θ1) and θ3(θ1) for the input variable θ1 and its feasible intervals.

Figure 6: Solution intervals for the input variables θ5 (top) and θ1 (bottom)

7.2. Intervals for θ3

In the case of θ3 we found that the ellipse for cos ϕ̂1(θ3) intersects the discriminant curve of the family of ellipses
for cos ϕ̂2(θ1, θ5) at 10 points when the parameter of the family is θ5, and 8 when the parameter is θ1. In this case,
it is harder to tell which of them lay on the envelope, a necessary condition to correspond to a global bound, and
we rely on the method of checking one point into each resulting interval. Since the envelope must be contained in
both discriminant curves, we can ignore the two extra values obtained when θ5 is the parameter of the family and
just check an interior point in each one of the 8 circular intervals determined by the 8 values common to both cases.
Doing this and joining consecutive feasible intervals we get two solution intervals for θ3: [11.76345◦, 150.31604◦]
and [230.73735◦, 293.99367◦], one for each assembly mode. The result is shown in Figure 7, top. Note that all return
points of the joint are correctly detected.
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Figure 7: Top: Ranges for the input variable θ3. Bottom: detail of the second assembly mode.

In the top left graph of Figure 7, representing θ5(θ3), there are also represented the two extra values obtained for
the intersection with the discriminant curve, and it can be seen that they coincide with the values of θ3 where the
curve intersects with itself reducing the number of solutions from 4 to 3. This is clearly seen on the assembly mode
appearing at left on the graph, but not on that at right due to the proximity of this value with that of a return point
of the variable. The bottom of the figure shows, at left, a first amplification of this mode of assembly where a small
squared area is marked around the intersection, and, at right, a further amplification of the marked area where the two
lines appear visibly separated and coinciding with the crossing and the return points, respectively.

Table 4 summarizes the results obtained for ranges and return points of the input variables in each assembly mode.

8. Conclusions

We have presented a method to obtain analytical expressions for the extrema of the solution intervals of the input
variables corresponding to the R pairs of a spatial RCRCR mechanism. Solution intervals are determined for each
one of the two possible assembly modes of the mechanism. Return points of the input variable which are not interval
limits are also identified as local extrema, which correspond to singular configurations of the mechanism, relevant in
many aspects of mechanism analysis and synthesis.
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Table 4: Intervals and return points of the input variables.

Assembly mode 1 Assembly mode 2
feasible range other return points feasible range other return points

θ1 [168.41778◦, 126.86437◦+360◦] [268.49318◦, 43.97517◦+360◦]
θ5 [69.35083◦, 50.47198◦+360◦] [148.78672◦, 307.29956◦]
θ3 [11.76345◦, 150.31604◦] 82.74850◦, 142.32368◦ [230.73735◦, 293.99367◦] 239.25964◦, 244.75767◦

Future extensions of this work can be addressed to obtain the solution intervals for the non-input variables, i.e.,
those corresponding to the C pairs of the mechanism, and also to deal with other five-link spatial linkages.
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