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Abstract—In this paper, the user–base station (BS) association
problem is addressed to reduce grid consumption in heteroge-
neous cellular networks (HetNets) powered by hybrid energy
sources (grid and renewable energy). The paper proposes a
novel distributed control scheme inspired by population games
and designed considering both atomicity and non-anonymity
– i.e., describing the individual decisions of each agent. The
controller performance is considered from an energy–efficiency
perspective, which requires the guarantee of appropriate quality-
of-service (QoS) levels according to renewable energy availability.
The efficiency of the proposed scheme is compared with other
heuristic and optimal alternatives in two simulation scenarios.
Simulation results show that the proposed approach inspired
by population games reduces grid consumption by 12% when
compared to the traditional best-signal-level association policy.

Index Terms—Energy efficiency, distributed control, HetNets,
population games, atomicity, non-anonymity

I. INTRODUCTION

THE energy efficiency of next-generation telecommuni-
cation networks is a field of special interest today [1]–

[4], particularly with the exponential growth of users expected
in 5G mobile systems [5]. Additionally, previous studies
have shown that about 0.5% of the global energy supply is
consumed by cellular networks [6], [7]. This phenomenon has
motivated different projects focused on the study of ways to re-
duce grid consumption in cellular networks, e.g., ICT-EARTH
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[8], Trend [9], and 5GrEEn [10]. One of the conclusions of
these projects is that most of the grid consumption in cellular
networks is caused by base stations (BSs) and also depends
on the traffic load [11]. For this reason, the study of optimal
mechanisms that balance the load of users over the available
BSs is a key issue in the field of energy efficiency in cellular
networks.

Among different proposed alternatives to improve the en-
ergy efficiency in cellular networks [12], the utilization of
renewable energies as the power source for BSs has become in-
creasingly relevant in recent years. Some studies have shown a
reduction of network costs – capital expenditure (CAPEX) and
– operating expense (OPEX) – and environmental impact using
renewable energy sources in HetNets [13]–[16]. In the same
way, the possibility of deploying infrastructure in off-grid and
connection-limited scenarios (e.g., in developing countries)
allows us to think of renewable energies as a complementary
element in next-generation cellular networks (NGCNs). How-
ever, from the control viewpoint, the integration of renewable
energies into NGCNs presents various challenges related to
network architecture and the stochastic behaviour of renewable
sources [17]. In particular, short response times, network
stability and service availability must be guaranteed, especially
considering the variability of renewable energy sources and the
increased number of agents (users, BSs, network operators).

These challenges are deeply connected with the design of
the user–BS association algorithm, for it determines how the
network uses its resources to serve the users. The user–BS
association problem has been treated in different ways in the
literature [18], [19], as can be seen in [20], where Andrews et
al. present a survey of approaches for load balancing in Het-
Nets. Despite these efforts, there is still a need for exploring
new load-balancing mechanisms, as the problem of associating
users to base stations is nondeterministic polynomial-time
hard (NP-hard) and may not be tractable even for small-sized
HetNets.

A. Contribution

The main contribution of this paper is a novel, distributed
user–BS association scheme inspired by population games
[21], [22] to reduce grid consumption in HetNets powered
by hybrid sources without storage systems. In particular,
characteristics of atomicity and non-anonymity are considered
to take into account that even one user’s decision affects



2

the global performance of the system. In general, the overall
behaviour of a large number of agents in a strategic inter-
action can be represented by a simplified aggregated model
– e.g., considering proportions of agents. In contrast, when
the number of agents is not that large, or when they are
not homogeneous, it is more appropriate to represent the
behaviour of each agent individually [23]. Also, when the
scenario of the game changes dynamically over time, then
it is necessary to implement dynamic-game approaches such
as the one discussed in this paper – i.e., a game-theoretical
approach performing as a learning algorithm seeking Nash
equilibria. It is important to note that atomicity and non-
anonymity are novel features of the proposed population-like-
games approach.

The implemented revision protocol maintains the opti-
mization problem constraints and attains grid consumption
reduction and energy efficiency in a tractable way. Likewise,
the system utility is maximized while the users’ decisions
are taken using partial information of the network state. The
simplicity of the decision process and the computational time
to reach a steady state in the proposed mechanism allows for
its implementation in large-scale scenarios.

B. Assessment
To evaluate the proposed mechanisms, a two-tier HetNet

with small cell-base stations (SCBSs) powered by renewable
energy only is utilized, requiring more demanding control
strategies to guarantee QoS levels. Wind is the only green-
energy source considered, and three different wind scenarios
are used to evaluate the proposed mechanism, with one of
them corresponding to real data of Medellı́n, Colombia. It is
important to note that wind is a highly fluctuating disturbance,
which has a significant effect on user–BS association dynam-
ics, thus increasing the control requirements. This feature is
different to previous works in which more stable sources such
as photovoltaic power generation were assumed [24]–[26].

Different user–BS association mechanisms are also used for
comparison. Currently, in cellular networks, the default associ-
ation scheme is based on the maximum signal-to-interference-
plus-noise ratio (max-SINR), which maximizes the probability
of coverage – i.e., p(SINR > ϕ), where ϕ is a target
SINR. Consequently, max-SINR is the base mechanism used
to compare the efficiency of the proposed population-like-
games approach. Furthermore, two other user–BS association
mechanisms are assessed in this work: a greedy algorithm used
to select the best BS for a user based on the energy source
and the signal level provided [27], and a discrete branch-and-
bound optimization that assigns users to BSs.

The outline of the rest of the article is as follows. In
Section II, some related works are presented. In Section III,
the problem statement is described. Section IV presents the
atomicity and non-anonymity approaches in population-like
games. Section V describes the assessed user–BS association
mechanism. Section VI presents the simulation scenario. In
Section VII, the performance of the proposed schemes is
evaluated, including the analysis of results. Finally, in Section
VIII, the conclusions are provided. A summary of the notation
used in this work can be found in Table I.

TABLE I
NOTATION

Parameter Description

B Set of base stations
b Number of base stations
` Base station’s index
U Set of users
u Number of users
i User’s index
p Possible location
k Discrete time step
N Simulation horizon
Bk Active base stations at time k
Bi,k Available BSs providing service to i ∈ U at k
C`,k Energy consumption of BS ` at k
rpi,` Transmission rate of i ∈ U , connected with a BS ` at k
ψp
i,` SINR perceived by i ∈ U in p from BS `
ϕ Threshold: minimum SINR required to have service

yi,`,k User-BS association indicator for user i with BS ` at time k
zA,k Number of active users at k
zmax
` Users that can be served by a SCBS ` simultaneously
fi,` Fitness function perceived for i ∈ U from BS ` at k
%h,`i,k Switching rule from strategy ` to strategy h for i ∈ U

II. RELATED WORKS

In NGCNs, many efforts have been dedicated to devel-
oping BS-topology management approaches, including load
balancing and traffic redistribution. From the energy efficiency
perspective, Zhou et al. proposed a heuristic algorithm for
target-cell selection combined with a power-control algorithm
for coverage optimization to guide users towards BSs with
a renewable energy supply in the handover process [28].
Likewise, Han and Ansari proposed optimizing the utilization
of green–energy in cellular networks by cell-size optimization
[29]. To this end, they decomposed the problem into two
parts: a multi-stage energy-allocation problem, and a multi-
BS energy-balancing problem. Liu et al. proposed, in [30],
an off-line algorithm to optimize the green-energy allocation
across different time instants to minimize the on-grid energy
consumption of a BS. Silva et al. used the classic optimal-
transportation approach to study the mobile association prob-
lem in cellular networks [31]. These approaches to reducing
consumption in cellular networks differ from our proposal in
the utilization of energy-storage elements as part of the system
and the centralized nature of the proposed algorithms.

Likewise, the high number of interacting users and the de-
mand for short response times and lower overhead information
exchange are challenging issues for distributed control strate-
gies [32]–[34]. From this perspective, in [25], Han and Ansari
presented a virtually distributed algorithm named vGALA to
reach a trade-off between network utilities and green-energy
utilization in software-defined radio access networks powered
by hybrid energy sources. Also, in [35], Ye et al. proposed a
low-complexity distributed algorithm to solve the association
problem jointly with resource allocation in an on-grid HetNet.
They assume that users can be associated with more than
one BS at the same time as a relaxation of the NP-hard
problem. Unlike these proposals, in this paper the user–BS
association problem is not relaxed, maintaining the constraint
of one user being attended by only one BS at any time instant,
and responding to the variations of renewable sources using
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Fig. 1. Scenario: A HetNet powered by hybrid energy sources.

the grid as a backup system.
Note that game theory (GT) has also been used to solve the

user–BS association problem. In [36], the authors presented a
scheme based on a game of two players moving between a
macro-base station and a small cell, with both BSs connected
to the grid. To make the association decision, players used
a distributed algorithm, trying to maximize their utilities
independently. In [37], the user–BS association problem in
HetNets was modelled as a non-cooperative game and solved
with a distributed algorithm inspired by machine learning
techniques. In [38], Khan and Tembine studied the network
selection problem using coalitional games with an evolutionary
perspective. They stated the need for a user-centric paradigm
in fully distributed environments with the multi-objective
characteristics of next-generation network systems. In [39],
a coalitional planning scheme for HetNets is proposed.

III. PROBLEM STATEMENT

The major sources of energy consumption in a cellular
network are base stations (BSs), whose consumption depends
on the number of active users in a given time instant [11].
Hence, a suitable user–BS association mechanism is key
to reducing on-grid consumption. However, lower grid con-
sumption involves lower average transmission rates [40], thus
rendering it necessary to propose schemes that reduce on-
grid consumption while maintaining appropriate transmission
rate values. Another complicating issue is the need for short
decision times, even when there are many nodes. Hence,
control strategies capable of responding adequately to these
requirements must be developed.

A. Network Scenario

HetNets have been designed to respond to NGCN require-
ments and are used in this paper. Consider a two-tier downlink
HetNet such as that in Figure 1, which is composed of one
macro-base station (MBS) and multiple SCBSs. The MBS is
always on and is powered by on-grid energy, while the SCBSs
are powered exclusively by renewable energy without a battery
system. The MBS provides basic coverage, while the SCBSs
are deployed to enhance network capacity and receive traffic
load from the MBS.

Let us define a geographical area A ⊂ R2 where base
stations and users are located. The set of nb ∈ Z>0 base

stations is denoted by B = {1, . . . , nb}, and a set of u ∈ Z>0

users is denoted by U = {1, . . . , u}. Let p ∈ A denote a
possible location, and let b = 1 ∈ B represent the MBS.
Let k ∈ Z≥0 denote the discrete time with a sampling time
given by τ ∈ R>0 seconds, and let N ∈ Z>0 be a simulation
horizon. Each SCBS updates its cell size every τ seconds by
changing the transmission power according to the amount of
renewable energy available at its location. In each time instant
k, a set of Bi,k ⊂ B base stations is available to provide
service to user i ∈ U .

For simplicity, the inter-BS interference will be modelled
as a static value that includes the influence of other BSs
present in the network, as in [25], [41]. This value varies
depending on the activities in the interfering BSs, which can be
coordinated via time-domain, frequency-domain, and power-
control techniques [42]. Additionally, this simplification allows
us to model the network as one MBS and multiple SCBSs
without lacking generality.

B. Energy Model

The energy-consumption model used in this paper was
proposed by Project EARTH and has been widely used in
works related to energy efficiency in cellular networks [24],
[25], [43]. According to Project EARTH, the energy con-
sumption of a BS consists of two parts: the static power
consumption and the dynamic power consumption [11]. The
energy consumption can be expressed as

C`,k = ∆`δ`,kT`,k + ES
` , ∀` ∈ B, (1)

where ∆` is the slope of load-dependent energy consumption
of BS `, T`,k is the transmission power of BS ` at the kth

time instant, δ`,k is the traffic load of BS ` at the kth time
instant and ES

` is the static energy consumption of BS ` in
each time instant. Static power consumption is related to the
energy required for the normal operation of a BS, and dynamic
power consumption is the additional energy demand caused by
the traffic load, which is approximated by a linear function of
the load.

Here, the total energy consumption of the network scenario
in a given time instant is the sum of the grid consumption (due
to the MBS) and the green consumption (due to the SCBSs).
Hence, the reduction of consumption in BS ` = 1 (MBS) is
the key to increasing energy efficiency.

Regarding renewable energy, wind is considered as the
source of renewable power in this work. In particular, real
data is used to define a Weibull probability distribution that
represents the expected wind speed at a specific location and
time interval. In this case, the Weibull parameters are fitted
with real data from Medellı́n (Colombia) [44]. This fact allows
a calculation of the amount of energy that can be produced by
a micro-turbine in a time period.

C. Traffic Model

According to the features of renewable energy sources and
the traffic behaviour, it is possible to assume that the network
operates with two timescales: a long timescale and a short
timescale [45], [46]. In the long timescale, traffic changes with
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time (temporal variability of traffic), and decisions about net-
work planning are taken. In the short timescale, cell-selection
decisions are taken on the assumption that the operational
states of the base stations are almost constant within a time
instant. For this reason, the conditions of the system are
assumed to be constant in each time instant to solve the game
and make the corresponding decisions. In the next time instant,
the state of the system is measured again and a new game is
solved following the same principle. Hence, since the user–BS
association problem deals with short-timescale decisions, the
temporal variability of traffic over the cellular network can be
ignored. Nevertheless, the spatial variability of traffic requests
is considered and modelled as an inhomogeneous Poisson
point process, as in [41]. The traffic size, the arrival rate
per area λp ∈ R≥0, for all p ∈ A, and the average traffic
size µp ∈ R≥0, as well as for all p ∈ A, are independently
distributed.

A mobile user i ∈ U at location p ∈ A associated with a
BS ` ∈ Bi,k, has a transmission rate denoted by rpi,` ∈ R≥0,
for all p ∈ A, which can be generally expressed according to
the Shannon–Hartley theorem [41] as

rpi,`,k = W` · log2(1 +ψp
i,`,k), ∀i ∈ U , ` ∈ Bi,k, p ∈ A, (2)

where W` ∈ R≥0, for all ` ∈ B, is the operating bandwidth.
The signal received by user i ∈ U at location p ∈ A from
` ∈ Bi,k is given by the signal-to-interference-plus-noise ratio
(SINR) denoted by ψp

i,`,k ∈ R≥0, for all p ∈ A, and computed
as

ψp
i,` =

T`g
p
`

σ2 +
∑

j∈B\{`} Tjg
p
j

, ∀j, ` ∈ B, (3)

where T` ∈ R denotes the transmission power, for all ` ∈ B,
and gp` is the channel gain between the `th BS and the user
at location p. Additionally, the parameter σ2 ∈ R denotes the
noise power level. Note that the channel gain here reflects only
the slow fading, including the path loss and the shadowing; fast
fading is not considered. In (3), the denominator representing
the interfering BS’s transmission towards a user at location
p. ψp

i,` must be higher than a threshold denoted by ϕ ∈ R so
that user i ∈ U has a useful signal. For simplicity, the location
indicator p is omitted when referring to user i ∈ U .

It is also assumed that the network’s frequency scheduling
is such that each SCBS can only serve a fixed number zmax

`

of users simultaneously for all ` ∈ B\{1}. Nevertheless, the
MBS limit for the number of served users is defined by all
active users at a time instant zA,k. This assumption guarantees
service availability for all time instants without renewable
energy.

Hence, note that the bandwidth assigned to user i ∈ U is
affected by the number of users connected to the ` ∈ Bi,k,
as the channels available must be shared between the active
users.

Assuming that mobile users are uniformly distributed in the
coverage area of all BSs, the traffic load of the `th in the kth

time instant can be expressed as

δ`,k =

∑
i∈U yi,`,k

U`,k
, ∀` ∈ B, (4)

with

U`,k =

{
zA,k, if ` = 1,
zmax
` , otherwise,

where yi,` is the user association indicator – i.e., if user i ∈
U is associated to the ` ∈ B, then yi,` = 1, and yi,` = 0
otherwise. Moreover, note that 0 ≤ δ` ≤ 1, ∀` ∈ B.

The average transmission rate per user in the kth time
instant depends on ψ and the number of users connected to
the serving BS [47], which allows us to express (2) as

r̃pi,`,k =
W`∑

i∈U yi,`,k
log2(1 + ψp

i,`,k), ∀ i ∈ U , ` ∈ Bi,k. (5)

In addition, it is assumed that, at each time instant, a user
can be associated with the `th BS if the received signal level
ψp
i,`,k is greater than a threshold ϕ that indicates the minimum

signal level required by a user to have service.

D. Quality-of-service Objective

As stated before, an important element in the on-grid
consumption reduction problem is to maintain appropriate QoS
levels according to the availability of renewable energy. In this
paper, the lower QoS band is defined as a 5% reduction of
the average transmission rate. This percentage is equivalent to
the degradation caused by changing the QoS classes in LTE
Networks [48].

E. On-grid Energy-consumption Optimization Problem

As previously mentioned, on-grid consumption reduction
and adequate transmission rates are design requirements in
NGCNs. From (1), notice that the BS energy consumption
depends on the traffic load – i.e., the number of active
users connected to a BS. For this reason, the grid-energy-
consumption reduction objective will be formulated as the
minimization of the number of users connected to the MBS.
Hence, the optimization problem has two objectives: (i) to re-
duce the overall system grid consumption and, (ii) to maximize
the average transmission rate per user. According to this, it is
possible to formulate the following optimization problem:

min
yi,1,k,...,yn,1,k

J(yi,1,k, . . . , yn,1,k) =

N∑
k=1

{
γ1
∑
i∈U

yi,1,k − γ2
W`∑

i∈U yi,`,k
log2(1 + ψp

i,`,k)

}
,

(6)

s.t. ∑
i∈U

yi,`,k ≤ zmax
` , ∀` ∈ B\{1}, k ∈ [0, N ] ∩ Z≥0, (7a)

yi,`,k.ψ
p
i,`,k ≥ ϕ, ∀i ∈ U , ` ∈ Bi,k, k ∈ [0, N ] ∩ Z≥0,

(7b)∑
`∈B

yi,`,k ≤ 1, ∀i ∈ U , k ∈ [0, N ] ∩ Z≥0, (7c)

yi,`,k ∈ {0, 1}, ∀i ∈ U , ` ∈ B, k ∈ [0, N ] ∩ Z≥0, (7d)

where (6) is the objective function, which focuses on mini-
mizing consumption from the grid and maximizing the user’s
transmission rate with an optimal assignment of active users
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to available BSs in each time instant. Moreover γ1, γ2 ∈ R
are weights assigned to each objective. Inequalities (7a - 7d)
are the problem constraints: (7a) establishes that a small cell
` ∈ B\{1} can serve a maximum of zmax

` users simultane-
ously; (7b) is the user’s received signal level constraint; (7c)
requires that a user is served by only one BS in a time instant;
and (7d) establishes that yi,` is a binary variable.

The optimization problem can be solved according to
the specific network characteristics at each time instant k,
including the variability of the renewable energy sources.
Nevertheless, the optimization problem involves mixed-integer
variables and requires full information about the whole status
of the base stations and user to be solved. In the next section,
a population-like-games approach is proposed in order to
find a feasible solution for the problem associated with the
minimization of energy consumption and maximization of the
transmission rate in a distributed fashion.

IV. POPULATION-LIKE GAME
This section addresses the design of a population-like game

by means of the appropriate incentives. To this end, the
same reasoning used to state the optimization problem in
(6) and (7) is followed, and the relationships between the
game-theoretical approach and the optimization problem are
highlighted when necessary. Two of the main characteristics of
population dynamics, which can be seen as restrictive features
for applying this game-theoretical approach in some specific
engineering applications, are the anonymity and non-atomicity
[23].

Definition 1. (Anonymity [23]) The anonymity describes the
situation in which the index of decision makers does not affect
the utility function. This concept can also be associated with
the homogeneousness of decision makers selecting strategies
– i.e., decision makers are assumed to be indistinguishable
within the same strategy. ♦

Definition 2. (Atomicity [23]) The atomicity describes the
situation in which a single decision maker affects the global
utility – i.e., decisions made by an individual player impact
the overall performance. ♦

This paper presents an alternative population-like-games
approach that allows us to deal with atomicity and non-
anonymity. In fact, it is assumed that each decision maker
within the population is different, and consequently, each de-
cision maker has a different utility. Therefore, each individual
decision maker affects the global utility. In addition, all the
decision makers selecting the same strategy are considered to
be different even though they belong to the same strategy.
Also, given that the population-like-games approach looks at
the optimization problem (6) from a different perspective,
the equivalence between elements in the population dynamics
approach with elements in the optimization problem is shown
in Table II.

A. Atomicity and Non-anonymity in Population-like Games

Let U be the set of rational decision makers in a population
located throughout a bi-dimensional geographical area denoted

by A ⊂ R2. These agents are rational in the sense that they
make decisions to improve their individual benefits. Moreover,
let B = {1, . . . , nb} denote the set of choices that the set of
decision makers have. More precisely, let Bpi,k ⊂ B denote
the possible choices that the ith decision maker has at time
instant k depending on its geographical position p ∈ A, where
Bpi,k 6= ∅, for all i ∈ U , k ∈ Z>0, p ∈ A. In other words, the
sets Bi, for all i ∈ U define possible interaction sets. For
simplicity, the superscript p is omitted, indicating that the set
of available strategies for each decision maker depends on its
position – i.e., Bi,k = Bpi,k. In addition, BSs in the set Bpi,k
are the ones satisfying the transmission threshold in (7b).

The set of decision makers selecting the strategy ` ∈ B at
time instant k is given by U`

k ⊆ U . Note that the cardinality
|U`

k| =
∑

i∈U yi,`,k for all k and |U| =
∑

`∈B
∑

i∈U yi,`,k.
Moreover, consider a strategic profile given by a distribution
of decision makers U throughout the set of choices B – i.e.,(
U1
k , . . . ,Ub

k

)
, which represents the population state, where⋂

`∈B U`
k = ∅, and

⋃
`∈B U`

k = U . Also, let gi = {` ∈ B : i ∈
U`} return the strategy that a decision maker i ∈ U choose.
In addition, let the amount of decision makers be constrained
at each possible choice, i.e., |U`

k| ≤ zmax
` , being zmax

` ∈ Z>0,
for all ` ∈ B.

Assumption 1. The initial distribution of decision makers(
U1
0 , . . . ,Ub

0

)
in the population is feasible – i.e., |U`

0 | ≤ zmax
` ,

for all ` ∈ B. This implies that n = |U| ≤
∑

`∈B z
max
` .

Moreover,
⋂

`∈B U`
0 = ∅, and

⋃
`∈B U`

0 = U . ♦

Let fi,`,k ∈ R be the fitness function for decision maker
i ∈ U selecting strategy ` ∈ B at time instant k ∈ Z>0. If
two decision makers i, u ∈ U select the same strategy ` ∈
B, then fi,`,k 6= fu,`,k, since the population considers non-
anonymity. Furthermore, since decision maker i ∈ U cannot
select the strategies B\Bi,k, then for simplicity it is considered
that the decision maker has no incentives to move to such
a strategy – i.e., fi,`,k = 0, for all B\Bi,k. The objective
within the population is to achieve a local ε-equilibrium [49],
as presented in Definition 3, which also provides notions about
the local Nash equilibrium [50], [51].

Definition 3. (Local ε-equilibrium). Let ε ∈ R≥0. A popula-
tion distribution

(
U1∗, . . . ,Ub∗) is a local ε-equilibrium with

respect to the interaction sets Bi if all decision makers i ∈ U`∗,
for all ` ∈ B, satisfy the following condition:

fi,` ≥ fi,`′ − ε, ∀ `, `′ ∈
{
h ∈ Bi : |Uh| < zmax

h

}
. (8)

On the other hand, if condition (8) holds with ε = 0, then(
U1∗, . . . ,Ub∗) is a local Nash equilibrium with respect to

the interaction sets Bi. ♦

The population evolves according to switching rules, which
determine the timing and the result of decision makers’
choices. Let %h,`i,k ∈ R≥0 represent the switching rule for the
ith decision maker. Therefore, if %h,`i,k > 0, then decision maker
i ∈ U has incentives to move from the hth strategy to the `th

at time instant k. The evolution of the population is made
by assigning a revision opportunity as described in [52]: a
decision maker is chosen randomly from the population, and
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TABLE II
EQUIVALENCE BETWEEN POPULATION-LIKE DYNAMICS AND THE OPTIMIZATION PROBLEM

Variable Population-like dynamics Optimization problem
B Set of possible strategies Set of base stations
b Number of strategies Number of base stations
` Strategy’s index Base station’s index
U Set of rational decision makers Set of users
u Number of decision makers Number of users
i Decision maker’s index User’s index

Bp
i,k

Set of possible strategies for decision maker i at time
instant k depending on its geographical position p

Set of base stations available to provide service to user
i at location p in a time instant k

U`
k

Set of decision makers selecting the strategy ` at time
instant k Number of users connected to BS ` at time instant k

yi,`
Agent-strategy choice indicator for decision maker i
with strategy `

User-BS association indicator for user i with BS `

zmax
`

Maximum number of possible decision makers select-
ing strategy ` simultaneously

Number of users that can be served by a SCBS `
simultaneously

it receives an opportunity to decide whether or not it should
move to another strategy by comparing its utility with those
it would obtain by selecting the strategy with a higher fitness
function from the set Bi,k.

Assumption 2. Suppose that decision maker i ∈ U receives a
revision opportunity. Then, before its next revision opportunity,
all decision makers u ∈ U\{i} receive a revision opportunity.
♦

With i ∈ U being the decision maker with a revision
opportunity, the procedure is as follows:

Ugi
k+1 = Ugi

k \
{
i sgn

(
%gi,`i,k

)}
, for any i ∈ U , (9a)

U`
k+1 = U`

k ∪
{
i sgn

(
%gi,`i,k

)}
\{0} , for any ` ∈ Bi,k. (9b)

Notice that the equilibrium in (9) is achieved when %gi,`i =
0, for all i ∈ U , ` ∈ Bi – i.e., when decision maker i ∈ U
has no incentives to move to any strategy ` ∈ Bi,k. In such a
case, U`∗

k+1 = U`∗
k , for all ` ∈ B.

Remark 1. Notice that in (9) each decision maker i ∈ U does
not require full information from the population, but only local
information from Bi. ♦

Now, it is necessary to define an appropriate switching rule
for the population. Consider the following switching rule:

%h,`i,k=
(
zmax
` − |U`

k|
)

max (0, fi,`,k−fih,k− ε) ,∀h, `∈Bi,
(10)

where ε ∈ R≥0. Notice that the switching rule in (10) indicates
that the ith decision maker has incentives to move from the hth

to the `th strategy only if it represents an improvement over
its utilities greater than ε and there is available capacity at the
`th strategy. Associating the designed revision protocol with
the optimization problem in (6) and (7), it can be seen that
the switching rate guarantees the satisfaction of constraint (7a)
through the term (zmax

` − |U`
k|). Hence, Proposition 1 shows

that an equilibrium in dynamics (9) with the aforementioned

switching rule implies a local ε-equilibrium with respect to
the allowed interactions within the population.

Proposition 1. (ε-equilibrium point) The equilibrium point of
the dynamics in (9) with the switching rule in (10) implies a
local ε-equilibrium with respect to the interaction sets Bi, for
all i ∈ U .

Proof. It immediately follows from the fact that the equilib-
rium in (9) implies that %gi,`i = 0, with i ∈ Ugi∗, for all i ∈ U ,
` ∈ Bi. Therefore, fi,`,k ≤ figi,k + ε, with i ∈ Ugi∗, for all
i ∈ U , ` ∈ Bi such that zmax

` < |U`
k|, which is the required

conclusion according to Definition 3.

In addition to obtaining a local equilibrium (Definition 3),
Proposition 2 shows the satisfaction of the stated constraints
involving the initial condition in Assumption 1, for all the time
instants k ∈ Z>0.

Proposition 2. (Satisfaction of constraints) If Assumption 1
holds, then |U`

k| ≤ zmax
` ,

⋂
`∈B U`

k = ∅, and
⋃

`∈B U`
k = U

under the dynamics in (9) for all time instants k ∈ Z>0.

Proof. Regarding the first constraint, it is assumed that |U`
0 | ≤

zmax
` , for all ` ∈ B. Moreover, notice that the cardinality
|U`

k| can only grow one by one, for all ` ∈ B, due to the
fact that zmax

` ∈ Z>0 and that %gi,`i,k = 0 in (9) if constraint
|U`

k| ≤ zmax
` is active. Then |U`

k| ≤ zmax
` , for all ` ∈ B

and all k ∈ Z>0. Regarding the second constraint, notice that
0 /∈ U`

k, for all ` ∈ B. It follows that if
⋂

`∈B U`
k = ∅, then

i ∈ U , Ugi
k ∩ U`

k = ∅, and {Ugi
k \T } ∩

{
U`
k ∪ T

}
= ∅, for

any set T . Regarding the third constraint: Ugi
k+1 ∪ U`

k+1 ={
Ugi
k \
{
i sgn

(
%gi,`i,k

)}}
∪
{
U`
k ∪

{
i sgn

(
%gi,`i,k

)}
\ {0}

}
, or

equivalently, Ugi
k+1 ∪ U`

k+1 = Ugi
k ∪ U`

k, completing the
proof.

Finally, note that the result presented in Proposition 2
guarantees that each user is served by only one base station,
which corresponds to the constraint presented in (7c).
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B. Population-like-game Statement

The optimization problem (6) is a multi-objective mixed
integer problem (MIP), a well-known NP-hard problem [53].
However, the distributed control strategy based on population
games proposed in this paper is a suitable alternative for reduc-
ing the computational burden. Reducing computational burden
is possible since each user solves a limited maximization
problem based only on the comparison of its current fitness
function offered by the subset of BSs (Bi,k).

Another key element in the proposed game-theory-based-
mechanism is the possibility of designing a fitness function
according to the cost function in the optimization problem. In
this case, the fitness function maintains the weights γ1 and γ2
defined in (6) for each objective and includes an incentive to
choose a BS powered by renewable energy. In other words, the
incentive allows prioritization of SCBS selection even if the
received signal level of an MBS is better. The fitness function
is expressed as

fi,`,k = γ1Pi,` + γ2r̃
p
i,`,k, ∀` ∈ Bi,k, (11)

where the condition γ1+γ2 = 1 must hold, Pi,` is the incentive
received for user i ∈ U to choose a cell ` ∈ Bi according to
the energy source, and r̃pi,`,k is the normalized transmission
rate that can receive user i ∈ U from ` ∈ Bi at time instant
k ∈ [0, N ] ∩ Z≥0. As previously mentioned, on-grid energy
has a higher economic and environmental impact compared to
green-energy, and thus it is suitable to consider a network-
operator policy focused on encouraging users to use cells
powered by renewable energies. For this reason, this paper
proposes a green incentive G for users such that

Pi` =

{
G, if ` = 1,
2G, if ` ∈ B\{1}. (12)

The definition of (12) is arbitrary and other options could be
considered as well. Note that an advantage of the green incen-
tive is the possibility for the network operator to modify the
relation between the energy sources according to the desired
priorities. Given the energy-efficiency and grid-consumption-
reduction approaches considered in this paper, it was defined
as having a double priority in BSs powered by renewable
energies.

It is important to note that the green incentive does not have
a physical meaning itself, as it is a tuning parameter that allow
operators to design policies focusing on prioritizing the green-
energy use. It is possible to interpret G as the maximum extent
of the trade-off between a user’s normalized transmission rate
and the use of green energy when equal weights are applied
to the two objectives in (11) – i.e., when γ1 = γ2. In this way,
the value assigned to G is directly related to the importance
that the network operator assigns to green energies.

In the stated case, different values for G were defined
arbitrarily with the aim of analysing their impact on energy
consumption. However, in real applications, the G weight
must be defined by the operator according to its management
policies. Finally, it must be mentioned that the green-incentive
definition is related to future work focused on analysing the
economic impact of integrating renewable energies in HetNets.

C. Relationship between Optimization and the Game
As has been stated, the original optimization problem (6)

with constraints (7) presents serious difficulties to be solved
in real time. For this reason, the present game-theoretical
approach is proposed. In this subsection, we show how the
original optimization and the game are connected.

First, it must be noted that the solution provided by the
proposed Algorithm 1 is feasible for the original optimization
problem. In particular, constraint (7a) is satisfied by the
term (zmax

` − |U`
k|) in the switching rule; constraint (7b) is

fulfilled because the base stations in set Bpi,k are the only ones
satisfying the requested transmission threshold; constraint (7c)
is satisfied by Proposition 2; and, finally, (7d) is a constraint to
specify the binary nature of certain optimization variables in
the original problem, which are directly satisfied by Algorithm
1.

Once it has been established that the solution of the game
theoretical approach is a feasible solution of the original
optimization problem, it is necessary to analyse the optimality
of the solution. As can be seen, the function optimized in
(6) is centralized, whereas the population-like-game approach
uses a switching rule based on local information. In addition,
the optimization problem uses a time horizon of length N so
it can exploit the centralized decision-making capabilities in
a proactive manner. From this viewpoint, it becomes clear
that the game-theoretical approach provides a suboptimal
solution of problem (6). Nevertheless, the fitness function
and the corresponding switching rule overcome some of the
aforementioned limitations by promoting similar goals to those
of (6). In particular, notice that the utility function in (11)
takes into account the same two objectives corresponding to
the cost function in (6). On one hand, the first term in (6) aims
to minimize the number of agents served by the MBS, while
the first incentive in (11) assigns more priority to avoiding
connections to the MBS. On the other hand, the second term
in (6) intends to improve the transmission rate for the users,
which is the same intention of the second term in the utility
function in (11). Thus, the relationship between the objectives
in the optimization problem and the incentives in the game
approach are related to each other.

All things considered, the proposed population-like game
approach can be considered a heuristical method that provides
a suboptimal solution with feasibility guarantees for the origi-
nal problem (6) with constraints (7). Nevertheless, and as will
be seen in the simulation section, the degree of suboptimality
of the proposed approach is small, and much can be gained
in terms of computation speed by using Algorithm 1.

V. ASSESSED METHODS

In this section, three other techniques are presented and
compared with the proposed game-theory-based scheme. The
first one is the standard best-signal-level mechanism. The
second is based on traditional discrete optimization techniques.
Finally, a greedy algorithm is used.

A. Game-theory Scheme
The energy–efficiency problem is studied using a distributed

population-like dynamic approach with atomicity and non-
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anonymity characteristics. Hence, in each time instant k ∈
[0, N ] a user i ∈ U with a revision opportunity evaluates
the fitness function fi,` among available choices Bpi,k ⊂ B
and selects the destination BS according to the switching
rule %h,`i,k . The distributed user–BS association mechanism is
implemented according to Algorithm 1 and Algorithm 2.

Algorithm 1 Distributed population-like dynamic for user–BS
association

/*Initial association of decision makers to strategy 1
(MBS)*/
for i = 1 to u do
yi,1 = 1
for h = 2 to b do
yi,h = 0

end for
end for
/*Evaluation of switching rule from strategy h to strategy
` for user i according to the best fitness function in his
neighbourhood (Bi,k)*/
k = 0
while 1 do
k = k + 1
Obtain Uk from the current total users in the network
while Uk 6= ∅ do

i=rand (Uk), Uk = Uk \ {i}
(`, fi,`)=bestneighbour(i)
Compute %gi,`i,k according to (10)
if %gi,`i,k > 0 then
yi,gi = 0, yi,` = 1

end if
end while

end while

Algorithm 2 Function: bestneighbour
/*Calculation of the highest utility function in the neigh-
bourhood of user i (Bi,k)*/

Require: i
fitness = 0,bestneighbour = 0
for ` = 1 to b do

if ψi,` ≥ ϕ and bestneighbour < fi,` then
bestneighbour = `
fitness = fi,`

end if
end for
return bestneighbour,fitness

B. Best-signal-level Policy (SLP)

In traditional cellular networks, mobile users connect to
the BS that offers the best SINR, which depends on BS
power transmission, path loss, and interference from other
BSs. However, this mechanism is not entirely adequate for
HetNets since SCBSs with available resources can be ignored
by users when receiving a stronger signal from an MBS [47].
This procedure will be referred to as the traditional scheme,

and it will be the baseline for evaluating the performance of
the proposed game-theory-based mechanism.

C. Direct Optimization (DO)

The optimal connection policy is attained through solving
(6) by means of a mixed-integer linear optimization problem
(MILP). To find a solution, a constraint and a discrete opti-
mizer based on a branch-and-bound method is used [54].

D. Greedy Algorithm (GA)

The third user–BS association method considered is a
greedy algorithm based on the best signal level received by
a user and the energy source of each BS [27]. This algorithm
allows ranking of BSs according to the best function objective
value perceived by each user. The greedy mechanism works as
follows: in a first round, a user assesses all potential BSs and
ranks them according to the objective function value obtained.
This process is repeated for all users. Once all BSs are assessed
by all users, the association process is made according to
the best values until reaching the BS capacity. The process
continues until assigning all users to a BS.

VI. CASE STUDY

The scenario described in Section III was implemented to
evaluate the proposed mechanism. The case study considered
is composed of one MBS and 36 overlapping SCBSs. The
MBS is powered by on-grid energy, which is always on,
ensuring constant coverage over the area. Only large-scale
path loss between users and BSs is considered in the simula-
tion – i.e., the signal level received decreases with distance.
Another type of path loss such as small-scale fading was not
considered, since its duration is shorter than the duration of the
user–BS association process. The file transfer requests follow
an homogeneous Poisson point process where λp = λ for the
sake of simplicity.

This case study presents different simplifications but is
complex enough to show the potential of the method proposed
in the paper. Despite some simplifications made in the case
study, it maintains generality and is representative of a real
scenario where the complexity of the association process is
caused in part by the number of BSs and active users.

From a telecommunications viewpoint, technical parameters
of the simulation are defined according to a Long-Term-
Evolution system in a coverage area of 3.5 km2 [55]. The
distance between BSs is 500 m and users are uniformly
distributed across the coverage area. Table III summarizes the
parameters used in the simulation.

A. Simulation Scenarios

To evaluate the performance of the proposed game-theory-
based mechanism, three scenarios were used:

1 Static scenario. In this scenario, users are not moving
and a constant wind it is assumed to have all BSs active
during the simulation horizon.

2 Dynamic scenario with controlled wind. This scenario
uses a controlled wind profile to enable different groups
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TABLE III
SIMULATION PARAMETERS

Parameter Value Units

Coverage Area 3.5 km2

System LTE -
BW LTE 20 MHz
RB per BS 100 -
N. Macro-base-stations 1 -
N. MBS Sectors 1 -
N. SCBSs 36 -
Inter-site distance 500 m
Tx power MBS 43 dBm
Tx power SCBS 22 dBm
Static Power Cons. MBS 130 W
Static Power Cons. SCBS 6.8 W
Consumption Slope MBS 4.7 -
Consumption Slope SCBS 4.0 -
Path Loss between MBS and User Cost 231 model -
Antenna Gain 15 dBi
Max. Users Simultaneously for an SCBS 100 -
Receiver Sensitivity −107.5 dBm
Size of Request File 500 KB
Time-instant Length 1 s
Mobility Model Random walk point -
Mobility Speed 4 km/h
γ1 0.6 -
γ2 0.4 -
G 0.5 -

of SCBSs during specific time periods. The number of
active BSs changes according to a pre-defined sequence,
and users are moving.

3 Fully dynamic scenario. In this scenario, the number of
active BSs is defined by the stochastic wind behaviour.
Also, users are moving and data transmission requests
are variable. This configuration uses a variable wind
profile fitted from real data. In particular, the simulation
considers the behaviour of the wind in Medellı́n, based
on 3 years of data provided by weather stations of SIATA
[44]. Using @Risk7, it was possible to define three
sectors with different wind behaviours in the geographic
area. Sector 1 presents a mean wind speed of 1.787 m/s,
Sector 2 has a mean wind speed of 1.880 m/s, and Sector
3 has a mean wind speed of 2.238 m/s.

Scenario 1 is used to evaluate the stability of the game. In
Scenarios 2 and 3, the game-theory-based scheme is compared
to the traditional best-signal-level mechanism and evaluated
by using key performance indicators (KPI) related to grid
consumption, average transmission rate per user, and average
utility per user.

It is important to note that the spatial variability of traffic
allows variations in the number of active users along the
simulation time – in other words, the average arrival rate per
area λp is the same along the simulation time, but the number
of active users changes in each time instant.

B. Renewable Power Potential

As mentioned previously, the renewable source selected to
power the SCBSs is wind. According to the average wind
speed, a micro-turbine was selected for the SCBSs with a start-
up wind speed of 2 m/s and power potential of 26 watts.

The simulation is configured with different average wind
speeds in the sectors under the coverage area of the MBS.
Wind dynamics vary every minute, and therefore there are
three possible green-energy scenarios: (1) no SCBS has suf-
ficient green energy, (2) the SCBSs of only one sector have
green energy to operate, and (3) the SCBSs of two or more
sectors have green energy (this case could even include all
SCBSs having energy in the same period).

VII. RESULTS AND DISCUSSION

Using MATLAB R©, it was possible to evaluate the proposed
schemes and their impact on grid-power consumption and
users’ transmission rates. As stated previously, the dynamics
of the user–BS association problem are made faster than the
temporal variability of traffic on the cellular network, which is
considered as constant. Nevertheless, the wind speed changes
every minute, and there is spatial variability in the number
of users due to changes in the arrival of active users and cell
selection. For this reason, a simulation horizon of nine minutes
(540 time instants) is sufficient to assess the behaviour of the
proposed approach.

A. Analysis of Scenarios

Figure 2 presents the behaviour of the proposed mechanism
in the static scenario with 1000 users. This scenario is con-
figured with all BSs active during the simulation horizon –
Figure 4(a) – and has a limit of 100 active users connected
simultaneously at each BS. The initial condition (k = 0) to
start the process is that users are associated to the BS with the
bets signal level.

In Figure 2(a), it is possible to observe that users perceive
greater utility from SCBSs, represented by grey lines, com-
pared to the MBS, represented by the black line. This result
is in accordance with the proposed utility function, whereby
the decision process contains an incentive to use green energy.
Another element to note is the stability of average utility per
BS after 300 time instants – the time in which the equilibrium
between the energy source of a BS, the number of users
connected, and the transmission rate that BS can offer reach
the steady state in each cell and users have no incentive to
deviate from their decision.

In Figure 2(b), it is possible to observe the tendency of the
number of users connected to each BS. The solid black line
represents the MBS, the pointed line is the number of users
not served, and the grey lines are users connected to small
cells. The first element to note is the accomplishment of the
base station capacity constraint, where all values are less than
100. Also, it is possible to observe an initial concentration of
users of the MBS according to the initial condition of selecting
the BS with the best signal level. Once the process begins, the
distribution of users is modified to reach an equilibrium, as can
be seen after 300 time instants. In the same way, the number
of users that are not served is high in the initial time instants,
which is caused by the limit on the BSs’ capacity, but the
game balances the distribution of users until a null value.

Regarding the performance of the proposed mechanism, in
Figure 4(d) it is possible to observe a gradual reduction of grid
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consumption along the simulation time. This behaviour is in
line with the first element of the objective function presented
in (6), and it is explained because, over time, users find more
utility in an SCBS compared to the MBS, changing their
associated decision to a cell powered by renewable energy
that offers a similar transmission rate to the current BS. In
the same way, Figure 4(g) shows a gradual maximization of
average user rate until a stable point.

The average utility per user behaviour can be observed in
Figure 4(j), with a continuous increase in the first 100 time
instants, followed by a stabilization period until 300 instants.
Once a steady state is reached, utility remains constant because
the users have no incentive to deviate from their BS selection.
This behaviour is explained because in the first time instants
users easily find base stations with better utility and deviate
their initial cell selection, but over time a smaller number of
users have incentives to change their current decision until
reaching the point where no user has the incentive to select
a base station other than the one to which they are already
connected.

The results obtained in the static scenario allow us to
observe the utility function’s maximization and the steady state
of the game, as well as key elements in game theory, making
it possible to extend its application to scenarios with dynamic
features. Additionally, the use of a constant wind profile allows
us to observe the efficiency of the proposed method with stable
energy conditions. According to this, it is possible to affirm
that the proposed approach is easily applicable in another
hybrid energy configurations such as those equipped with a
battery-based system. The dynamic scenarios are configured
with 1000 users, different wind profiles, and and MBS without
a limit to serve users simultaneously. In the scenario with the
controlled wind, the number of active base stations changes in
defined time intervals, as can be seen in Figure 4(b). The fully
dynamic scenario uses a wind profile fitted from real data of
Medellı́n city to reflect the stochastic behaviour of the wind –
as in Figure 4(c).

To analyse the impact and behaviour of the proposed
approach in an environment with changing characteristics of
renewable sources, Figure 3 shows the user–BS association
process in the scenario with the controlled wind. Initially,
users are connected to the MBS because it is the only one
active. In time instant 61 – Figure 3(a) – a sector of small
cells is activated and some users change their BS according to
the revision protocol. It is important to note that the revision
opportunity is a probabilistic process, hence not all users make
a decision at the same time. In Figure 3(b), it is possible to
observe the game evolution at the end of this wind behaviour
(k = 120), in which the largest number of users in the
area with active SCBSs are distributed over green cells. It is
important to note that some users continue to connect to the
MBS despite being in a location with coverage from green
cells. This result is the consequence of finding a better utility
in the MBS due to the cells overloading, or because these users
are located on the edges of small cells where the transmission
rate is better from the MBS. In this case, the second element
of the objective function presented in (6) has a dominant role
in the utility function.

Figure 3(c) presents the game evolution at k = 360. Here, it
is observed that the largest number of users with the possibility
of accessing a green cell is associated with one of these.
Finally, Figure 3(d) shows the last time instant in the period
with all SCBSs active. It is possible to observe a uniform
distribution of users over green cells and the accomplishment
of the objective of discharging traffic load from the MBS
to cells powered by renewable energies. Regarding the users
connected to the MBS, besides the evaluation of the utility
function mentioned previously, it is important to remember
that the process of user generation is dynamic and, for this
reason, at each time interval there will be users who have not
started the game. These new active users are connected to the
base station with the best signal level, in this case the MBS.

Regarding grid consumption, in the scenario with the con-
trolled wind it is possible to observe the proper response
of the proposed mechanism in the presence of renewable
energy, minimizing grid consumption to levels near to static
consumption (130 watts) when all SCBSs are active – Figure
4(e). This result is in accordance with the behaviour observed
in the user–BS association process presented in the previous
sections. Here, it is possible to observe that reducing the
number of users connected to the MBS has a positive impact
on the energy efficiency of the network. The reduction of grid
utilization is maintained in the fully dynamic scenario, as can
be seen in Figure 4(f). It is possible to observe during all
simulation horizons a lower grid consumption with the game-
theory-based scheme compared to the traditional mechanism.
The consumption difference between both schemes is more
noteworthy in the presence of green cells.

Regarding the average transmission rate, Figures 4(h-i)
show that it is lower with the game-theory-based mechanism
compared to the traditional scheme. This is caused by the
relation between rpi,` and ψp

` (3). Therefore, if the best signal
level is not the main criterion for selecting a base station,
a reduction in the average rate can be achieved. However,
despite the reduction in the average transmission rate, Figures
4(h-i) allow us to observe that degradation is not sufficient to
consider it a critical problem. It is important to remember that
the transmission power of an SCBS is lower than the MBS,
and this has an important impact on the perceived rate by
users. This situation can be countered with accurate scheduling
methods to assign more bandwidth to users connected to small
cells, but this problem is beyond the scope of this paper.

As was expected, it is possible to observe that the aver-
age utility received by users has a high sensitivity to wind
variations, especially in the fully-dynamic scenario – Figure
4(l) – compared to the wind-controlled scenario – Figure
4(k)– where changes in wind speed are less drastic and values
between both schemes are closer. Here, it is important to note
the suitable utilization of renewable energies by the designed
mechanism compared to the traditional scheme. In this way, it
is very clear how the system utility increases when the number
of active green base stations grows.

B. Impact of Parameters on Network Performance
This section presents the sensitivity of green consumption

and the average user rate with respect to γ1, γ2, and G.
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Fig. 2. (a) Average utility by BS. Grey lines are the SCBS utility and the black line is the MBS. (b) Number of users connected to a BS. Grey lines are
SCBSs, the solid black line is the MBS, and the dashed black line is the number of users without service.
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Fig. 3. User–BS association process with the proposed game-theory-based scheme. State of the network at different time instants (a) k = 61, (b) k = 120,
(c) k = 360, and (d) k = 480.

The analysis was performed using the dynamic scenario with
controlled wind.

First, it is important to note that, regardless of the value
of G, the game-theory-based mechanism reduces on-grid con-
sumption when compared to the traditional scheme, with the
biggest reduction attained for G = 4.

Table IV presents the simulated network performance for
each value of G according to γ1 and γ2 variations. It is possible
to observe that the highest reduction in grid consumption is
obtained when G=4 and γ1 = γ2. Likewise, this combina-
tion presents a lower reduction in the average transmission
rate compared to the traditional scheme. Another remarkable
combination is G=2, γ1=0.9, and γ2=0.1, which reduces grid
consumption by up to 8.14% and keeps the transmission rate
over the defined lower bound.

C. Computational Time Performance

As mentioned previously, the solution of the optimization
problem formulated in (6) leads to a combinatorial explosion.
Hence, there is a need to develop approximate methods such
as those presented in Section IV. A way to evaluate the
computational efficiency of the proposed mechanisms is to
analyse the computational time spent to find a solution. For
this reason, the scenario with controlled wind was used to
evaluate, under equal conditions, the computational efficiency
from all mechanisms.

Regarding the computational time required for the simu-
lations, Table V shows a comparison of the results when
implementing all the considered mechanisms with different
numbers of users in the network. It can be observed that

TABLE IV
IMPACT OF γ1 , γ2 , AND G VARIATIONS.

G γ1 γ2
% of Grid Consumption

Reduction
% of Transmission

Rate Reduction

1

0 1 4.98 7.28
0.1 0.9 5.81 4.01
0.3 0.7 5.17 5.61
0.5 0.5 5.24 5.24
0.7 0.3 1.05 12.61
0.9 0.1 3.32 12.48
1 0 1.47 12.56

2

0 1 5.56 4.19
0.1 0.9 6.10 9.42
0.3 0.7 6.32 5.41
0.5 0.5 6.94 7.41
0.7 0.3 6.61 9.21
0.9 0.1 8.14 4.47
1 0 7.44 8.71

4

0 1 6.46 4.13
0.1 0.9 7.23 7.08
0.3 0.7 7.92 5.10
0.5 0.5 8.41 4.85
0.7 0.3 8.14 6.24
0.9 0.1 7.75 9.19
1 0 7.97 8.08

the optimizer increases its computational time significantly
when the number of users grows. Another interesting result
is the processing time of the proposed game-theory-based
mechanism, which is lower than the discrete optimizer and
remains practically constant despite the growth of users. Thus,
it represents a suitable option for improving consumption and
maintaining QoS levels in scenarios with a large number of
users.
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Fig. 4. Behaviour comparison of proposed scheme in different scenarios.

TABLE V
COMPUTATION TIME FOR THE SIMULATIONS [S]

Association
Scheme 500 Users 750 Users 1000 Users

SLP 141.94 ±10 211.53 ±10 236.07 ±12
GA 321.43 ±11 436.89 ±12 445.09 ±12
DO 1740.46 ±14 4474.6 ±22 7434.1 ±29

G.T Scheme 202,95 ±12 293.17 ±14 374.74 ±16

D. Comparison with Other User–BS Association Mechanisms

To compare the performance of the proposed game-theory-
based mechanism with the schemes presented in Section IV,
six KPIs are proposed: grid consumption (kWatts-h), percent-
age of consumption reduction in comparison to the traditional
scheme, average transmission rate per user (Mbps), percentage
of variation in the transmission rate, transmitted bits per grid
consumption (kbits/Watts), and variation in the kbits/Watts
ratio. The fully-dynamic scenario with 1.000 users was used
for comparison purposes. Table VI shows the KPI results for
each scheme.

As can be seen in Table VI, the highest percentage of
grid consumption reduction compared with the traditional
scheme is achieved with the discrete optimizer (17.54%),
followed by the game-theory-based mechanism (17.13%), and
the greedy mechanism (12.02%). This result is quite relevant
since the discrete optimizer delivers the optimal consumption
of the system and the proposed game-theory-based mechanism
achieves similar values with better computational time.

Regarding average transmission rates, all mechanisms have
reductions close to 5% when compared to the traditional
scheme. The user-rate results are caused by the relation
between the signal level and the user rate presented in (2),
with this being an expected result.

Considering the grid consumption and the average transmis-
sion rate, it is possible to introduce another energy-efficiency-
related KPI as the ratio between the transmitted bits and grid
consumption. This KPI represents the amount of grid energy
required to transmit a kbit of information. Table VI shows
that the proposed game-theory-based mechanism has a better
performance, with it being possible to improve the kbit/Watts
ratio by up to 14.7% compared to the traditional best-signal-
level mechanism. The best relationship is achieved with the
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TABLE VI
SCHEMES COMPARISON IN FULLY-DYNAMIC SCENARIO

Association
scheme

Grid
consumption
(kWatts-h)

%
reduction

Average
transmission
rate (Mbps)

%
reduction

Transmitted bits per grid
consumed (kbits/Watts) % increase

SLP 391.2 - 2.43 - 22.89 -
GA 345.6 12.02 2.32 4.5 24.75 8.07
DO 322.56 17.54 2.32 4.5 26.51 15.78

GT scheme 324.16 17.13 2.31 4.9 26.27 14.72

discrete optimizer, but it is not a viable option due to its high
demand of computation time. It is important to emphasize the
suitable response of the transmitted bits per grid consumption
KPI since this is an objective measure of the energy efficiency
of the system to compare the mechanisms.

VIII. CONCLUSIONS

The goal of this paper was to study a distributed game-
theory-based mechanism to control the user–BS association
process in a HetNet powered by renewable energy, reducing
grid consumption and improving energy efficiency. The pro-
posed mechanism is based on a population-like game with
characteristics of atomicity and non-anonymity, elements not
considered previously in proposals based on this methodology.
Three scenarios with different wind behaviour were considered
to test the performance of the proposed mechanism and to
compare it with the traditional best signal level policy.

The distributed population-like dynamics mechanism has
been shown to be a suitable option for balancing traffic in
dense HetNets and reducing grid consumption through traffic
discharge from an MBS to green SCBSs. Another important
characteristic observed is the possibility to reduce the users’
search space to a subset of strategies, which facilitates solving
the integer-association problem, being a proper option for
controlling systems with a large amount of users, as expected
in next-generation cellular networks. In this sense, based
on the results, it is possible to conclude that the proposed
game-theory-based approach improves the energy efficiency of
HetNets powered by hybrid energy sources in real scenarios
with similar characteristics to those presented in this paper.

Also, it is important to emphasize that the proposed dis-
tributed game-theory-based mechanism can be used to attain
other goals related to the performance of the network through
the modification of the utility function.

Regarding atomicity and non-anonymity, it was possible
to demonstrate under a population-like dynamic approach
that one agent’s decision can influence the global utility of
the system, as can be observed in the reduction of grid
consumption when users are transferred from a macro-base
to small cells.

The case study has simplifications but is representative of
a real scenario with an appropriate level of complexity due
to the absence of batteries and the number of users and BSs
considered in the simulations. Even when the results obtained
are approximate due to the simplicity of the models used, they

are an indication of the potential of the proposed game-theory-
based mechanism.

The next stage in the study of alternatives for improving the
energy consumption of these types of network should include
the scheduling of resource-block assignation from SCBSs to
users to improve the transmission rate. In the same way, it is
important to note that, to reach minimum grid consumption
levels, it is necessary to guarantee a continuous provisioning
of green energy, which can be achieved by means of storage
systems or by using more stable renewable sources.
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[44] SIATA. “Medellı́n and Aburrá Valley Early Warning System, A project
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