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Abstract

The design of distributed optimization-based controllers for large-scale systems (LSSs) implies every time new challenges. The
fact that LSSs are generally located throughout large geographical areas makes difficult the recollection of measurements and
their transmission. In this regard, the communication network that is required for a centralized control approach might have
high associated economic costs. Furthermore, the computation of a large amount of data implies a high computational burden
to manage, process and use them in order to make decisions over the system operation. A plausible solution to mitigate the
aforementioned issues associated with the control of LSSs consists in dividing this type of systems into smaller sub-systems able
to be handled by independent local controllers. This paper studies two fundamental components of the design of distributed
optimization-based controllers for LSSs, i.e., the system partitioning and distributed optimization algorithms. The design of
distributed model predictive control (DMPC) strategies with a system partitioning and by using density-dependent population
games (DDPG) is presented.

Key words: Predictive control, system partitioning, density games, population dynamics, distributed control, plug-and-play
features.

1 Introduction

The increasing emergence of large-scale systems (LSSs),
e.g., water distribution systems, smart grids, or traffic
systems, have promoted the study of model predictive
control (MPC) under non-centralized schemes. This fact
is also motivated by two different aspects, i.e., commu-
nication issues (infrastructure) to collect and transmit
data associated with the system states, and computa-
tional issues to determine the appropriate control inputs.
Hence, the problem of obtaining non-centralized con-
trol formulations has become a relevant research topic.
The process of making controllers non-centralized is nor-
mally addressed by dividing the whole system into m
different sub-systems and by designing several local and
smaller controllers. In [1–4], and more recently in [5], a
wide discussion related to the design of non-centralized
MPC controllers is developed. Furthermore, there are
several classifications within the non-centralized MPC
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controllers depending on their architecture and on how
different local controllers share information to one an-
other [4]. One of the non-centralized configurations cor-
responds to decentralized MPC controllers, where sub-
systems might have a dynamical coupling among them.
In the decentralized MPC architecture [6], there is a
set of local MPC controllers (each one in charge of the
control of a sub-system), which do not exchange infor-
mation to one another. Therefore, in order to imple-
ment this control architecture, it is usually assumed that
the dynamical coupling among sub-systems is weak, for
which these non-centralized configurations have some
limitations as studied in [7]. Therefore, the performance
of the closed-loop system can be enhanced by consid-
ering that local MPC controllers can exchange infor-
mation. Then, these local controllers should be coordi-
nated to obtain a control input [8]. This modification
adding available information among controllers leads to
the distributed MPC (DMPC) architecture. There are
two main aspects to design distributed optimization-
based controllers, i.e., (i) the identification of the sub-
systems composing the whole system that is desired
to be controlled, and (ii) the appropriate coordination
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among the different local controllers associated with sub-
systems. The former component consists in a partition-
ing problem making considerations related to dynamical
coupling, existing coupled physical and/or operational
constraints, and communication requirements; whereas
the latter component requires the development of dis-
tributed optimization strategies given a communication
structure.

This paper addresses both components involved into the
design of distributed optimization-based controllers, i.e.,
system partitioning and distributed optimization. Re-
garding the former component, the system partitioning
problem has gotten increasing importance in the auto-
matic control community as systems become larger and
more challenging, and as the requirements and desired
closed-loop performance become more strict. Many par-
titioning proposals focus on specific dynamical systems,
e.g., in thermal control [9], control of electric power dis-
tribution systems [10,11], or on a particular control strat-
egy, e.g., in decomposition structure of distributed pre-
dictive controllers [12,13]. Regarding the second com-
ponent for distributed controllers, this paper discusses
the distributed optimization based on dynamic games,
which have become a quite useful tool in the design
of distributed controllers as it has been presented in
[14,15]. This paper focuses on the density-dependent
games where variations of the population size is allowed,
illustrating a situation in which death and birth, or re-
production rates, are considered as in [16,17]. These dy-
namics have not been either deduced from a version of
the general dynamics known as mean dynamics (Kol-
mogorov forward equation), and by imposing different
rules on revision protocols, nor proposed in a distributed
information-sharing fashion.

The contribution of this paper is threefold, i.e.,

(1) First, a novel partitioning approach based on a non-
directed graph representing information sharing in-
spired by the Kernighan-Lin algorithm [18] is pre-
sented.

(2) Secondly, it is proposed to extend the mean dynam-
ics, which are used in the deduction of population
dynamics [19], considering strategy-interaction
constraints and a reproduction-rate parameter,
i.e., the density-dependent mean dynamics with
non-complete population-interaction structures.
Then, the distributed density-dependent replica-
tor, Smith, and projection dynamics are deduced.
Afterwards, it is shown that these density dynam-
ics may be used to solve distributed constrained
optimization problems.

(3) As a third contribution, and taking advantage of the
properties that density games have, a DMPC con-
troller design is proposed based on the distributed
DDPG, i.e., an algorithm for dynamical partition-
ing a communication structure and develop a dis-
tributed network control scheme is provided. This

is made by means of the combination of the two
previous mentioned contributions.

It is shown that the population-interaction structure can
be modified dynamically along the time by adding con-
ditions over the optimization problem constraints de-
pending on the current system state, leading this fact to
a time-varying information-sharing network for control
purposes.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the addressed problem statement showing
a general scheme and the optimization problem corre-
sponding to the distributed LSSs. Therefore, Sections 3
and 4 present the contribution of the paper, i.e., the dis-
tributed system partitioning algorithm, the distributed
density-dependent population games with their features,
and how a distributed constrained optimization problem
can be solved by using the proposed game-theoretical ap-
proach. Section 5 introduces different control approaches
that can be designed by using the proposed system parti-
tioning and distributed density games. Then, in Section
6, a case study is introduced, the proposed approach is
implemented and results are discussed. Finally, conclu-
sions are drawn in Section 7.

Notation: Column vectors are denoted by bold style,
e.g., p. Matrices are denoted by bold upper case, e.g.,
A. Differently, scalars are denoted by non-bold style,
e.g., n. The sets are denoted by calligraphic upper case,
e.g., S. The norm ∣∣x∣∣Q is defined as ∣∣x∣∣Q = x⊺Qx. The
function [⋅]+ = max(0, ⋅) is used to simplify the no-
tation. The identity matrix of size n × n is denoted by
In, 1n is the column vector with n unitary entries, i.e.,
1n = [1 . . . 1]⊺ ∈ Rn, similarly 0n is the column vec-
tor with n null entries, i.e., 0n = [0 . . . 0]⊺ ∈ Rn, in
addition, 0n×l is the matrix of null entries and dimension
n × l, and diag(x) is the diagonal matrix of the vector x.
Let A = [aij] and B = [bij] be matrices with the same

dimension, i.e., A,B ∈ Rn×l, then let C = [A ○B] ∈ Rn×l

be the Hadamard product, i.e., [cij] = [aij][bij], for all
i = {1, . . . , n} and j = {1, . . . , l}. If matrix A is pos-
itive (negative) semi-definite, it is denoted by A ⪰ 0
(A ⪯ 0). Throughout this paper, both continuous-time
and discrete-time systems are treated. Continuous time
is denoted by t and it is mostly omitted throughout the
paper in order to simplify the notation. Moreover, ẋ de-
notes the derivative with respect to continuous time ,
i.e., ẋ = d

dt
x(t). In contrast, k ∈ Z≥0 denotes the discrete

time.

2 Problem Statement

Consider a state-space discrete-time system with a sam-
pling time ∆t and represented by the following model:

xk+1 = Adxk +Buk +Bddk, (1)
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where x ∈ Rnx is the system state vector, u ∈ Rnu is the
vector of control inputs, d ∈ Rnd denotes the vector of
disturbances that affect the system, and the state-space
matrices are given by Ad ∈ Rnx×nx , B ∈ Rnx×nu , and
Bd ∈ Rnx×nd . The states and control inputs are subject to
physical and operational constraints, which define feasi-
ble sets denoted byX ≜ {x ∈ Rnx ∶ xmin ≤ x ≤ xmax}, and

U ≜ {u ∈ Rnu ∶ umin ≤ u ≤ umax}, where vectors xmin and
xmax correspond to the lower and upper limits for the
system states, respectively. Similarly, vectors umin and
umax denote the lower and upper limits for the control
inputs, respectively. The control sequence for a fixed-
time prediction horizon, represented by N ∈ Z>0 at the
instant time k ∈ Z≥0, is denoted by ûk. When the control
input sequence ûk is applied to the system (1) with ini-
tial state xk∣k ≜ xk, a system states sequence x̂k is gen-
erated. Finally, the disturbances time-varying sequence

along the horizon N is denoted by d̂k and it is assumed
to be bounded and known from a forecasting algorithm
[20,21], i.e.,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ûk ≜ (uk∣k,uk+1∣k, ...,uk+N−1∣k) ,
x̂k ≜ (xk+1∣k,xk+2∣k, ...,xk+N ∣k) ,
d̂k ≜ (dk∣k,dk+1∣k, ...,dk+N−1∣k) .

(2)

The system with discrete-time model as in (1) is con-
trolled with an MPC controller whose optimization
problem PMPC is stated as follows:

min
ûk

J(xk,u), (3a)

s. t.

xk+j+1∣k = Adxk+j∣k +Buk+j∣k +Bddk+j∣k, (3b)

uk+j∣k ∈ U , (3c)

xk+j∣k ∈ X , (3d)

E [u⊺k+j∣k d⊺k+j∣k]
⊺
∈ D, (3e)

where (3b), (3c) and (3e), for all j ∈ [0,N −1]∩Z≥0, and

(3d), for all j ∈ [1,N] ∩ Z≥0. Hence, E ∈ Rr×(nu+nd) is
associated to r mass balance terms between control in-
puts and disturbances constrained by the feasible set D.
Assuming that PMPC is feasible, an optimal sequence is
computed, and only the first element of this sequence is
applied to the system, obtaining the corresponding evo-
lution of the system. Then, following the MPC philoso-
phy, a new optimization problem is formulated for the
next time instant [22].

This paper focuses on making the aforementioned MPC
controller perform in a distributed fashion by means
of both a partitioning algorithm, and distributed op-
timization algorithms based on evolutionary density
games. Once these two tools are presented (partitioning

and optimization algorithms), they are used to design a
distributed MPC controller, recalling the optimization
problem in (3). Next, both the partitioning algorithm
and the evolutionary-games-based optimization algo-
rithm are presented.

3 Distributed LSS Partitioning Algorithm

Consider an information-sharing network whose topol-
ogy is represented by an undirected connected graph
G = (S,E), where S = {1, . . . , n} represents the set of
n ∈ Z>1 nodes associated to the control-strategy vari-
ables, and E ⊂ {(i, j) ∶ i, j ∈ S} denoted the set of edges of
G representing the possible information sharing among
nodes S. Notice that the graph is undirected assuming
that the edges represent bidirectional-information chan-
nels. Hence, A ∈ {0,1}n×n denotes the adjacency matrix
whose elements aij = 1 if (i, j) ∈ E , and aij = 0, oth-
erwise. This network is determined by taking into ac-
count all the required information in order to compute
the optimal control inputs. Finally, the set of neighbors
for each node i ∈ S is defined as Ni = {j ∶ (i, j) ∈ E}.

Some parameters associated to the characteristics of the
information-sharing graph G are defined. First, a func-
tion defining the distance among different nodes from the
set S is defined as d ∶ S × S → R≥0. Moreover, there is a
constant matrix D ∈ Rn×n

≥0 summarizing all the evaluated
distances for all the different nodes from S, and whose
elements are given by dij = d(i, j). As a second parame-
ter, let c(i, j) be a function that determines a relevance
factor, i.e., how relevant the information shared between
node j ∈ S and node i ∈ S is. Thus, there is a constant
matrix C ∈ Rn×n

≥0 representing all the relevance factors as
cij = c(i, j). On the other hand, consider a set of indexes
denoted by K = {1, . . . ,m} where m ∈ Z>0 indicates the
number of partitions of the graph G. Therefore, the ob-
tained partitioning at a time instant k is denoted by the
set Pk = {S`k ∶ ` ∈ K}. Each partitioning of G at time in-

stant k is an undirected connected graph G`k = (S`k,E`k),
for all ` ∈ K, where ⋂`∈K S`k = ∅, and ⋃`∈K S`k = S, for all
k. Hence, for a given partitioning Pk, there is a function
g ∶ S → K receiving a node i ∈ S and returning an index
` ∈ K corresponding to the partition to which the node
i ∈ S belongs to, i.e., g(i) = {` ∈ K ∶ i ∈ S`k}. Finally, there
is a parameter allowing to compare two neighbor parti-
tions in G. Consider the time-varying matrix Vk ∈ Rn×n

whose elements vij,k = ∣Sg(i)k ∣ − ∣Sg(j)k ∣ if g(i) ≠ g(j), be-
ing nodes i, and j neighbors, i.e., j ∈ Ni.

Remark 1 Let Pk be an admissible partition, i.e.,
⋂`∈K S`k = ∅, and ⋃`∈K S`k = S. Therefore, g ∶ S → K is a

function since the set {` ∈ K ∶ i ∈ S`k} is a singleton,
for all ` ∈ K, and g(i) is a function, for all i ∈ S. ∎

3.1 Partitioning Problem Statement

In order to evaluate a partition of G at a time in-
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stant k, which is denoted by Pk, four indicators
σ1(Pk), . . . , σ4(Pk) corresponding to links, nodes, dis-
tance and relevance, are defined as follows:

Links: Indicates the amount of links connecting differ-
ent partitions, i.e., links (i, j) ∈ E such that (i, j) ∉ E`k,
for all ` ∈ K,

σ1(Pk) =
1

2
∑
`∈K

∑
i∈S`

k

∑
j∈S/S`

k

aij .

Nodes: Indicates the difference between the amount of
nodes of partitions given by ∣S`k∣ for neighbor partitions
along the time. This indicator is expressed in terms of
the time-varying matrix Vk, i.e.,

σ2(Pk) = ∑
`∈K

∑
i∈S`

k

∑
j∈S/S`

k

vij,k.

Distance: Indicates the inverse of the distance among
partitions. This is expressed in terms of the inverse of
the distance of the links connecting different partitions.
Notice that the inverse is considered just to make the
indicator bigger as two partitions are close. Then

σ3(Pk) =
1

2
∑
`∈K

∑
i∈S`

k

∑
j∈S/S`

k

d−1ij .

Relevance: Indicates the relevance of the information
that is being shared among different partitions. Notice
that this indicator also gives a notion about the impact
when having information loss due to the isolation of par-
titions, i.e., if the indicator is low, then there is not a big
impact when disconnected the communication among
partitions. This indicator is given by

σ4(Pk) = ∑
`∈K

∑
i∈S`

k

∑
j∈S/S`

k

cij ,

and can be tunned by taking into account the required
information to satisfy constraints.Thus, the partitioning
algorithm will seek an appropriate way to partition the
system into sub-systems that can operate in a decoupled
manner. The m−partitioning problem consists in com-
puting the optimal partition set P⋆ such that the indi-
cators are minimized. Therefore, the optimal partition-
ing P⋆ is obtained by solving the following optimization
problem:

min
P

4

∑
j=1

ϕjσj(Pk), (4a)

s. t. ⋂
`∈K
S`k = ∅, (4b)

⋃
`∈K
S`k = S. (4c)

3.2 Distributed Partitioning Algorithm

Consider the weighted graph G = (S,E ,Wk), where
Wk ∈ Rn×n is a time-varying weighting matrix. The ele-
ments of the matrix Wk, denoted by wij,k ∈ R≥0, repre-
sent a cost associated to the each link (i, j) ∈ E , where
wij,k = ϕ1aij + ϕ2vij,k + ϕ3d

−1
ij + ϕ4cij . Hence, in order

to solve the optimization problem (4), it is proposed to
solve the m−partitioning problem (4) as follows:

min
P

∑
`∈K

∑
i∈S`

k

∑
j∈S/S`

k

wij,k, (5)

and subject to constraints (4b) and (4c). The set of nodes
S`k of the subgraph G`k is composed of a set of internal

nodes denoted by Š`k, and a set of external nodes denoted

by Ŝ`k, for all ` ∈ K. The internal nodes from the set Š`k
only have connection to nodes that belong to the same
partition. In contrast, the external nodes from the set
Ŝ`k have connection to at least one node that belongs to
a different partition. Formally,

Š`k = {i ∈ S`k ∶ Ni ⊆ S`k}, ∀ ` ∈ K, (6a)

Ŝ`k = {i ∈ S`k ∶ Ni /⊆ S`k}, ∀ ` ∈ K, (6b)

S`k = Š`k ∪ Ŝ`k, ∀ ` ∈ K.

Each external node i ∈ Ŝ`k, for all ` ∈ K, represents a
decision maker that is able to select a partition from the
set

Qi,k = {g(j) ∶ j ∈ Ni}/{g(i)}. (7)

Moreover, each decision maker i ∈ {∪`∈KŜ`k}, at time

instant k, has associated an internal cost denoted by ȟi,
i.e.,

ȟi(Pk) = ∑
j∈Sg(i)

k
∩Ni

wij,k, ∀ i ∈ Ŝ`k, and ` ∈ K,

and an external benefit denoted by ĥ`i , for each partition
` from the set Qi,k, i.e.,

ĥ`i(Pk) = ∑
j∈S`

k
∩Ni

wij,k, ∀ i ∈ Ŝ`k, and ` ∈ Qi,k.

Then, the best external benefit for the decision maker
i ∈ Ŝ`k, for all ` ∈ Qi,k, is obtained as follows:

ĥi(Pk) = max
`∈Qi,k

ĥ`i(Pk).

Finally, as previously mentioned, the decision maker se-
lects among the possible available partitions depending
on a utility denoted by ηi, i.e., if the decision maker has
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Fig. 1. Illustrative notation example corresponding to the partitioning algorithm.

incentives to move from one partition to another one,
then

ηi(Pk) = max (0, ĥi(Pk) − ȟi(Pk)) , ∀ i ∈ Ŝ`k, and ` ∈ K.

Further, consider an undirected graph G̃k = (S̃k, Ẽk) at
time instant k –not necessarily connected– composed of
all the decision makers –external nodes of G–. Then, the
set of nodes of G̃k is given by S̃k = ⋃`∈K Ŝ`k, and the set

of links is given by Ẽk ⊂ {(i, j) ∶ i ∈ Ŝ`k, j ∈ Ŝrk , ` ≠ r}.

Let Ãk ∈ {0,1}∣S̃k ∣×∣S̃k ∣ be the adjacency matrix of the

graph. Since G̃k is not necessarily a connected graph, it
has q ∈ Z>0 components at time instant k, where the
set of components of the graph is Ck = {1, . . . , q}. Each

component is a graph denoted by G̃zk = (S̃zk , Ẽzk), with

adjacency matrix Ãz
k, is connected and not necessarily

complete, for all z ∈ Ck. Furthermore, only the decision
maker with higher incentives (winner decision maker in

the component z ∈ Ck denoted by izk
⋆ ∈ Wz

k ⊆ S̃zk) would
make a decision to switch from its current partition to

another one among the set of available partitions, i.e.,

izk
⋆ ∈ arg max

i∈S̃z
k

ηi(Pk) =Wz
k , ∀ z ∈ Ck. (8)

Notice that (8) should be solved at each time instant

k ∈ Z≥0. The best option for the decision maker izk
⋆ ∈ S̃zk ,

for all z ∈ Ck, to select a new partition is

`zk
⋆ ∈ argmax

`∈Qiz
k
⋆,k

ĥ`iz
k
⋆(Pk). (9)

Hence, the partitioning is modified only if ηi(Pk) > κ,
where κ ∈ R>0 establishes a ending-up condition. The
updating is performed as follows:

Sg(i
z
k
⋆)

k+1 = Sg(i
z
k
⋆)

k /{izk
⋆}, ∀ z ∈ Ck, (10a)

S`
z
k
⋆

k+1 = S
`zk

⋆

k ∪ {izk
⋆}, ∀ z ∈ Ck. (10b)

Theorem 1 If the initial partitioningP0 = {S10 , . . . ,Sm0 }
satisfies constraints (4b), and (4c), then these con-
straints are satisfied by Pk = {S1k , . . . ,Smk } for all k ∈ Z≥0
under the partitioning updating in (10). ∎
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Proof: Assuming that the initial partitioning set P0 is
established such that ⋂`∈K S`0 = ∅, and ⋃`∈K S`0 = S.

Then, Sg(i
z
0
⋆)

0 ∩ S`
z
0
⋆

0 = ∅ since g (iz0⋆) ≠ `z0⋆ according
to (9), and due to the fact that g (iz0⋆) , `z0⋆ ∈ K, then

{⋃`∈K/{g(iz0⋆),`z0
⋆} S`0} ∪ {Sg(i

z
0
⋆)

0 ∪ S`
z
0
⋆

0 } = S. From (10),

obtaining that

Sg(i
z
k
⋆)

k+1 ∪ S`
z
k
⋆

k+1 = {Sg(i
z
k
⋆)

k /{izk
⋆}} ∪ {{izk

⋆} ∪ S`
z
k
⋆

k } ,

= Sg(i
z
k
⋆)

k ∪ S`
z
k
⋆

k ,

for all z ∈ Ck. Finally, if Sg(i
z
k
⋆)

k ∩ S`
z
k
⋆

k = ∅, for all z ∈
Ck, then {Sg(i

z
k
⋆)

k /B} ∩ {S`
z
k
⋆

k ∪ B} = ∅, for any set B.

Consequently, Sg(i
z
k
⋆)

k+1 ∩ S`
z
k
⋆

k+1 = ∅. ∎

3.3 Illustrative Notation Example

This section is focused on presenting an illustrative ex-
ample associated to the notation of the partitioning al-
gorithm. To this end, consider a communication net-
work represented by the connected graph in Figure 1(a),
which is partitioned into three sub-graphs at time in-
stant k as presented in Figure 1(b), i.e., S = {1, . . . ,20},
E = {(1,2), . . . , (20,16)}, and K = {1,2,3} correspond-
ing to the partitions of color red, blue and green, re-
spectively. Thus, each partition is given by the three
graphs presented in Figure 1(c), i.e., Pk = {S1k ,S2k ,S3k},
where S1k = {1, . . . ,5,11,20}, S2k = {6, . . . ,10,12,13},
and S3k = {14, . . . ,19}. Hence, the graphs are given by
G1k = (S1k ,E1k), G2k = (S2k ,E2k), and G3k = (S3k ,E3k).

Regarding the four indicators presented in Section 3.1.
Indicators are only considered for the links connecting
different partitions, i.e., the links presented in Fig-
ure 1(d) given by E = {(3,14), (5,15), (9,11), (11,12),
(11,13), (20,16)}. Moreover, Figures 1(e) and 1(f)
present both the internal and external nodes correspond-
ing to the first partition according to (6a) and (6b),

respectively, i.e., Š1k = {1,2,4} and Ŝ1k = {3,5,11,20}.

The undirected -not necessarily connected- graph de-
noted by G̃ = (S̃, Ẽ) is constructed from considering
the external nodes as presented in Figures 1(g), where

S̃k = {1,2,3,4,5,11,13,14,16,20}. There are as many

decisions as components in the graph G̃. By naming ar-
bitrarily the component with nodes {1,2,3,4,5,11,14}
as 1 ∈ Ck, and the component with nodes {13,16,20}
as 2 ∈ Ck, there are two components in this particu-
lar example. According to Figure 1(h), supposing that,
for the first component i1⋆k = 5, and according to (7),
Q5,k = {1,2}. This latter fact means that node 5 ∈ S3k
can change partition in K ∖ g(5), i.e., either 1 or 2 ∈ K.

Finally, Figure 1(i) illustrates the evolution of the par-
titioning algorithm with `1⋆k = 1, making 5 ∈ S become
part of partition 1 ∈ K.

4 Density-Dependent Games

Throughout this section, a novel game-theoretical ap-
proach to solve optimization problems, which can
deal with constraints and time-varying information-
sharing networks, is presented. To this end, consider
an undirected connected graph G = (S,E ,A), where
S = {1, . . . , n} corresponds to the set of strategies in the
population. The set of edges representing the informa-
tion sharing and/or interaction among agents selecting
different strategies is given by E ⊂ {(i, j) ∶ i, j ∈ S}; and
A = [aij] denotes the n × n adjacency matrix where
aij = 1 if (i, j) ∈ E , and aij = 0 otherwise. Hence,
the set of neighbors of a node i ∈ S is denoted by
Ni = {j ∶ (i, j) ∈ E}.

Consider a collection of a large and finite number of
decision makers forming a population, and which can
select a strategy from the set S = {1, . . . , n}. Thus, let
pi ∈ R≥0 denote the portion of decision makers selecting
the ith strategy, and p ∈ Rn

≥0 be the population state
or strategic distribution in the population, where p =
[p1 . . . pn]⊺. Different from the classical population
games approach [19,23,24], the set of possible population
states is now given by the positive orthant, i.e., ∆ =
{p ∈ Rn

≥0}. Therefore, the population size, which is π =
∑i∈S pi, can change along the time since the population
is of density-dependent type.

Agents make the decisions in order to maximize their
utilities and reproduction chances. These incentives
are defined by a fitness function fi(p), for all i ∈ S.
The fitness function fi takes a strategic distribution
and returns an utility corresponding to the ith strat-
egy. Thus, f(p) denotes the population fitness function
f = [f1 . . . fn]⊺, which takes a strategic distribution
and returns a vector of utilities. Besides, agents are
able to migrate from the ith strategy to the jth strategy
according to a switch rate imposed by a revision proto-
col %ij(f(p),p), which determines how decision makers
behave [19,25–27].

4.1 Distributed Density-dependent Population Games
(DDPG)

In order to obtain a density-dependent version of the
mean dynamics (Kolmogorov forward equation) [19,25],
a reproduction rate denoted by δi, for all i ∈ S is consid-
ered, i.e.,

ṗi = ∑
j∈Ni

pj%ji(f(p),p) − pi ∑
j∈Ni

%ij(f(p),p)

+δi(f(p),p), ∀i ∈ S.
(11)
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Table 1
Different distributed density-dependent population dynamics

Population dynamics Differential equation and its compacted form

D3RD ṗi = pi (fi(p) ∑
j∈Ni

pj − ∑
j∈Ni

pjfj(p)) + βifi(p), ṗ = L(p)f(p) + diag(β)f(p).

D3SD ṗi = ∑
j∈Ni

pj[fi(p) − fj(p)]+ − pi ∑
j∈Ni

[fj(p) − fi(p)]+ + βifi(p), ṗ = L̃(p)f(p) + diag(β)f(p).

D3PD ṗi = ∑
j∈Ni

[fi(p) − fj(p)] + βifi(p), ṗ = Lf(p) + diag(β)f(p).

Table 2
Laplacian matrices [25] for the density-dependent population dynamics

Population dynamics Laplacian forms

D3RD L(p) = [l(p)ij ], l
(p)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−aijpipj , if i ≠ j,

∑
r∈S,r≠i

airpipr, if i = j.

D3SD L̃(p) = [l̃(p)ij ], l̃
(p)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−aij
2

((1 − νij)pi + (1 + νij)pj), if i ≠ j,

∑
r∈S,r≠i

air
2

((1 − νir)pi + (1 + νir)pr), if i = j,

where νij = sgn(fi(p) − fj(p)).

D3PD L = [lij], lij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−aij , if i ≠ j,

∑
r∈S,r≠i

air, if i = j.

The interpretation of the reproduction rate is as follows.
Let δi > 0, then it means that there is birth in the ith

strategy. In the contrary, in case δi < 0, it implies that
there is death (an interpretation of negative reproduc-
tion rates) for the ith strategy. Therefore, according to
this reasoning, notice that δi must be proportional to
the fitness function fi, i.e., successful decision makers
(those whose fitness functions are greater) should have
more chances to have offspring [17].

Definition 1 A reproduction rate δ ∶ Rn ×Rn
≥0 → Rn is

a function satisfying that, reproduction rates δi(f(p),p)
decrease as population pi increases [17]. ∎

Combining the density-dependent mean dynam-
ics (Kolmogorov forward equation) with reproduc-
tion rates δi(f(p),p) = βifi(p), the migration con-
straints given by a graph G, and different revision
protocols %ij(f(p),p), it is possible to generate mul-
tiple density-dependent population dynamics. Us-
ing the pairwise proportional imitation protocol
%ij(f(p),p) = pj[fj(p) − fi(p)]+, pairwise comparison

protocol %ij(f(p),p) = [fj(p) − fi(p)]+, and modified
pairwise comparison %ij(f(p),p) = [fj(p) − fi(p)]+/pi
[25], three different density-dependent dynamics are
obtained, which are presented in Table 1 together with
their respective compacted forms using a Laplacian
representation (see Table 2).

Now that some density-dependent population dynamics
have been introduced, a stability analysis of the equi-
librium point is made. Theorems 2 and 3 show that the
mentioned Nash equilibrium p⋆ ∈ ∆ is asymptotically
stable under the density-dependent dynamics in Table 1.

Theorem 2 Let G be connected and the population game
f be a stable full-potential game, i.e., ∇V (p) = f . Then,
the Nash equilibrium p⋆ ∈ ∆ corresponding to a popula-
tion size π ∈ R≥0 such that f(p⋆) = 0n is asymptotically
stable under the D3RD, and the D3SD. ∎

Proof: Consider the same Lyapunov candidate function
as in [25], i.e., EV (p) = V (p⋆)− V (p), where EV (p⋆) =
0, and EV (p) > 0, for all p ≠ p⋆. Then, it follows that
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ĖV (p) = − (∇V (p))⊺ ṗ, which is the same as ĖV (p) =
−f(p)⊺ṗ. Now, using ṗ from the compacted form of the
D3RD (see Table 1), it is obtained that

ĖV (p) = − f(p)⊺ (L(p)f(p) + diag(β)f(p)) ,
= − f(p)⊺L(p)f(p) − f(p)⊺diag(β)f(p). (12)

For the first term in (12), notice that L(p) corresponds

to the Laplacian of a graph G(p) = (V,E ,A(p)), where

A(p) = [a(p)ij ] is the adjacency matrix with entries given

by a
(p)
ij = aijpipj . The entries of the adjacency matrix

are non-negative due to the fact that p ∈ ∆, which is
the positive orthant. Therefore L(p) ⪰ 0 for any p ∈ ∆.
Regarding the second term in (12), the diagonal matrix
is diag(β) ⪰ 0 due to the fact that βi ≥ 0 for all i ∈ S.

Finally, it is concluded that ĖV (p) ≤ 0.

Regarding the D3SD, it is obtained that ĖV (p) =
−f(p)⊺L̃(p)f(p) − f(p)⊺diag(β)f(p). Analysis is the

same, but with L̃(p) corresponding to the Lapla-
cian matrix of the graph G(p) = (V,E ,A(p)) with

a
(p)
ij = (aij/2)((1−νij)pi+(1+νij)pj). Therefore L̃(p) ⪰ 0

for any p ∈ ∆, and it is concluded that ĖV (p) ≤ 0. The

equality ĖV (p) = 0 holds when f(p) = 0n, and hence p⋆

is asymptotically stable under the D3SD.

Moreover, ĖV (p) = 0 in all the cases holds when f(p) =
0n, and therefore p⋆ is asymptotically stable under the
D3RD, and the D3SD with region of attraction in the
positive orthat ∆. ∎

Theorem 3 Let f(p) = ∇V (p), being V (p) a strictly
concave function, and let p⋆ ∈ Rn be an equilibrium point
such that f(p⋆) = 0n. If the population-interaction struc-
ture is given by a connected graph G, then p⋆ ∈ Rn is
globally asymptotically stable under the D3PD. ∎

Proof: Considered the same Lyapunov candidate func-
tion as in Theorem 2, i.e., EV (p) = V (p⋆)−V (p), where
EV (p⋆) = 0, and EV (p) > 0, for all p ≠ p⋆. Then, it

follows that ĖV (p) = − (∇V (p))⊺ ṗ, which is the same

as ĖV (p) = −f(p)⊺ṗ. Now, replacing ṗ from the com-
pacted form of the D3PD (see Table 1), it is obtained
that

ĖV (p) = − f(p)⊺ (Lf(p) + diag(β)f(p)) ,
= − f(p)⊺Lf(p) − f(p)⊺diag(β)f(p). (13)

The first term in (13) is negative since L ⪰ 0 for a con-
nected graph G. Moreover, the second term in (13) is also
negative since the diagonal matrix is diag(β) ⪰ 0 due to
the fact that βi ≥ 0 for all i ∈ S. Therefore, it is con-
cluded that ĖV (p) ≤ 0. The equality ĖV (p) = 0 holds

when f(p) = 0n, and therefore p⋆ is globally asymptoti-
cally stable under the D3PD with initial condition in Rn

since EV (p) is radially unbounded. ∎

Corollary 1 The asymptotic stability of p⋆ ∈ ∆ un-
der the D3RD, and the D3SD; and p⋆ ∈ Rn under the
D3PD stated in Theorem 2 and 3 hold for connected time-
varying graphs G(t) = (V,E(t),A(t)), i.e., for time-
varying neighborhood Ni(t), for all i ∈ S. This state-
ment is concluded since the postulated Lyapunov func-
tion EV (p) = V (p⋆) − V (p) is a common function for
all possible connected-graph topologies. ∎

4.2 Solving Constrained Optimization Problems with
DDPG

Consider a quadratic programming (QP) optimization
problem of the form

max
y

f(y), (14a)

s. t. Ey ≤ e, (14b)

Gy = g, (14c)

y ∈ Rv
≥0, (14d)

where f ∶ Rv
≥0 → R is concave, and continuously dif-

ferentiable. Moreover, E ∈ Rq×v, and e ∈ Rq construct
the q inequality constraints (14b), and G ∈ Rr×v, and
g ∈ Rr construct the r equality constraints (14c). In-
equality constraints can be transformed into equality
constraints by adding non-negative slack variables de-
noted by s ∈ Rq

≥0. To this end, consider the vector vari-
able ξ = [y⊺ s⊺]⊺ ∈ Rp, where p = v + q, then the QP
optimization problem (14) is reformulated as follows:

max
ξ

f(ξ), (15a)

s. t. Hξ = h, (15b)

ξ ∈ Rp
≥0, (15c)

where f ∶ Rp
≥0 → R is concave, and continuously differen-

tiable. The matrix H ∈ Rw×p, and h ∈ Rw construct the
w equality constraints (15b), where w = q+r. Now, omit-
ting the positiveness constraints (15c), the Lagrangian
function L ∶ Rp ×Rw → R is

L(ξ,µ) = f(ξ) +µ⊺ (Hξ − h) , (16)

where µ ∈ Rw corresponds to the Lagrange multipliers
associated to the w equality constraints of (15). More-
over, ∇ξL(ξ,µ) = ∇f(ξ) + H⊺µ, and −∇µL(ξ,µ) =
−Hξ+h. The Lagrange condition is used to find the pos-
sible extreme points ξ⋆ ∈ Rp of the function f(ξ) (max-
imum of the function f) subject to constraints (15b), in
which ⎡⎢⎢⎢⎢⎣

∇ξL(ξ⋆,µ⋆)
−∇µL(ξ⋆,µ⋆)

⎤⎥⎥⎥⎥⎦
= 0p+w. (17)
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Now, let p = [ξ⊺ µ⊺]⊺ ∈ Rn be the vector represent-
ing the amount of agents in a strategic interaction with
S = {1, . . . , n}, where n = p +w. Besides, let

f(p) = [∇ξL(ξ,µ)⊺ −∇µL(ξ,µ)⊺]
⊺
, (18)

be the fitness functions corresponding to all the strate-
gies S. The population game (18) can be seen as two
different potential games fξ(ξ,µ) = ∇ξL(ξ,µ), and
fµ(ξ,µ) = −∇µL(ξ,µ), whose potential functions are
L(ξ,µ), and −L(ξ,µ), respectively. Therefore, no-
tice that the Hessian of the potential functions is
∇2
ξL(ξ,µ) = ∇2f(ξ), and ∇2

µ(−L(ξ,µ)) = 0. There-

fore, fξ(ξ,µ), and fµ(ξ,µ) are stable games [19]. Fi-
nally, since f(p) is a full-potential and stable game, and
according to Theorem 2 and Corollary 1, the optimiza-
tion problem (14) can be solved in a distributed way by
using the D3RD, the D3SD, or the D3PD, and under
time-varying graphs G(t).

Remark 2 Population dynamics only allow strategic
distributions belonging to the positive orthant ∆. How-
ever, an optimization problem might require to consider
negative values. In this case, it is possible to apply a
change of variables in the fitness functions, e.g., in or-
der to consider a constraint of the form y ≤ y ≤ ȳ, being
y < 0 and ȳ > 0 a lower and upper bounds, respectively,
let apply the change of variables as 0 ≤ y − y ≤ ȳ − y, or
equivalently, 0 ≤ ỹ ≤ ȳ − y. Formulating the problem in

the required form shown in (14). ∎

Remark 2 shows that the proposed method with DDPG
is versatile to solve optimization problems with differ-
ent types of inequality constraints in a distributed man-
ner. As an application, next section presents a DMPC
controller design based on the D3RD, the D3SD, or the
D3PD.

Remark 3 There are some considerations to take into
account, i.e.,

● In order to solve the optimization problem with the La-
grangian function, there are dynamics associated to the
Lagrange multipliers. Moreover, it is possible that the
Lagrange multipliers get negative values. This fact rep-
resents a problem for the D3RD and for the D3SD since
those dynamics can only evolve in the positive orthant
∆ according to Theorem 2. Therefore, to solve the op-
timization problem using the D3RD and the D3SD, a
change of variable must be made to establish an offset.
On the other hand, the fact that the Lagrange multi-
pliers can get negative values it is not an inconvenient
for the D3PD since trajectories evolve in Rn (see The-
orem 3).

● Regarding the difference between the D3RD and the
D3SD, notice that when the reproduction rate is null,
then the D3RD preserve the extinction property as in
the classical replicator dynamics equation, i.e., ṗi = 0,

Table 3
Summary of the three different control approaches (Scenar-
ios).

Control Approach
Communication Graph Partitioning

Constant Time-varying Static Dynamic

Scenario 1 x ✓ x x

Scenario 2 ✓ x ✓ x

Scenario 3 x ✓ x ✓

for all i ∈ S∖supp(x), being supp(x) = {i ∈ S ∶ xi > 0}.
In contrast, there is no extiction under the D3SD, not
even if the reproductipn rate vanishes.

The aforementioned characteristics help to select the
most appropriate evolutionary dynamics depending on
the structure of the optimization problem. ∎

5 Control Approaches

Three alternative control approaches (three different
Scenarios) may be designed by using the proposed
methodology since the system partitioning algorithm
and the consideration of time-varying information-
sharing network can be combined in different ways (see
the summary in Table 3).

5.1 DMPC Controller based on DDPG with Time-
varying Information-sharing Network

Consider the general optimization problem behind an
MPC controller in (3) such that it can be represented by
a QP problem as follows:

min
Uk

U⊺
k ΦUk +φ⊺kUk, (19)

with constraints of the form as in (14), and where Uk =
[u⊺

k∣k u⊺
k+1∣k . . . u⊺

k+N−1∣k]
⊺. Moreover, for the optimiza-

tion problem (19) the vectors ek and gk, which construct
the inequality and equality constraints, vary every iter-
ation k.

Therefore, notice that the QP formulation (19) for the
MPC controller is of the same form as the optimization
problem in (14). Furthermore, by adding non-negative
slack variables s ∈ Rq

≥0, the cost function (19a) is re-
written, and the constraints (19b), and (19c) can be com-
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pacted, i.e.,

min
ξ

[U⊺
k s⊺]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ξk

⊺

⎡⎢⎢⎢⎢⎣

Φ 0nu×q

0q×nu
0q×q

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ψ

⎡⎢⎢⎢⎢⎣

Uk

s

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
ξk

+ [φ⊺k 0⊺q]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ⊺

k

⎡⎢⎢⎢⎢⎣

Uk

s

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
ξk

,

(20)

s. t.

⎡⎢⎢⎢⎢⎣

E Iq

G 0r×q

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H

⎡⎢⎢⎢⎢⎣

Uk

s

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
ξk

=
⎡⎢⎢⎢⎢⎣

ek

gk

⎤⎥⎥⎥⎥⎦
²

hk

. (21)

Having added the slack variables, the optimization prob-
lem behind the MPC controller is formulated of the form
(15), and it can be solved in a distributed manner by us-
ing the D3RD, the D3SD, or the D3PD, as explained in
Section 4.1.

Regarding the information dependence, it is mainly
given by the fitness functions coupling. In order to deter-
mine the information-sharing structure for the D3RD,
the D3SD, or the D3PD, the fitness functions (18) are
expressed in the form

f(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(p)
⋮

fn(p)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(p)
f2(p)
f3(p)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

First block f1(p) = [ ∂
∂p1

L(p) . . . ∂
∂pnu

L(p)]⊺ of the

vector f(p) in (22) corresponds to the nu variables ∆u,
second block corresponds to the q inequality constraints,
i.e., f2(p) = −[ ∂

∂p(nu+1)
L(p) . . . ∂

∂p(nu+q)
L(p)]⊺, and

third block corresponds to the r equality constraints,
i.e., f3(p) = −[ ∂

∂p(nu+q+1)
L(p) . . . ∂

∂p(nu+q+r)
L(p)]⊺.

Assumption 1 In the population game f , convergence
to the Nash equilibrium under the D3RD, the D3SD, or
the D3PD , is achieved in shorter time than the sampling
time ∆t for the discrete system in (1). ∎

In order to check from which strategies it is neces-
sary to get information, the Hessian matrix of the La-
grangian function Θ = [θij] = ∇2L(p) is computed, i.e.,
θij = ∇pjfi(p). Then, the biggest required information-

sharing matrix denoted by Θ̃ = [θ̃ij], which corresponds
to the existing coupling among the portion of agents at
each strategy, is given by

θ̃ij =
⎧⎪⎪⎨⎪⎪⎩

1, if θij ≠ 0,

0, otherwise.
(23)

For the time-invariant graph G scenario, the adjacency
matrix is given by the biggest required information-
sharing matrix, i.e., A = Θ̃. Nevertheless, conditions

over the adjacency matrix can be added in order to
use less information-sharing links when conveniently. It
is highlighted that conditions can be versatile and the
time-varying graph can be addressed in different ways
besides the one proposed in this paper. In this paper, it
is proposed to have an information-sharing graph topol-
ogy depending on the necessary active constraints. This
is made since, under some system state conditions, it is
not necessary to consider the whole set of constraints. In
this regard, some of them can be properly neglected to
reduce both the size of the information-sharing network
and the computational burden.

Regions describe non-safe sectors in the feasible set, or
sectors near limits of a constraint.

● Upper region for states: R̄x
i = {xi ∶ ḡxi ≤ xi ≤ xmax

i },

● Lower region for states: Rx
i = {xi ∶ xmin

i ≤ xi ≤ gxi },

● Upper region for inputs: R̄u
j = {uj ∶ ḡuj ≤ uj ≤ umax

j },

● Lower region for inputs: Ru
j = {uj ∶ umin

j ≤ uj ≤ guj },

for all i = 1, . . . , nx , and j = 1, . . . , nu. Besides, binary
variables γ̄xi,k, γ

x
i,k

, which indicate whether or not the

current state xi,k belongs to a region, are as follows:

γ̄xi,k =
⎧⎪⎪⎨⎪⎪⎩

1, if xi,k ∈ R̄x
i

0, otherwise,
γx
i,k

=
⎧⎪⎪⎨⎪⎪⎩

1, if xi,k ∈ Rx
i

0, otherwise,

where i = 1, . . . , nx. Parameters γ̄uj,k, and γu
j,k

, indicating

whether or not the current control input ui,k belongs to a
given region, are stated similarly for j = 1, . . . , nu. These
binary variables lead to a vector that determines the
active and non-active constraints for states and control
inputs at each time instant, i.e.,

Γu
k = [γ̄u1,k, . . . , γ̄unu,k, γ

u

1,k
, . . . , γu

nu,k
]
⊺
,

Γx
k = [γ̄x1,k, . . . , γ̄xnx,k, γ

x

1,k
, . . . , γu

nx,k
]
⊺
.

Then, let Γ̃k be the diagonal matrix of the active con-
straints at instant time k ∈ Z≥0, i.e.,

Γ̃k = diag ([1⊺nu
Γu
k
⊺

Γx
k
⊺

1⊺r]) .

Finally, these conditions over the active constraints lead
to a time-varying graph with adjacency matrix A(t) that

varies its topology every ∆t, given by A(k∆t) = Γ̃kΘ̃Γ̃k,
and the topology corresponding to A(k∆t) is main-
tained during a time ∆t, i.e., A(t) = A(k∆t), for all
k∆t ≤ t < (k + 1)∆t. Alternatively, the time-varying ad-
jacency matrix can be denoted that

Ak = Γ̃kΘ̃Γ̃k. (24)
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Fig. 2. Summary of the DMPC controller with distributed DDPG and dynamical partitioning.

5.2 Partitioning for DMPC Controllers based on
DDPG

This section presents how to apply both a static off-line
and dynamic on-line system partitioning for the design of
a DMPC controller based on DDPG. The first step in or-
der to apply the proposed distributed system partition-
ing algorithm is to determine the information-sharing
graph. This graph is computed as discussed in (23), i.e.,
the adjacency matrix that determines the graph G is
given by the required information-sharing matrix, i.e.,
A = Θ̃. Recalling the optimization problem behind the
MPC controller in (20), the corresponding Lagrangian
function is as follows:

L(ξk,λk) = ξ⊺kΨξk +ψkξk +λ⊺ (Hξk − hk) . (25)

Therefore, the Karush-Kuhn-Tucker conditions are ob-
tained from ∇ξkL(ξ

⋆
k,λ

⋆
k) = 0, and ∇λk

L(ξ⋆k,λ⋆k) = 0.
When the information-sharing graph G with adjacency
matrix A is available, i.e., when there is not partition-
ing in the system, then the fitness functions are given by
the following expression corresponding to (18):

f(p) =
⎡⎢⎢⎢⎢⎣

2Ψ H⊺

−H 0(q+r)×(q+r)

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ω

⎡⎢⎢⎢⎢⎣

ξ⋆k

λ⋆k

⎤⎥⎥⎥⎥⎦
²

p⋆

+
⎡⎢⎢⎢⎢⎣

ψk

hk

⎤⎥⎥⎥⎥⎦
. (26)

Moreover, when the system is partitioned, there are two
classifications for the information-sharing links. Notice
that when the partitioning is performed, then there are
information-sharing links within the same partition and
links connecting different partitions. According to the
partitioning approach presented in Section 3.2, an opti-
mal partition P⋆ has an associated graph (not necessar-

ily connected) denoted by G̃. The graph G̃ represents the

graph whose links Ẽ corresponds to the links connecting
different partitions. The optimization problem behind
the DMPC controller is solved by capturing informa-

tion from other partitions throughout the information-
sharing links Ẽ . Then, these links Ẽ are disconnected, and
the DDPG evolve independently at each partition satis-
fying the information-sharing graph now imposed with
an adjacency matrix Â as presented in (27). Therefore,
the amount of required information-sharing links along
the time is reduced since the links Ẽ are not needed for
all the time. Hence, the fitness functions are computed
as follows:

f(p) = [ (A − Ã)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Â

○Ω]
⎡⎢⎢⎢⎢⎣

ξk

λk

⎤⎥⎥⎥⎥⎦
²

p

+ [Ã ○Ω]
⎡⎢⎢⎢⎢⎣

ξ⋆k−1

λ⋆k−1

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

ψk

hk

⎤⎥⎥⎥⎥⎦
.

(27)
Once the equilibrium point p⋆ for the DDPG is ob-
tained, then the procedure can be repeated in order to
find a better solution for the optimization problem, i.e.,
the values corresponding to the information provided
throughout the links Ẽ are updated. In this regard, in-
formation from other partitions can be updated to im-
prove solution, and in fact, the same solution that is
gotten without partitioning can be obtained repeating
update until [ξ⋆⊺k λ⋆⊺k ]⊺ = [ξ⋆⊺k−1 λ⋆⊺k−1]⊺. Moreover, in
order to avoid infisibility in the DMPC controller based
on DDPG with a system partitioning, more importance
is assigned to those links associated to the equality con-
straints, i.e., constraints in (28e), throughout the rele-
vance matrix C as presented in the partitioning algo-
rithm (see Section 3.2). Thus, the optimal system parti-
tioning P⋆ integrates those links within partitions avoid-
ing that they belong to Ẽ .

Now, consider that the information-sharing graph G
varies over time as it has been presented in Section
5.1, i.e., that the adjacency matrix A varies along the
time. Then, due to the fact that the information-sharing
graph varies, it is necessary to determine the appropri-
ate partitioning of the system in a dynamical manner
such that the partitioning criteria hold. Besides, the set
of links Ẽ also varies along the time, which are links that

11



are not required for all the time but only to update the
fitness functions, i.e., with Ak, Ãk, and Âk in (27).

The application of a dynamical system partitioning for
a distributed controller has several advantages, i.e., the
computational burden is distributed for all the non-
centralized controllers for all the sub-systems. When
considering that the information-sharing graph varies
along the time getting rid of non-active constraints, then
the computational burden associated with the optimiza-
tion problem is reduced. The same system partitioning
objectives are still considered although the information-
sharing graph varies along the time assigning the appro-
priate set of not required links Ẽ . Finally, suppose that
there is any inconvenient or fault at any partition. For
the conventional centralized MPC controller approach,
the whole system is affected. In contrast, when adopting
a partitioned non-centralized MPC controller approach,
any inconvenient at a partition is decoupled from other.
Figure 2 shows the summary of the DMPC with DDPG
and with dynamical system partitioning.

6 Case Study, Results and Discussion

The Barcelona Water Supply Network (BWSN) is an
LSS composed by nx tanks, nu control inputs (valves
and pumps), ns drinking water sources, and nd water
demands as reported in [13]. State vector x ∈ Rnx is as-
sociated to the volumes in tanks, the vector of control
inputs u ∈ Rnu is associated to the manipulated flows
throughout valves and pumps, and the vector of dis-
turbances d ∈ Rnd is associated to the water-demanded
flows. The corresponding discrete-time model is the one
presented in (1) and its sampling time is ∆t = 1 hour.
Then, Assumption 1 is not strong. The description of
the static mass balance at junction nodes in the network
is given by (28e). The control objectives are associated
to meet a reference assigned by the company in charge
of the system, which determines a safety level to satisfy
the time-varying demand, and associated to the mini-
mization of the variation of the flows in order to avoid
abrupt changes, which might cause damage in the net-
work. These two objectives are considered in the cost
function (28a). The BWSN is controlled with an MPC
controller whose optimization problem is stated as fol-
lows [13]:

min
uk,...,uk+N−1

J(x,u) =
N

∑
j=1

∥xk+j∣k − xr∥Q̃ +
N

∑
j=1

∥∆uk+j∣k∥R̃

+
N

∑
j=1

γ ∣ (α1 +α2,k+j)⊺ uk+j−1∣k ∣, (28a)

s. t.

xk+j+1∣k = Adxk+j∣k +Buk+j∣k +Bddk+j∣k, (28b)

uk+j∣k ∈ U , (28c)

xk+j∣k ∈ X , (28d)

0r = Euuk+j∣k +Eddk+j∣k, (28e)

for all j ∈ [0,N −1]∩Z≥0 for (28b),(28c), and (28e), and
for all j ∈ [1,N] ∩ Z≥0 for (28e); where xr ∈ Rnx is a
constant desired set-point for the system states x ∈ Rnx .
Moreover, α1 ∈ Rnu represents the time-invariant costs
associated to the water resource, and α2 ∈ Rnu repre-
sents the time-varying costs associated to the operation
of valves and pumps. On the other hand, Eu ∈ Rr×nu ,
and Ed ∈ Rr×nd construct the r equality constraints in
(28e). The matrices Q̃ ∈ Rnx×nx and R̃ ∈ Rnu×nu are
weights assigning a prioritization for the control objec-
tives related to the error and to energy slew rate, respec-
tively. The optimization problem behind the MPC con-
troller in (28) can be conveniently re-formulated with a
cost function given by

J = (Xk −Xr)⊺ Q (Xk −Xr) +∆U⊺
kR∆Uk

+U⊺
kα, (29)

where α = [(α1 +α2,k+1)⊺ . . . (α1 +α2,k+N)⊺]⊺,

and the weighting matrices are Q = diag([Q̃ . . . Q̃])
and R = diag([R̃ . . . R̃]). The reference vector along

N is Xr = [x⊺r x⊺r . . . x⊺r]
⊺
, and vectors Xk, Uk and

∆Uk are as follows: Xk = [x⊺
k+1∣k x⊺

k+2∣k . . . x⊺
k+N ∣k]

⊺,

Uk = [u⊺
k∣k u⊺

k+1∣k . . . u⊺
k+N−1∣k]

⊺, and with slew

rate ∆Uk = [∆u⊺
k∣k ∆u⊺

k+1∣k . . . ∆u⊺
k+N−1∣k]

⊺, where

∆uk∣k = uk∣k − uk−1∣k. Notice that the problem in (29)
can be expressed only in terms of Uk by applying a
change of variable as in [22] thanks to the fact uk−1∣k is
known at time instant k. Thus, problem (28) is written
in the same form as problem in (19).

Consider the general optimization problem behind an
MPC controller in (3). Then, some re-formulations
over the cost function (3a) and constraints (3b)-(3e)
are made in order to show the density-dependent
population-games approach as an alternative tool for
DMPC controller design. Therefore, the optimization
problem in (28) can be written of the form as in (19)
and with constraints of the form as in (14). Moreover,
for the optimization problem (19) the vectors ek and gk,
which construct the inequality and equality constraints,
vary every iteration k. Notice that the optimization
problem in (19) is of the same form of the optimization
problem presented in Section 5.1. For this case study, it
is proposed the design of three DMPC controllers based
on DDPG for three different scenarios corresponding to
Table 3.
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Fig. 3. Case study. BDWN Topology of 17 tanks. Diagram taken from [28].

For all the scenarios and simulation results, the reference
has been selected to be xr = 0.6xmax, and the weights
in the cost function are selected to be Q̃ = Inx , R̃ =
1000Inu , and γ = 1.

Figures 5, 6 and 8 present the behavior of the proposed
approach for the three scenarios. Figure 5 shows the evo-
lution of some states achieving the imposed reference,
also reflecting a proper performance of the proposed
distributed density-dependent population-dynamics-
based DMPC achieving the references and minimizing
abrupt changes in the control signals for all the scenar-
ios. On the other hand, Figure 6 presents the behavior
of some control inputs. It can be seen that these control
inputs oscillate in order to satisfy the constraints im-
posed by the demands. That is why these control inputs
have the same periodicity as the disturbances (period
of 24 hours). Although all the demands have different
magnitudes and mean values, they have the same daily
periodicity (period of 24 hours) as the disturbances
d4, d8, d16, and d24 presented in Figure 7. Figure 8 shows
the evolution of the number of connected links in the
information-sharing network along the time. It can be
seen that, at the beginning, it is needed to have the
information-sharing graph corresponding to the biggest
required information-sharing matrix for Scenario 1, i.e.,

A(t) = Θ̃. Then, after few iterations, the system reduces
the number of required links considerably. This figure
also presents the evolution of the links for Scenarios 2
and 3. Moreover, it can be seen a periodic behavior of the
number of required links in the information-sharing net-
work, is daily (period of 24 hours) as the disturbances.

In order to compare the performance of the three differ-
ent scenarios, then two Key Performance Indices (KPIs)
are introduced. The first KPI corresponds to the eco-
nomical costs to operate the actuators, and the second
KPI corresponds to the required communication links to
perform each control scheme. The two mentioned KPIs
are defined as:

● Economical costs: these costs correspond to the re-
quired energy, and the time-varying water costs dur-
ing a day, i.e.,

KPIcosts(day) =
24+24(day−1)

∑
k=1+24(day−1)

(α1 +α2,k)⊺ uk. (30)

● Communication costs: these costs correspond to the
required permanent information-sharing links to com-
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pute the control inputs during a day, i.e.,

KPIcosts(day) =
24+24(day−1)

∑
k=1+24(day−1)

(1⊺nMk1n)
2

, (31)

where Mk = Ak for Scenario 1, Mk = A − Ã for Sce-
nario 2 (constant), and Mk = Ak − Ãk for Scenario 3.

For the Scenario 1, the regions to determine the active-
ness of constraints are computed by using the following
parameters: ḡxi = gx

i
= 0.6xmax

i , for all i = 1, . . . , nx; and

ḡuj = 0.65umax
j , and gu

j
= 0.35umax

j , for all j = 1, . . . , nu.

Figure 4(a) presents the information-sharing topology
required to solve the optimization problem by using the
D3RD, the D3SD, or the D3PD, when all the inequal-
ity constraints are active, i.e., A(t) = Θ̃. Figure 4(b)
corresponds to the graph when adopting time-varying
graphs and the proposed distributed density-dependent
population-dynamics-based DMPC controller. Notice
that the graph in Figure 4(d) has a reduction of 36.15%
of the information-sharing links. This reduction in the
number of links from Figure 4(a) to Figure 4(d) is
produced thanks to the fact that at k = 77, there are
non-active inequality constraints. Furthermore, Figure
4(b) and Figure 4(c) correspond to time instants k = 33
and k = 11, respectively.

For the Scenario 2, it is proposed to use the information-
sharing graph G, which is shown in Figure 9(a). The
partitioning algorithm is performed with weights
ϕ = [0.5 0.2 0.2 1]⊺, and with the parameter κ = 0
for the algorithm ending-up condition. The optimal
system partitioning P⋆ is the one presented in Figure
9(a). It is important to highlight that the total num-
ber of information-sharing links in order to compute
the optimal control input according to problem (28)
is (1⊺nA1n)/2 = 361. Furthermore, the optimal system
partitioning P⋆ has 13 links among partitions, which
is the 3.6% of the total number of information-sharing
links, representing reduced communication dependence
among different partitions, which is desired for the de-
sign of non-centralized controllers. With the optimal
system partitioning P⋆ presented in Figure 9(a), the
information-sharing graph is interpreted or translated
into the physical system, obtaining the physical par-
titioning into m sub-systems presented in Figure 9(b)
(the indices of the m sub-systems are given by the set
K). With the m−partitioning, a local MPC controller is
designed for each sub-system, identifying the informa-
tion dependence among them as in [13].

Finally, in the Scenario 3, the system partition-
ing algorithm is performed with arbitrary weights
ϕ = [1 0.26 0.1 0.5]⊺, and with the parameter κ = 0
for the algorithm-stop condition. Figures 10 presents
the time-varying information-sharing graphs, the cor-
responding optimal system partitioning highlighting

Table 4
Summary of KPIs corresponding to operation of actuators
and communication links.

Scenario 1 Scenario 2 Scenario 3

Day KPIcosts KPIlinks KPIcosts KPIlinks KPIcosts KPIlinks

1 24.2456 10724 22.6773 14736 24.2953 10797

2 21.6782 9800 19.6910 14736 22.2863 9666

3 21.4634 9828 18.2795 14736 22.9248 9671

4 21.3294 9838 17.8871 14736 22.5787 9565

5 21.2401 9840 18.4463 14736 22.9660 9667

Total 109.9567 50030 96.9812 73680 115.0512 49366

Overall 50139.95 73776.98 49481.05

the links connecting different partitions, and the corre-
sponding physical partitioning for the BWSN. Figure
10(a) corresponds to a unique time instant, i.e., k = 15,
whereas Figure 10(b) corresponds to 28 time instants,
being the most frequent partitioning.

Table 4 shows the KPIs corresponding to the costs as-
sociated to each actuator, and to the required commu-
nication links. It can be seen that the lowest economical
costs KPIcosts = 96.9812 are obtained with the Scenario
2 corresponding to fixed constraints, i.e., with constant
information-sharing network and constant stactic sys-
tem partitioning. However, notice that the Scenario 2
also corresponds to the highest costs associated to the
communication links KPIlinks = 73680. In contrast, Sce-
nario 3 is the one with lowest communication costs, i.e.,
KPIlinks = 49366. Moreover, the Scenario 1 has lower
economical costs KPIcosts = 109.9567 in comparison to
KPIcosts = 115.0512 of the Scenario 3. In conclusion, no-
tice that Scenario 3 is the control strategy at the overall
as shown in Table 4 if equal relevance is assigned to both
KPIs or if more relevance is assigned to the communica-
tion links.

7 Concluding Remarks

A multi-objective partitioning procedure considering
several aspects such as the amount of links connecting
different partitions, the size of partitions, the distance
among elements, and the importance of links has been
presented in order to determine the appropriate parti-
tions in an LSS. As one of the most relevant features of
the proposed partitioning is that it can be performed in
a distributed manner. Therefore, the DMPC controller
based on DDPG is combined with the distributed par-
titioning algorithm in two different manners, i.e., with
static and dynamical system partitioning. The results
for these two DMPC controllers based on DDPG and
performing both static and dynamical system partition-
ing are presented, showing the effectiveness of both the
DDPG approach and the partitioning for LSS. As fur-
ther work, the proposed non-centralized control design
with partitioning can be tested in presence of faults at
some partitions, so that the strategy facilitates their
proper isolation.
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(a) (b) (c) (d)

Fig. 4. Communication topologies for the DMPC controller based on DDPG. (a) information-sharing topology for the DMPC

controller based on DDPG, i.e., A = Θ̃. The number of links in this graph for this case study is 614; and time-varying infor-
mation-sharing topology for the DMPC controller based on DDPG at time instant: (b) k = 33, i.e., A(33∆t) = Γ̃(33)Θ̃Γ̃(33),
(c) k = 11, i.e., A(11∆t) = Γ̃(11)Θ̃Γ̃(11), and (d) k = 77, i.e., A(77∆t) = Γ̃(77)Θ̃Γ̃(77). The number of links in the graphs
for this case study are: (b) 468, (c) 435, and (d) 392.

Fig. 5. Evolution of eight system states. Figures (a)-(h) correspond to states x2, x7, x9, x10, x14, x15, x16, and x17 for the three
scenarios.

Fig. 6. Evolution of eight control inputs. Figures (a)-(h) correspond to states u1, u16, u37, u40, u50, u56, u58, and u61 for the
three scenarios.
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Fig. 7. Evolution of four demands (disturbances). Figures (a)-(d) correspond to states d4, d8, d16, and u24 for the three scenarios.

Fig. 8. Evolution of the connected links for the three scenar-
ios.

On the other hand, a general methodology to gener-
ate distributed density-dependent population dynam-
ics has been presented by considering a reproduction
rate in the distributed mean dynamics. Furthermore, it
has been shown the relationship between the equilib-
rium point of DDPG with the optimal point in a con-
strained optimization problem by selecting the descrip-
tion of benefits throughout the strategies using the La-
grangian of a potential function. In addition, the asymp-
totic stability of the equilibrium point under the D3RD,
the D3SD, and the D3PD has been formally proven for
constant and time-varying population-interaction struc-
tures. Then, after introducing this class of dynamics and
their properties, they have been applied in the design of
a DMPC controller under a time-varying information-
sharing network.
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