
Interval observer-based fault detectability analysis using mixed set-invariance 
theory and sensitivity analysis approach
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This paper addresses the characterization of the minimum detectable fault (MDF) by means of residual
sensitivity integrated with the set-invariance theory when using an interval observer-based approach as a
Fault Detection (FD) scheme. Uncertainties (disturbances and noise) are considered as of unknown but
bounded nature (i.e., in the set-membership framework). A zonotopic-set representation towards reducing
set operations to simple matrix calculations is utilized to bound the state/output estimations provided
by the interval observer-based approach. In order to show the connection between sensitivity and set-
invariance analyses, mathematical expressions of the MDF are derived when considering different types
of faults. Finally, a simulation case study based on a quadruple-tank system is employed to both illustrate
and discuss the effectiveness of the proposed approach. Interval observer-based FD scheme is used to test
the MDF obtained from the integration of both residual sensitivity analysis and set-invariance theory in
the considered case study.
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1. Introduction

Associated with the goal of increasing system performance as well as its safety and reliability,
Fault Detection (FD) has received more and more attention from the scientific community over
the past years. In particular, model-based FD is one of the most developed family of approaches
(Chen & Patton, 1999; Gertler, 1998). Moreover, the use of mathematical models to describe
the system behaviour is known as the fundamental concept of model-based FD approaches (Cai,
Ferdowsi, & Sarangapani, 2016; Combastel, 2015; Gertler, 1998). Therefore, to improve performance
of FD is directly related with the quality of the mathematical model (Blanke, Kinnaert, Lunze,
Staroswiecki, & Schröder, 2006; Chen & Patton, 1999). But, in practice, a mismatch between the
actual process and its mathematical model is non-negligible even if there are no process faults
because of the presence of model uncertainty, unknown disturbances and noises, (Puig, Montes de
Oca, & Blesa, 2013). Thus, dealing with uncertainty and noise/disturbance is an important issue
that implies developing robust model-based FD approaches (Chen & Patton, 1999). In recent years,
several methods have been developed and introduced to explicitly consider such uncertainties in
the models. These methods can be classified into stochastic and deterministic classes of approaches.
In the former class, uncertainties are represented using random variables, and in the latter class
(also called set-based approaches), uncertainties are assumed unknown but bounded by means
of different geometrical structures, e.g., interval boxes, polytopes, ellipsoids and zonotopes (Puig,
2010; Räıssi, Efimov, & Zolghadri, 2012; Uusitalo, Lehikoinen, Helle, & Myrberg, 2015).



FD in model-based approaches relies on checking the consistency of the observed behavior from
measured outputs using sensors and the estimated behavior that is computed by using the system
model (Gertler, 1998). This consistency test is based on generating the residual by computing
the difference between the output predicted values from the model and the real measured values
obtained from the sensors (Chen & Patton, 1999; Gertler, 2015). Then, the fault can be detected by
comparing that residual with a threshold value that takes into account the uncertainty associated
with measurement noise, disturbances, and the model mismatch between the real and modeled
system behavior (Puig, Quevedo, Escobet, & Stancu, 2003). If the residual is larger than such
threshold, the existence of the fault can be proved (Fagarasan, Ploix, & Gentil, 2004; Puig, 2010).
Otherwise, the system is assumed to be still in healthy operation and working properly.
Methods that explicitly consider uncertainty in the FD task are known as robust approaches.

Most robust approaches try to maximize the fault sensitivity while minimizing the sensitivity to
uncertainty at the residual generation phase, following the active robust approach (Chen & Patton,
1999; Ding, 2008; Zhong, Ding, Lam, & Wang, 2003). On the other hand, the passive robust
approach tries to bound the effect of uncertainty in the residual evaluation phase by generating
adaptive thresholds (Puig, 2010). In the former class, the main idea is to decouple the effect of the
uncertainty (Chen & Patton, 2012), and the latter approach is based on enhancing the robustness
of the FD system at the decision-making stage (Puig, Quevedo, Escobet, & de las Heras, 2002).
The main purpose of the passive FD approach is to determine whether or not there is any member
in the uncertainty set that can explain the measurements. Then, any inconsistency between the
measurement and this set is considered as fault occurrence. Therefore, it is not necessary to know
the exact model of as a fault. In recent years, there has been an increasing interest in using the
passive approach since its main advantage over the corresponding active approach is to achieve
robustness in the FD procedure in spite of the number of uncertain parameters in the model by
using the underlying parameter representation without any simplification (Chai & Qiao, 2014;
Silvestre, Rosa, Hespanha, & Silvestre, 2017; Tabatabaeipour, 2015; Thabet, Combastel, Räıssi, &
Zolghadri, 2015; Xu et al., 2017).
The research of FD approaches able to improve performance of the system considering both the

fault and uncertainty/disturbance effect still is an active area of research (Pan & Yang, 2017) even
though already exist important contributions in the last years (Chen & Patton, 2012; Ding, 2008;
Zhong et al., 2003). In this regard, there are several approaches associated with generating the
residual (Chen & Patton, 1999; Gertler, 1998). So far, one of the most used approach for gener-
ating the residual is interval observer-based approach (Puig et al., 2003). Interval observer-based
approaches is mainly used to estimate the states from the measurements using either stochastic
(e.g., Kalman filters) or deterministic approaches (e.g., Luenberger observers) for modeling the un-
certainties. Then, the FD test is done based on generating the residual using the output estimation
error (Alamo, Bravo, & Camacho, 2005; Chen & Patton, 1999; Combastel, 2015; Puig et al., 2003).
Recent developments in the field of model-based FD have led to a renewed interest in using set-

theoretical approaches in FD framework. Set-invariance approach is one of the techniques where
the invariant sets for the residual can be computed in each healthy or faulty operation of the system
(Kofman, 2005; Kofman, Haimovich, & Seron, 2007; Ocampo-Martinez, De Doná, & Seron, 2010;
Seron, Zhuo, De Doná, & Mart́ınez, 2008). Consequently, when the system reaches the steady state,
the corresponding residual trajectory ultimately converges to one of these invariant sets. As long
as both healthy and faulty sets are separated, the FD can be performed (Ocampo-Martinez et al.,
2010; Seron et al., 2008).
The Robust Positively Invariant (RPI) set defined is a bounded region in state-space that the

system state can be confined in spite of the effect of the bounded system uncertainties (Seron &
De Doná, 2010; Xu, Stoican, Puig, Ocampo-Martinez, & Olaru, 2013). Furthermore, the minimal
Robust Positively Invariant (mRPI) set is a unique and compact RPI set that contained in any
closed RPI set (Rakovic, Kerrigan, Kouramas, & Mayne, 2005; Seron et al., 2008). One major
drawback of the set-invariance approach is related to the limitation of computing the finite de-
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scription of the RPI set. In recent years, researchers have investigated a variety of approaches. So
far, the proposed approaches can be classified into two main categories: (i) explicit approaches,
where the RPI set is computed using the explicit formulation of the set boundary (Kofman et al.,
2007), (ii) iterative approaches, where the recursive iteration of the approximation of the system
dynamics can be used to reach the RPI set (Artstein & Raković, 2008; Stoican, Hovd, & Olaru,
2013). Moreover, the set-invariance approach can be used for checking the separation of healthy
and faulty residual sets in steady state.
The minimum detectable fault (MDF) is a typical performance index used to characterize the

performance of the FD scheme. The way of computing the MDF depends on the particular model-
based approach and the way that faults and uncertainty are modeled. One possible way to model
the fault is based on considering it either as a state or as an unknown input of a dynamic system and
the estimation of the fault is done by means of an observer. Alternatively, the fault can be modeled
as a uncertain parameter that should be estimated by means of parameter estimation schemes
(Shen, Ding, & Wang, 2013; Tabatabaeipour & Bak, 2014; Tan, Tao, & Qi, 2013). Moreover, the
MDF is highly affected by the gain of the observer due to its influence in the FD performance.
The effect of the observer gain in FD has already been explored in (Meseguer, Puig, Escobet, &
Saludes, 2010).
In (Xu et al., 2013), the relation between the classical interval observer-based approach and

the set-invariance approach is discussed. Then, in (Kodakkadan et al., 2017; Pourasghar, Puig, &
Ocampo-Martinez, 2016), the characterization of the minimum magnitude of the fault that can be
detected is proposed using both the interval observer-based and set-invariance approaches. However,
there has been little discussion about the combination of the mentioned approaches. Then, interval
observer-based approach and the set-invariance approach are still known as two different techniques
in FD framework. In this regard, this paper is devoted to develop a passive robust FD approach
using interval observer-based approach in combination with set-invariance approach. Moreover,
another contribution of the paper is to determine the MDF using the proposed approach. System
uncertainty is assumed to be unknown but bounded. This fact implies that the interval observer-
based approach can deliver no just a single punctual estimation for the output/state but a set that,
in this paper, is bounded using zonotopes. On the one hand, the characterization of the MDF is
done by using the classical sensitivity analysis. On the other hand, this characterization is carried
out by using set-invariance theory. Mathematical expressions of the MDF for different type of
sensor and actuator faults are obtained with the goal of connecting both sensitivity and set-based
approaches. Contrary to most existing FD design techniques, the sensitivity to both faults and
disturbances is evaluated using a set-based approach enclosing all the possible temporal scenarios
of faults and disturbances within specified ranges. The combination of these features makes the
approach original compared the existing available FD techniques. Finally, the effectiveness of the
proposed approach is illustrated using a case study based on a quadruple-tank system.
The structure of the paper is the following: The problem formulation is presented in Section 2.

The observer structure and the FD algorithm are introduced in Section 3. Then, the MDF is
characterized in Section 4 dealing with different type of sensor and actuator faults. The case study
description and discussion of the obtained results are presented in Section 5. Finally, the general
conclusion is drawn in Section 6.

Notation

Throughout this paper, Rn denotes the set of n-dimensional real numbers, ⊕ denotes the Minkowski
sum. The matrices are written using capital letter, e.g., A, the calligraphic notation is used for
denoting sets, e.g., X , the transfer functions are highlighted using script font e.g., H , ‖.‖s denotes
the s-norm, [x, x] is an interval with lower bound x and upper bound x and the subscript or su-
perscript io and is denoted the interval observer-based and set-invariance approaches, respectively.
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In the Appendix, the background on zonotopes required to follow the paper is presented.

2. Problem formulation

The state-space form of the system to be monitored in this paper is described by a linear uncertain
dynamic model in discrete-time as follows:

xk+1 = Axk +Buk + Eωωk, (1a)

yk = Cxk + Eυυk, (1b)

where u ∈ R
nu , y ∈ R

ny and x ∈ R
nx are the input, the output and the state vectors, respectively.

Besides, A ∈ R
nx×nx , B ∈ R

nx×nu and C ∈ R
ny×nx are the state-space matrices, while ω ∈ R

nx and
υ ∈ R

ny are measurement disturbance and process noise vectors, respectively. Moreover, Eω and
Eυ are the empty matrices with appropriate dimensions while k ∈ N indicates the discrete time.
The measurement noise and process disturbances are assumed to be unknown but bounded, i.e.,

W = {ωk ∈ R
nx : |ωk − cω| ≤ ω̄, cω ∈ R

nx , ω̄ ∈ R
nx} , (2a)

V = {υk ∈ R
ny : |υk − cυ| ≤ ῡ, cυ ∈ R

ny , ῡ ∈ R
ny} , (2b)

where cω, ω̄, cυ and ῡ are constant vectors. Furthermore, (2) can be rewritten as a zonotopic
representation of the set as

W = 〈cω, Rω〉 , (3a)

V = 〈cυ, Rυ〉 , (3b)

where cω and cυ denote the centers of the disturbance and noise bouding zonotopes, respectively,
with their generator matrices Rω ∈ R

nx×nx and Rυ ∈ R
ny×ny , respectively.

Henceforth, the index k + 1 will be replaced by + for the sake of simplified notation. In this
regard, the dynamical model in (1) can be rewritten as

x+ = Ax+Bu+ Eωω, (4a)

y = Cx+ Eυυ. (4b)

Assumption 2.1: The pair {A,C} is detectable. �

Assumption 2.2: Disturbance and noise bounds represented in (3) are assumed to be bounded by
a unitary hypercube zonotopes centered at the origin, i.e., ∀ k ≥ 0, ω = [−1, 1] = 〈0, Inω

〉 and
υ = [−1, 1] = 〈0, Inυ

〉 where Inω
∈ R

nω×nω and Inυ
∈ R

nυ×nυ denote the identity matrices. �

3. FD test

3.1. Interval observer-based FD test

FD test in the interval observer-based approach consists in testing whether the system measure-
ments are consistent with the behavior described by the system model in healthy operation. The
existence of the fault is demonstrated in the case that measurements are inconsistent with the be-
havior of the model. Monitoring the dynamical model (4) can be done by designing a Luenberger
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observer of the form

x̂+ = Ax̂+Bu+K(y − ŷ), (5)

where x̂ is the state estimation. Moreover, the observer gain K should be computed such that
(A−KC) is a Schur matrix.

Assumption 3.1: The initial state x0 belongs to the zonotopic set X0 = 〈c0, R0〉, where c0 ∈ R
nx

denotes the center and R0 ∈ R
nx×nR0 is a non-empty matrix containing the generators matrix of

the initial zonotope X0. �

Therefore, according to Xu, Puig, Ocampo-Martinez, Olaru, & Stoican (2015), the resulting
interval observation of the dynamical model (4) can be defined by using Proposition 3.1.

Proposition 3.1: (Zonotopic-observer structure) Considering the observer (5) and Assumptions
2.2 and 3.1, the center c and the shape matrix R of the state-bounding observer can be recursively
defined as

c+ = (A−KC)c+Bu+Ky, (6a)

R+ =
[
(A−KC)R̄ Eω −KEυ

]
, (6b)

where R̄ =↓q {R}. Moreover, the state inclusion property x ∈ 〈c, R〉 holds for all k ≥ 0 (see
Properties 3 and 4 in the Appendix).

Proof. Assume x ∈ 〈c, R〉, ω ∈ 〈0, Inω
〉 and υ ∈ 〈0, Inυ

〉 where the inclusion property (see
Property 2 in the Appendix) is preserved by using the reduction operator, which means x ∈ 〈

c, R̄
〉
.

Thus, the set-based interval observation can be written using (5) as

x+ ∈ 〈c+, R+〉 =
〈
(A−KC)c, (A−KC)R̄

〉⊕ 〈Buu, 0〉 ⊕ 〈0, Eω〉 ⊕ 〈Ky, 0〉 ⊕ 〈0, −KEυ〉 . (7)

Thus, based on Definition 2 and Property 1, c+ and R+ in (7) can be derived as in (6). �
Likewise, the output can be predicted using Proposition 3.2.

Proposition 3.2: Considering the dynamical model (4) and Proposition 3.1, cy and Ry defining
the output-bounding zonotopic set 〈cy, Ry〉 can be computed as

cy = Cc, (8a)

Ry =
[
CR̄ Eυ

]
. (8b)

Proof. Assume x ∈ 〈c, R〉 and υ ∈ 〈0, Inυ
〉 for all k ≥ 0, where the inclusion is preserved by

using the reduction operator, which means x ∈ 〈
c, R̄

〉
. Thus, (4b) can be written as

y ∈ 〈cy, Ry〉 =
〈
Cc, CR̄

〉⊕ 〈0, Eυ〉 . (9)

Therefore, based on Definition 2 and Property 1, cy and Ry in (9) can be expressed as (8). This
gives the proof of Proposition 3.2. �
Now, the residual can be generated using the Proposition 3.3.

Proposition 3.3: (Residual generation using interval observer-based approach) Considering
Proposition 3.2 and the measurement equation in (4b), crio and Rrio of the residual zonotopic
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set are generated as

crio = y − Cc, (10a)

Rrio =
[−CR̄ −Eυ

]
, (10b)

where the subscript rio denotes that obtained residual is generated using the interval observer-based
approach.

Proof. The output equation (4b) can be written as

0 = y − Cx− Eυυ. (11)

Now, considering x ∈ 〈c, R〉 and υ ∈ 〈0, Inυ
〉, (11) becomes

0 ∈ 〈y, 0〉 ⊕ 〈−Cc, −CR〉 ⊕ 〈0, −Eυ〉 , (12)

where c is known using observer (6). Thus, considering Definition 2 and Property 1, crio and Rrio

in (12) can be expressed as in (10). This gives the proof of Proposition 3.3. �
Hence, the FD test can be done by checking the satisfaction of 0 /∈ 〈crio , Rrio〉. A computationally

efficient and widely used way to implement the detection test without increasing the false alarm rate
consists in testing whether or not 0 belongs to an aligned box enclosing the zonotope 〈crio , Rrio〉,
i.e.,

0 /∈ 〈crio , b(Rrio)〉 , (13)

where 〈crio , b(Rrio)〉 is enclosed by an aligned box denoted by b(Rrio).
Algorithm 1 summarizes the FD test procedure using interval observer-based apprach.

Algorithm 1 FD test based on interval observer-based approach

1: k ←− 0
2: X0 = 〈c0, R0〉
3: while 1 do
4: Compute the center c+ and shape matrix H+ of the state observer using (6)
5: Compute the center cy and shape matrix Hy of the output prediction using (8)
6: Compute the center crio and shape matrix Hrio of the residual using (10)
7: if 0 /∈ 〈crio , b(Rrio)〉 then
8: Fault← true
9: else

10: Fault false
11: end if
12: k ←− k + 1
13: end while

The FD test in Algorithm 1 is based on checking if 0 is inside the residual zonotopic set. This
set is propagated online to detect the existence of the fault. Alternatively, one possible way for
detecting the fault is to make use of the set-invariance approach which will be discussed in next
section.
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3.2. Set-invariance-based FD test

The set-invariance-based FD test also relies on a Luenberger observer (5) for monitoring the dy-
namical model (4). In this regard, the dynamics of the state estimation error, denoted by x̃, are
stated as

x̃+ = (A−KC)x̃+ Eωω −KEυυ, (14)

where x̃ = x− x̂ and (14) is stable since (A−KC) is a Schur matrix. Furthermore, the residual in
the case of the set-invariance approach, namely ris, can be computed by considering the measured
output vector y as

ris = y − Cx̂ = Cx̃+ Eυυ. (15)

Now, according to Kolmanovsky & Gilbert (1998) and assuming bounded disturbances and noises
(Assumption 2.2), an invariant set denoted by X̃ can be constructed, which includes the state
estimation error x̃. It means, x̃ evaluation remains inside X̃ if it is started from inside. Otherwise,
when x̃ evaluation is started from outside X̃ , it can enter this set after a finite time. Generally
speaking, X̃ is known as robust positive invariant (RPI) set if for any x̃ ∈ X̃ , ω ∈ W and υ ∈ V,
then, x̃+ ∈ X̃ , ∀k ≥ 0 holds. Therefore,

(A−KC) x̃+ Eωω −KEυυ ∈ X̃ , ∀ω ∈ W and υ ∈ V, (16)

also holds.
While a variety of methods has been developed to construct the invariant set X̃ according to

Kofman (2005), this paper uses the ultimate bounds method reported by Kofman et al. (2007). In
this regard, the Jordan Canonical form of (A−KC) is computed by

J = V (A−KC)V −1, (17)

where J is a diagonal matrix corresponding to the Jordan-normal form of (A − KC) and V is
a non-singular transformation matrix. Therefore, x̃ and its dynamics in (14) ultimately converge
within the RPI set X̃ defined as

X̃ =
{
x̃ ∈ R

nx : |V −1x̃| ≤ (I − |J |)−1|V −1|ω + ε
}
, (18)

where ε can be any arbitrary small vector with strictly positive components.
So far, the paper is mainly focused on using the zonotopic representation of sets. But, the

obtained set in (18) is a polyhedral RPI set of the state estimation error. In this regard, since the
set in (18) is symmetric around the origin and considering the zonotopic representation of sets,
Proposition 3.4 implies that X̃ can also be represented using a zonotope.

Proposition 3.4: (Zonotopic representation of X̃ ) Considering the steady-state operation of the
system and Proposition 3.1, the polyhedral RPI set of x̃ in (18) can be obtained using Definition 3
in the Appendix in its zonotopic representation as

cx̃∞ = 0, (19a)∥∥Rx̃∞i

∥∥
1
= ‖R∞i

‖1 , (19b)

where cx̃∞ and Rx̃∞i
are the center and the shape (generator) matrix of the zonotopic set X̃ ,

respectively. Moreover, i represent the i-row of the matrix Rx̃ and R in (6) when k tends to infinity.
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Proof. Given the state estimation error dynamics in (14) and assuming the initial state estima-
tion error x̃0 belongs to the zonotopic set X̃0 = 〈cx̃0

, Rx̃0
〉, defined as an RPI set, since x̃ ∈ 〈cx̃, Rx̃〉,

ω ∈ 〈0, Inω
〉 and υ ∈ 〈0, Inυ

〉 for all k ≥ 0, the set

x̃j+1 ∈
〈
cx̃j+1

, Rx̃j+1

〉
=

〈
(A−KC)cx̃j

, (A−KC)Rx̃j

〉⊕ 〈0, Eω〉 ⊕ 〈0, −KEυ〉 (20)

converges to the mRPI set (i.e., an RPI set contained in any closed RPI set) when k tends to
infinity, where j ∈ N represents the j-th element of the set. Thus, the center and the shape matrix
of the set in (20) can be unfolded as

cx̃j+1
= (A−KC) cx̃j

, (21a)

Rx̃j+1
=

[
(A−KC)Rx̃j

Eω −KEυ

]
. (21b)

Furthermore, x̃ converges to X̃ in steady state with the iterative propagation of (21) by starting
from the initial set X̃0 = 〈cx̃0

, Rx̃0
〉 that belongs to the RPI set. Hence, in the case that j tends to

infinity (in order to reach steady state), then the following conditions can be written:

cx̃j+1
= cx̃j

, (22a)∥∥Rx̃j+1

∥∥
1
=

∥∥Rx̃j

∥∥
1
. (22b)

Therefore, the same formulations as (19) for the center and the shape matrix of X̃ can be obtained
by rewriting (21) based on the conditions in (22). This gives the proof of Proposition 3.4. �
Consequently, the corresponding residual set can be computed using Proposition 3.5.

Proposition 3.5: Considering (15) and Proposition 3.4, cris and Rris of the residual using set-
invariance approach are generated as

cris∞ = Ccx̃∞ = 0, (23a)

Rris∞ =
[
CRx̃∞ Eυ

]
, (23b)

where the subscript ris denotes the residual set is generated based on set-invariance approach which
is invariant when k tends to infinity.

Proof. Considering X̃j =
〈
cx̃j

, Rx̃j

〉
based on Proposition 3.4 and initializing the system state

by starting the iterative propagation from the zonotopic RPI set i.e., X̃0 = 〈cx̃0
, Rx̃0

〉, and also
assuming υ ∈ 〈0, Inυ

〉, the zonotopic residual set can be obtained using (15) as

〈
crisj , Rrisj

〉
=

〈
Ccx̃j

, CRx̃j

〉⊕ 〈0, Eυ〉 . (24)

Furthermore, it can be considered that whenever x̃j is inside of
〈
cx̃j

, Rx̃j

〉
, risj remains inside of〈

crisj , Rrisj

〉
. Now, using the same way as the proof of Proposition 3.4, by considering the steady

state operation, the center and the shape matrix of the residual in this case can be obtained as in
(23). This gives the proof of Proposition 3.5. �
Finally, considering the residual that is obtained in Proposition 3.5 as a healthy residual set

that is generated based on the nominal model, i.e., considering only the effect of the uncertainties
(noises and disturbances), the FD test with the set-invariance approach is done by comparing the
residual that is computed on-line at each time instant, denoted by r, with the RPI residual set
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that is computed off-line in steady state. The fault is detected if

r /∈
〈
cris∞ , Rris∞i

〉
. (25)

Otherwise, the system remains healthy.

Remark 1: From the mathematical point of view, in order to check whether (25) is satisfied or
not, the Gilbert-Johnson-Keerthi (GJK) algorithm as proposed in (Lalami & Combastel, 2006) can
be used. �

3.3. Integrated FD test

So far, both interval observer-based and set-invariance approaches are considered as reliable set-
theoretical FD tests that can be used depending on the purpose of the investigation. In general,
the FD test is provided based on checking the consistency of the residual r in real time, which
is computed on-line, with the healthy residual zonotope that can be computed based on either
interval observer-based or set-invariance approaches. Then, any inconsistencies can be understood
as the occurrence of the fault. Therefore, Proposition 3.6 can be used in order to combine the FD
principles based on both interval-observer and set-invariance approaches.

Proposition 3.6: Considering the steady state and the general Luenberger observer structure in
(5), in healthy operation of the system

〈
crio∞ , Rrio∞

〉
=

〈
cris∞ , Rris∞

〉
. (26)

Then, the FD test is the same using both interval observer-based and set-invariance approaches
and can be done by checking whether

r ∈ 〈
crh∞ , Rrh∞

〉
, (27)

where crh and Rrh are the center and the shape (generator) matrix of the healthy residual zonotope
denoted by rh, respectively (i.e., rh = 〈crh , Rrh〉). Moreover, crh and Rrh can be computed using
set-invariance approach or interval observer-based approach when k tends to infinity.

Proof. The residual in the case of interval observer-based approach can be written using the
state estimation error as

rio = Cx̃io + Eυυ, (28)

where x̃io is the state estimation error using using the observer structure in Proposition 3.1. More-
over, the following dynamics of the state estimation error using interval observer-based approach
can be written using the same Luenberger observer structure as in (5):

x̃io+ = (A−KC)x̃io + Eωω −KEυυ, (29)

where, generally speaking, x̃io is different from x̃ in (14) that indicates the state estimation error
based on set-invariance approach. But, based on Xu et al. (2013), considering the steady-state
operation of the system, the size of the residual set

〈
crio∞ , Rrio∞

〉
obtained using the interval observer-

based approach converges towards the smallest residual set (healthy set) computed by the set-
invariance approach

〈
cris∞ , Rris∞

〉
. Therefore, the same residual zonotopes can be predicted based

on both the interval observer-based and set-invariance approaches, if k tends to infinity (steady
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state). Then, since having the same set that introduces the healthy residual, the same FD principle
can be obtained using both approaches. �
Then, considering Proposition 3.6, residual (28) or (15) can be used to compute the healthy

residual zonotope in steady state. Note that for the sake of simplified notation, rh is used instead
of rio or ris for denoting the healthy residual since they are equal in steady state dealing with the
faultless scenario.
In this regard, the input-output form of the output y in (4) can be written using the shift operator

q−1 as

y = Hu(q
−1)u+ Hω(q

−1)ω + Hυ(q
−1)υ, (30)

with

Hu(q
−1) = Cξ1(q

−1)B, (31a)

Hω(q
−1) = Cξ1(q

−1)Eω, (31b)

Hυ(q
−1) = Eυ, (31c)

where ξ1(q
−1) = (qI −A)−1.

On the other hand, the input-output form of the output prediction ŷ can be expressed using
observer (5) as

ŷ = Tu(q
−1)u+ Ty(q

−1)y, (32)

with

Tu(q
−1) = Cξ2(q

−1)B, (33a)

Ty(q
−1) = Cξ2(q

−1)K, (33b)

where ξ2(q
−1) = (qI − (A−KC))−1.

Now, using (30) and (32), the input-output form of the healthy residual can be expressed using
the shift operator q−1 as

rh = Gu(q
−1) u+ Gω(q

−1) ω + Gυ(q
−1) υ, (34)

with

Gu(q
−1) =

(
I −Ty(q

−1)
)
Hu(q

−1)−Tu(q
−1), (35a)

Gω(q
−1) =

(
I −Ty(q

−1)
)
Hω(q

−1), (35b)

Gυ(q
−1) =

(
I −Ty(q

−1)
)
Hυ(q

−1). (35c)

As it can be seen from (34), the obtained residual is only affected by the additive uncertainties
(disturbance and noise). Furthermore, Gω and Gυ indicate the sensitivity of the residual with respect
to the disturbance and noise, respectively.
Thus, the obtained healthy residual in (34) can be used for the FD test in (27) following Propo-

sition 3.7.

Proposition 3.7: Considering the input-output form of the residual in (34), the FD test in (27)

10



can be also done by checking the satisfaction of

r ∈ Gui
(1)u∞ ± ‖Gωi

(1) + Gυi
(1)‖1 , (36)

where the index i indicates the ith line of the transfer function G . In case that (36) is not satisfied
a fault is detected.

Proof. Since u ∈ 〈u, 0〉, ω ∈ 〈0, Inω
〉 and υ ∈ 〈0, Inυ

〉 for all k ≥ 0, the healthy residual set in
steady state can be written as

rh∞ ∈
〈
crh∞ , Rrh∞

〉
= 〈Gu(1)u∞, 0〉 ⊕ 〈0, Gω(1)〉 ⊕ 〈0, Gυ(1)〉 . (37)

Note that the steady state expression of (34) can be obtained by stating q = 1. Then, (37) can
also be expressed as a zonotopic representation as

crh∞ = Gu(1)u∞, (38a)

Rrh∞ =
[
Gω(1) Gυ(1)

]
. (38b)

Now, by considering both Definition 3 in the Appendix and (38), upper and lower bounds of the
residual zonotope, which are respectively denoted by rh and rh, can be computed as

rh∞ = Gui
(1)u∞ + ‖Gωi

(1) + Gυi
(1)‖1 , (39a)

rh∞ = Gui
(1)u∞ − ‖Gωi

(1) + Gυi
(1)‖1 . (39b)

Thus, considering (39) as upper and lower bounds, the fault can be detected if r /∈ [rh∞, rh∞]. �
Hence, the fault can be detected by generating the residual in real time and comparing it with

the residual set that was computed off-line using Proposition 3.7. A deeper discussion about the
computation of the minimum magnitude of the fault that can be detected using the approach
presented in this section will be done in Section 4.

4. Characterization of the MDF using sensitivity analysis integrated with a
set-invariance approach

Returning to the main issue posted at the beginning of this paper, the characterization of the MDF
is the main aim addressed in this section. In this paper, MDF is defined as the minimum magnitude
of the fault that can be detected. Furthermore, faults are generally classified into two types: sensor
and actuator faults. Figure 1 shows the schematic graphical interpretation of the different actuator
and sensors faults.
Moreover, the combination of classical sensitivity analysis and the set-invariance approach (called

integrated approach in Section 3) is employed to deal with the computation of the MDF.

Assumption 4.1: The fault f is considered as an additive (abrupt) fault that is bounded by a unit
hypercube expressed as the centered zonotope in all the cases, i.e., ∀ k ≥ 0, f = [−1, 1] = 〈

0, Inf

〉
.
�
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Figure 1.: Graphical interpretation of the different actuator and sensors faults.

4.1. Minimum detectable output sensor fault

The following dynamical model is considered to deal with the output sensor fault:

x+ = Ax+Bu+ Eωω, (40a)

y = Cx+ Eυυ + Fyfy, (40b)

where fy denotes the output sensor fault and Fy denotes the associated matrix by the given fault
with suitable dimensions as

Fy ∈ R
ny×ny .

The dynamic system in (40) can be written in input-output form using the shift operator q−1 as

y = Hu(q
−1)u+ Hω(q

−1)ω + Hυ(q
−1)υ + Hfy(q

−1)fy, (41)

where

Hfy(q
−1) = Fy. (42)

Furthermore, using the Luenberger observer (5), the output prediction can be expressed in input-
output form as in (32). Therefore, the input-output form of the residual in the case of output sensor
fault can be expressed as

r = Gu(q
−1) u+ Gω(q

−1) ω + Gυ(q
−1) υ + Gfy(q

−1)fy, (43)

with

Gfy(q
−1) =

(
I −Ty(q

−1)
)
Hfy(q

−1). (44)

Therefore, (43) encompasses the effect of uncertainties (disturbance and noise) and also the effect
of the fault. Furthermore, Gω(q

−1), Gυ(q
−1) and Gfy(q

−1) denote the sensitivity of the residual with
respect to the disturbance, noise and output sensor fault, respectively.
Now, the minimum detectable output sensor fault can be computed following the Theorem 4.1.

Theorem 4.1: (Minimum detectable output sensor fault) Considering the faulty dynamical model
(40) and the observer structure (5), the minimum magnitude of the output sensor fault can be

12



characterized as

fyj,∞ = max fyji,∞ , fyji,∞ = +2
‖(I − Ciξ2i

(1)Ki) (Ciξ1(1)Eωi
+ Eυi

)‖1∥∥(I − Cijξ2ij
(1)Kij

)
Fyij

∥∥
1

, (45a)

f
yj,∞

= min f
yji,∞

, f
yji,∞

= −2‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥(I − Cijξ2ij

(1)Kij

)
Fyij

∥∥
1

, (45b)

where fyj,∞ and f
yj,∞

are upper and lower bounds of the MDF in the case of output sensor fault,

respectively. Additionally, the indices i and j indicate the ith line and jth column of the transfer
functions, respectively. Moreover, the value 2 is included to consider the worst-case scenario, i.e.,
the residual is considered to be in the extreme value (it is located at either the lower or the upper
bound of the considered threshold).

Proof. Given a residual in (43), considering the faulty residual in the case of an output sensor
fault, and following the FD test presented in Proposition 3.6, it can be written that in faulty
scenario (i.e., fy(q

−1) �= 0⇒ fy∞ �= 0), the following condition should be satisfied in steady state:

r∞ /∈ Gui
(1)u∞ ± ‖Gωi

(1) + Gυi
(1)‖1 , (46)

where r∞ corresponds to the residual that is obtained at k = ∞ using (43). Moreover, since
u ∈ 〈u, 0〉, ω ∈ 〈0, Inω

〉, υ ∈ 〈0, Inυ
〉 and considering Assumption 4.1, it can be written in steady

state ∀ i, j that

Gfyij
(1)fyj,∞ /∈ 0± 2 ‖Gωi

(1) + Gυi
(1)‖1 . (47)

Therefore, the MDF in the case of an output sensor fault can be calculated by simplifying (47)
as

fyj,∞ /∈ 0± 2
‖Gωi

(1) + Gυi
(1)‖1∥∥∥Gfyij

(1)
∥∥∥
1

. (48)

Finally, the MDF can be characterized as it is formulated in (45) by the substitution of (35b),
(35c) and (44) into (48) for the sensitivity with respect to ω, υ and fy, respectively. �

4.2. Minimum detectable input sensor fault

The sensor fault is divided into the output and input sensor faults. The main distinction considered
in this paper between output and input sensor faults is related to the location of occurrence of the
fault. If the occurrence of the fault is located at the output measurement of the dynamical model,
it can be known as a output sensor fault (see (40)). Furthermore, if the input of the observer is
affected by the fault, it is known as input sensor fault in this paper. Hence, the faulty observer
model (5) including the fault is considered as

x̂+ = Ax̂+B (u+ Fufu) +K(y − ŷ), (49)

where fu indicates the input sensor fault and Fu denotes the associated matrix by the given fault
with suitable dimensions as

Fu ∈ R
nu×nu .

13



Thus, the input-output form of the dynamical model (4) can be written using the shift operator
q−1 as

y = Hu(q
−1)u+ Hω(q

−1)ω + Hυ(q
−1)υ. (50)

Moreover, the observer (49) affected by the input sensor fault can be expressed as

ŷ = Tu(q
−1)u+ Ty(q

−1)y + Tfu(q
−1)fu, (51)

where

Tfu(q
−1) = Cξ2(q

−1)BFu. (52)

Therefore, using (50) and (51), the input-output form of the residual in the case of an input
sensor fault is expressed as

r = Gu(q
−1) u+ Gω(q

−1) ω + Gυ(q
−1) υ + Gfu(q

−1)fu, (53)

with

Gfu(q
−1) = −Tfu(q

−1). (54)

Furthermore, (53) allows to decouple the residual obtained with respect to the effect of the
uncertainties (additive disturbance and noise) and the considered type of fault. In (53), Gω(q

−1)
and Gυ(q

−1) indicate the sensitivity of the residual with respect to the disturbance ω and the
measurement noise υ, respectively. Moreover, the sensitivity of the obtained residual with respect
to the input sensor fault is indicated by Gfu(q

−1).
Theorem 4.2 can be used in order to compute the minimum detectable input sensor fault.

Theorem 4.2: (Minimum detectable input sensor fault) Given a dynamical model (4) and moni-
toring the system using the observer (49), the minimum detectable input sensor fault can be com-
puted as

fuj,∞ = max fuji,∞ , fuji,∞ = +2
‖(I − Ciξ2i

(1)Ki) (Ciξ1(1)Eωi
+ Eυi

)‖1∥∥−Cijξ2ij
(1)BijFuij

∥∥
1

, (55a)

f
uj,∞

= min f
uji,∞

, f
uji,∞

= −2‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥−Cijξ2ij

(1)BijFuij

∥∥
1

, (55b)

where fuj,∞ and f
uj,∞

are upper and lower bounds of the minimum detectable input sensor fault,

respectively.

Proof. As mentioned in the proof of Theorem 4.1, in the faulty scenario, i.e., fu(q
−1) �= 0 ⇒

fu∞ �= 0, the condition (46) can be written considering (53) and based on Proposition 3.6. Thus,
in the faulty condition (input sensor fault) the satisfaction of the following condition should be
proved ∀i, j:

Gfuij
(1)fuj,∞ /∈ 0± 2 ‖Gωi

(1) + Gυi
(1)‖1 . (56)

14



Then, the MDF can be computed using (56) as

fuj,∞ /∈ 0± 2
‖Gωi

(1) + Gυi
(1)‖1∥∥∥Gfuij

(1)
∥∥∥
1

. (57)

Hence, the same formulation as (55) is obtained by substituting (35b), (35c) and (54) in (57) for
the sensitivity with respect to ω, υ and fu, respectively. �

4.3. Minimum detectable actuator fault

The dynamical model including an actuator fault can be written as

x+ = Ax+Bu+ Eωω + Fafa, (58a)

y = Cx+ Eυυ, (58b)

where fa denotes the actuator fault and Fa is the associated matrix of the given fault. In addition,
Fa indicates the actuator that is affected by the fault with suitable dimension as

Fa ∈ R
nx×nu .

Furthermore, the measurement equation in (58) can be expressed in input-output form using the
shift operator q−1 as

y = Hu(q
−1)u+ Hω(q

−1)ω + Hυ(q
−1)υ + Hfa(q

−1)fa, (59)

where

Hfa(q
−1) = Cξ1(q

−1)Fa. (60)

On the other hand, the observer (5) can be used for monitoring the dynamical model (58), which
can be expressed in input-output form as (32). Then, the residual in the case of the actuator fault
in input-output form can be written as

r = Gu(q
−1) u+ Gω(q

−1) ω + Gυ(q
−1) υ + Gfa(q

−1)fa, (61)

with

Gfa(q
−1) =

(
I −Ty(q

−1)
)
Hfa(q

−1), (62)

where Gfa denotes the sensitivity of the residual with respect to the actuator fault. Moreover, Gω and
Gυ indicate the sensitivity of the residual with respect to the disturbance ω and the measurement
noise υ, respectively.
Theorem 4.3 can be used in order to compute the minimum detectable actuator fault.

Theorem 4.3: (Minimum detectable actuator fault) Considering a dynamical model (58) and the
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Table 1.: Residual sensitivity with respect to different type of actuator and sensor faults.

Residual sensitivity

Output sensor fault Gfy(q
−1) =

(
I − Cξ2(q

−1)K
)
Fy

Input sensor fault Gfu(q
−1) = −Cξ2(q

−1)BFu

Actuator fault Gfa(q
−1) =

(
I − Cξ2(q

−1)K
)
Cξ1(q

−1)Fa

observer in (5), the minimum detectable actuator fault can be computed as

faj,∞ = max faji,∞ , faji,∞ = +2
‖(I − Ciξ2i

(1)Ki) (Ciξ1(1)Eωi
+ Eυi

)‖1∥∥(I − Cijξ2ij
(1)Kij

)
Cijξ1ij

(1)Faij

∥∥
1

, (63a)

f
aj,∞

= min f
aji,∞

, f
aji,∞

= −2‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥(I − Cijξ2ij

(1)Kij

)
Cijξ1ij

(1)Faij

∥∥
1

, (63b)

where faj,∞ and f
aj,∞

are upper and lower bounds of the minimum detectable actuator fault, re-

spectively.

Proof. The way of obtaining the proof is similar to those used for Theorems (4.1) and (4.2).
When considering faulty scenario, i.e., fa(q

−1) �= 0 ⇒ fa∞ �= 0, using the residual (61) and based
on Proposition 3.6, the condition (46) should be satisfied and written ∀i, j as

Gfaij
(1)faj,∞ /∈ 0± 2 ‖Gωi

(1) + Gυi
(1)‖1 . (64)

Now, simplifying (64) yields

faj,∞ /∈ 0± 2
‖Gωi

(1) + Gυi
(1)‖1∥∥∥Gfaij

(1)
∥∥∥
1

. (65)

Therefore, the minimum detectable actuator fault can be formulated as (63) by substituting (35b),
(35c) and (62) in (65). �

4.4. Comparative assessment

This section attempts to find the bridge between the approaches characterizing the MDF under-
taken by the classical sensitivity framework using interval observers and the set-invariance ap-
proach. In this regard, according to (Blanke et al., 2006), the considered faults are classified into
different categories depending on its location as
• actuator faults, which affect the system inputs,
• sensor faults that affect the measurements of the inputs and outputs of the system.
As a result of considering different mentioned actuator and sensors faults, the sensitivity of

the residual with respect to the fault is computed differently. Table 1 summarizes the derived
formulation for different sensitivity in previous sections.
Consequently, the characterized formulation for computing the minimum magnitude of the given

fault is different. Table 2 summarizes the characterization of the MDF for different type of consid-
ered faults.
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Table 2.: Different minimum detectable actuator and sensor faults.

MDF

Output sensor fault
fyj,∞ = max fyji,∞ , fyji,∞ = +2

‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥(I − Cijξ2ij

(1)Kij

)
Fyij

∥∥
1

f
yj,∞

= min f
yji,∞

, f
yji,∞

= −2‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥(I − Cijξ2ij

(1)Kij

)
Fyij

∥∥
1

Input sensor fault
fuj,∞ = max fuji,∞ , fuji,∞ = +2

‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥−Cijξ2ij

(1)BijFuij

∥∥
1

f
uj,∞

= min f
uji,∞

, f
uji,∞

= −2‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥−Cijξ2ij

(1)BijFuij

∥∥
1

Actuator fault
faj,∞ = max faji,∞ , faji,∞ = +2

‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥(I − Cijξ2ij

(1)Kij

)
Cijξ1ij

(1)Faij

∥∥
1

f
aj,∞

= min f
aji,∞

, f
aji,∞

= −2‖(I − Ciξ2i
(1)Ki) (Ciξ1(1)Eωi

+ Eυi
)‖1∥∥(I − Cijξ2ij

(1)Kij

)
Cijξ1ij

(1)Faij

∥∥
1

Further analysis on the physical meaning of the different type of the considered faults will be
discussed in Section 5 based on a case study.

5. Case study

5.1. General description

The MDF analysis is performed using a quadruple-tank system based on the well-known benchmark
proposed in (Johansson, 2000). A schematic of the system can be seen in Figure 2.
As shown in Figure 2, the two system inputs are the pump flows that are determined when

applying voltage v1 and v2 to the pump which can be manipulated to regulate the tanks level.
Thus, the action of the pumps is to pour the tanks by the extraction of the water from the
basin. Moreover, Tanks 1 and 2 are located below of Tanks 3 and 4. Thus, the lower tanks receive
additional water flow from the upper tanks by gravity. Furthermore, the water levels in Tanks 1
and 2 are the output of the system which are obtained as voltages from the measurement devices
between 0 V to 10 V. Moreover, the input of each tank is affected by the aperture of the valve,
which can vary between 0 and 1, i.e., 0 ≤ γj ≤ 1 with i = 1, 2.
Regarding to the psychical features, the tank are made from plexiglas tubes with the height of

20 cm. Also, the connection of the tanks and the pumps is done using the pipe with a diameter 6
mm.
From the mathematical point of view, the following nonlinear differential equations describe

the dynamics of the considered system, which can be written using mass-balance relations and
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Tank 3 Tank 4

Tank 1 Tank 2

(1− γ2)Kp2v2

(1− γ1)Kp1v1

γ1 γ2
a3
√
2gh3 a4

√
2gh4

a1
√
2gh1 a2

√
2gh2

Kp2v2Kp1v1

Pump 2Pump 1

v1 v2

γ1Kp1v1 γ2Kp2v2

Figure 2.: Schematic diagram of the quadruple-tank system.

Bernoulli’s law:

dh1(t)

dt
= − a1

A1

√
2gh1(t) +

a3
A1

√
2gh3(t) +

γ1Kp1

A1
v1(t), (66a)

dh2(t)

dt
= − a2

A2

√
2gh2(t) +

a4
A2

√
2gh4(t) +

γ2Kp2

A2
v(t), (66b)

dh3(t)

dt
= − a3

A3

√
2gh3(t) +

(1− γ2)Kp2

A3
v2(t), (66c)

dh4(t)

dt
= − a4

A4

√
2gh4(t) +

(1− γ1)Kp1

A4
v1(t), (66d)

where vj denotes the input voltage through the Pump j with j = 1, 2 and hi is the water level in
Tank i with i = 1, 2, 3, 4. Moreover, Kpj

is the constant of pump j and g is the acceleration due to
gravity. According Johansson (2000), the parameter values in (66) are

• A1 = A3 = 28 cm2,
• A2 = A4 = 32 cm2,
• a1 = a3 = 0.071 cm2,

• a2 = a4 = 0.057 cm2,
• γj = 0.60,
• g = 981 cm/s2.

Since all the mathematical developments in previous sections were obtained based on the con-
sideration of a linear dynamic system, the linearized model of (66) is required to be obtained
to illustrate the effectiveness of the characterized formulations. In this regard, the model (66) is
linearized around a working point. The selection of the operating point is done when the system
exhibits minimum-phase characteristics. The operating point is denoted using the superscript ∗
and selected as
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• (h∗1, h∗2) = (12.4, 12.7) cm,
• (h∗3, h∗4) = (1.8, 1.4) cm,
• (v∗1, v∗2) = (3, 3) V,
• (K∗

p1
, K∗

p2

)
= (3.33, 3.35) cm3/Vs,

• (γ∗1 , γ∗2) = (0.7, 0.6).

Therefore, the linearized model of (66) can be written by introducing the variables h̃i = hi − h∗i
and ṽi = vi − v∗i as

˙̃
h(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

T1
0

A3

A1T3
0

0 − 1

T2
0

A3

A1T3

0 0 − 1

T3
0

0 0 0 − 1

T4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
h̃(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1Kp1

A1
0

0
γ2Kp2

A2

0
(1− γ1)Kp2

A3
(1− γ1)Kp1

A4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ṽ(t), (67a)

y(t) =

[
Kc 0 0 0
0 Kc 0 0

]
h̃(t), (67b)

where Ti =
Ai

ai

√
2h∗i
g

, with i = 1, 2, 3, 4 and Kch(t) shows the measured level signal that is de-

termined from the level measurement device. Then, considering Kc = 0.50 V/cm according to
Johansson (2000), the range of the measured output is 10 V since the height of each tank is 20 cm.
In addition, the incremental value of the measured output around the operation point of Tank 1
is from 8 cm to 16 cm or from 4 V to 8 V.
Finally, using the Euler discretization with a sampling time of 1s, the discrete-time state-space

model of the considered two-tank system affected by the additional disturbance and noise can be
written as

h̃+ = Ah̃+Bṽ + Eωω, (68a)

y = Ch̃+Dṽ + Eυυ, (68b)

A =

⎡
⎢⎣
0.9842 0 0.0419 0

0 0.9890 0 0.0333
0 0 0.9581 0
0 0 0 0.9672

⎤
⎥⎦ , B =

⎡
⎢⎣
0.2102 0

0 0.0628
0 0.0479

0.0094 0

⎤
⎥⎦ , C =

[
0.5 0 0 0
0 0.5 0 0

]
, D =

[
0 0
0 0

]
.

Moreover, bounded disturbances influencing all the state-space directions and the measurement
noise are modeled respectively with Eω and Eυ in (68) as

Eω =

⎡
⎢⎢⎣
0.05 0.01 0 0 0 0 0
0.05 0 0.01 0 0 0 0
0.05 0 0 0.01 0 0 0
0.05 0 0 0 0.01 0 0

⎤
⎥⎥⎦ , Eυ =

[
02x5 0.1 I2

]
. (70)

Then, the effect of the fault is modeled through the selection of matrix F• where the subscript •
can be assigned by y, u and a depending on the kind of fault considered (see (40), (49) and (58)).
Furthermore, following the problem formulation in Section 2, both state and measurement un-

certainty vectors, i.e., ω and υ, and all the considered fault vectors, i.e., fa, fy and fu, are assumed
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to be normalized in [−1, 1]. Accordingly, the matrices Eω, Eυ, Fa, Fy and Fu are defined. Further-
more, the observer gain is computed based on the proposed method in (Combastel, 2015).
In this regard, further investigation will be conducted for the case study by considering the single

additive actuator and sensors faults to compute the minimum detectable magnitude in the next
section.

5.2. Minimum Detectable Faults (MDF) analysis

In this section, the actuator and the sensor faults are considered for the case study as single additive
fault, separately. First, the magnitude of MDF is computed based on the theoretical formulation
that are derived in Section 4. Then, the simulation is employed in order to validate the obtained
results.

5.2.1. Minimum detectable actuator fault

The actuator is electrically driven allowing to manipulate the valve. Moreover, the valve actuator
can be either open or closed and intermediate positions. As it is mentioned in the description of the
case study, the range of flow parameter is considered between 0 and 1. This parameter is related
to the position of the valve during the experiment and the flow to the lower and upper tanks are
affected by the position of the valve through γjKpj

vj and (I − γj)Kpj
vj with j = 1, 2, respectively.

Furthermore, the effect of actuator fault can be simulated based on (faulty) dynamical model
(58) through matrix Fa and the vector fa. In this case, single actuator fault is considered based on
the elements of the vector fa , i.e.,

fa =

[
fa1

fa2

]
, (71)

where fa1
and fa2

indicate the fault affecting each actuator. Furthermore, the following matrix Fa

is selected to simulate the actuator fault:

Fa = 5B. (72)

All the previously mentioned points are considered to simulate the actuator fault for the case
study. Then, considering Theorem 4.3, the minimum magnitude of the actuator fault that can be
detected is obtained in steady state as

fa1
= ±0.0879, (73a)

fa2
= ±0.4095. (73b)

In this case study, the flow parameters are considered as γ1 = 0.7 and γ2 = 0.6. As it can be
seen in (73), the magnitude of the minimum actuator fault that can be detected is ±0.0879 for f1
and ±0.4095 for f2. It means that when the magnitude of the actuator fault is higher than the
magnitudes obtained in (73) can be detected. Otherwise, it is not detectable. Using in this case,
when γ1 > 0.7± 0.0879 or γ2 > 0.6± 0.4095, the fault is detected.
Furthermore, the size of the MDF is obtained based on the simulation by increasing the mag-

nitude of the actuator fault from 0 until the magnitude that can be detected at the end of the
simulation, i.e., steady state. The following magnitude are obtained from the simulation:

f◦
a1

= ±0.0650, (74a)

f◦
a2

= ±0.3800, (74b)
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where the superscript ◦ shows the magnitude is obtained from the simulation.
Now by comparing (73) with (74), there is no significant difference between the obtained MDF

using the theoretical approach and the simulation is found. Thus, (74) confirms the obtained
magnitude in (73) using Theorem 4.3.
For the goal of further analysis, the magnitude of fault f2 in the pump valve is considered as a

single step additive fault by the following scenarios in order to show the FD performance:
• slightly bigger than 0.4095,
• slightly smaller than 0.4095.
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Figure 3.: FD test in the case of actuator fault with the magnitude bigger than 0.4095.

In Figure 3, the obtained residuals from the simulation are shown in the case that the position
of the γ2 is considered as a faulty parameter with γ2 > 0.6 ± 0.4095 and γ1 is considered healthy
in steady state. Precisely, the fault is added to the valve actuator through the dynamical model
(58) at k = 200 with the magnitude bigger than 0.4095 for the case of actuator fault. In addition,
the projection of the invariant residual sets that are generated based on the healthy mode of the
system (considering both outputs) is shown in Figure 3.
As seen in Figure 3, from time step k = 0 until k = 200, both actuators are healthy and working

with γ1 = 0.7 and γ2 = 0.6. Thus, the generated residuals are inside the healthy invariant sets.
On the other hand, the residual sets changes at k = 200 due to the occurrence of the fault and go
outside of their obtained invariant sets.
At this point, that the interval observer-based approach and set-invariance theory can be com-

pared in the proposed FD framework. As it can be seen in Figure 3, using the interval observer-based
approach, the fault can be detected sooner since, according to Algorithm 1, FD test considering
the interval observer-based approach is done only by cheeking if 0 /∈ 〈crio , b(Rrio)〉. But, based
on the set-invariance theory, the existence of the fault is proved when the residual (that is deter-

mined iteratively at each time instant) satisfies r /∈
〈
cris∞ , Rris∞i

〉
. Thus, moving the residual from

the healthy set to the faulty residual set can take more time in comparison with only cheeking if
0 /∈ 〈crio , b(Rrio)〉. Therefore, the existence of the fault is shown latter. What is interesting from
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Figure 3 is that, by considering the proposed FD approach, both interval observer-based approach
and set-invariance theory are able to detect the fault with the magnitude slightly bigger than 0.4095
(bottom plot in Figure 3 shows the applied fault magnitude). The FD decision is indicated by 0 in
case of no-fault in the system and 1 indicating that the fault is detected.
Considering Remark 1, the computational burden of the interval observer-based approach comes

from the type of the considered sets (here zonotopes) in order to bound the effect of uncertainties.
As it was mentioned before, the computationally efficient way to implement the FD test without
increasing the false alarm rate is to check whether or not 0 belongs to an aligned box enclosing
the zonotope 〈crio , Rrio〉. In this regard, Figure 4 compares the runtime of the FD test considering
0 /∈ 〈crio , b(Rrio)〉 (known as interval observer-based approach) versus the FD test using the exact
zonotope (known as zonotopic observer-based approach) at each time instant. Furthermore, Table 3
compares the runtime for considering the whole time range of the simulation. It can be observed
from both Figure 4 and Table 3 that the computational burden when using the aligned box enclosing
the zonotope 〈crio , Rrio〉 for detecting the fault is less than the case of using the exact zonotope.
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Figure 4.: Runtime comparison using interval and zonotopic observer-based approaches at each
time step.

Table 3.: Runtime comparison using interval and zonotopic observer-based approaches considering
the whole time range of the simulation.

Runtime [s]

Interval observer-based approach 1.6240

Zonotopic observer-based approach 3.0430

Likewise, the FD test is carried out in the case that the magnitude of the actuator fault is slightly
smaller than 0.4095, fact that is shown in bottom plot of Figure 5. This figure shows that the fault
is not detectable for both set-invariance theory and interval observer-based approach since neither
Algorithm 1 nor (25) are satisfied. Therefore, the fault with the magnitude smaller than 0.4095
cannot be detected.

5.2.2. Minimum detectable output sensor fault

The MDF analysis in the case of output sensor fault can be done based on Theorem 4.1. As it is
mentioned, the outputs of the quadruple-tank system are the water levels in Tanks 1 and 2 that
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Figure 5.: FD test in the case of actuator fault with the magnitude smaller than 0.4095.

are measured as voltages from the measurement devices. In this case study, the height of each tank
is 20 cm. Then, each output of the system is between 0− 10 V since Kc = 0.50 V/cm.
In this case, the fault is simulated using the dynamical model (40) and the element of vector fy,

i.e.,

fy =

[
fy1

fy2

]
, (75)

where fy1
and fy2

show the effect of the fault influencing each output. On the other hand, matrix
Fy is defined with the whole range of the measurement as

Fy =

[
10 0
0 10

]
. (76)

Turning now to the main goal of this section, the minimum detectable output sensor fault can
be determined in steady state using (45) based on Theorem 4.1 as

fy1
= ±0.2808 V, (77a)

fy2
= ±0.5710 V. (77b)

Thus, it can be realized that the magnitudes of the output sensor fault bigger than 0.2808 V for
fy1

and 0.5710 V for fy2
is detectable in steady state. In this case, the operating points that are

considered for the water levels of the Tanks 1 and 2 are around 12.4 cm (or 6.2 V) and 12.7 (or
6.35 V), respectively. Thus, the existence of the fault can be detected on each sensor, in the case
that its magnitude is bigger magnitude than the obtained results in (77).
Moreover, the following magnitude of MDF is obtained based on the simulation by increasing

the size of the output sensor fault until the magnitude that can be detected in steady state, i.e.,
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at the end of simulation:

f◦
y1

= ±0.2750 V, (78a)

f◦
y2

= ±0.5650 V. (78b)

The similarity of results is apparent from the comparison of the two magnitudes posted in (77)
and (78) using theoretical approach and simulation to compute MDF. Therefore, (78) can be
considered as a validation of (77) which is obtained based on Theorem 4.1.
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Figure 6.: FD test in the case of output sensor fault with the magnitude bigger than 0.2808 V.

Regarding the FD performance, the following scenarios are considered when one of the output
measured voltages from the level measurement devices (e.g., fy1

) is influenced by a single additive
step fault:
• slightly bigger than 0.2808 V,
• slightly smaller than 0.2808 V.
The output sensor fault is simulated for the case study from k = 200 until the end of the

simulation and the FD test presented in Section 3 is used in order to show the FD performance.
In the first scenario, the FD test is applied when the magnitude of the fault is slightly bigger than
0.2808 V. Figure 6 shows the obtained results from the simulation of the first scenario.
As can be seen from Figure 6, the system is working properly until k = 200 since the residual is

inside of the healthy invariant set. But, after the occurrence of the fault at k = 200, the residuals
are effected by the given fault and the empty intersection can be found between the residual sets
and the healthy invariant sets. Thus, the fault alarm shows 1 that means the detection of the fault
(see the bottom plot in Figure 6). The other point that is worth mentioning regarding Figure 6
is related to the comparison of interval observer-based approach and set-invariance theory from
the detection time point of view. Figure 6 shows that the decision of the fault occurrence is faster
using the interval observer-based approach in comparison with the set-invariance theory. As it is
mentioned, the satisfaction of FD test in (25) based on set-invariance required more time than
the use of Algorithm 1. This faster FD decision shows the advantage of interval observer-based
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approach in comparison with the set-invariance theory. But, the point regarding the Figure 6 is
that the fault with the obtained magnitude based on the theoretical formulation is detectable for
both mentioned approaches.
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Figure 7.: FD test in the case of output sensor fault with the magnitude smaller than 0.2808 V.

Finally, the FD test is applied to the case that a fault occurs with the magnitude slightly smaller
than 0.2808 V. Figure 7 shows the simulation of this scenario.
The overlap between the residual set and the invariant set can be observed from Figure 7.

Therefore, the effect of the fault is not detectable since this overlap exists. Thus, if the output
sensor fault occurs with the magnitude smaller than 0.2808 V, the fault cannot be detected. In
other words, a difference greater than 0.2808 V between the output measurement and its actual
value can be associated with the occurrence of the fault. Therefore, the fault with the magnitude
shown in bottom plot of Figure 7 is not detectable for both set-invariance theory and interval
observer-based approach since neither Algorithm 1 nor (25) are satisfied.

5.2.3. Minimum detectable input sensor fault

Simulation of the fault is carried out through the elements of vector fu, i.e.,

fu =

[
fu1

fu2

]
, (79)

where fu1
and fu2

denote the effect of the fault influencing each observer input. Furthermore,
matrix Fu is defined with the whole range of the input as

Fu =

[
5 0
0 5

]
. (80)

Now, using all the points that are mentioned above, the minimum detectable input sensor fault
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can be theoretically obtained using (55) based on Theorem 4.2 as

fu1
= ±0.0878 V, (81a)

fu2
= ±0.6416 V. (81b)

As mentioned before, the system input is the voltage that is linearized around 3 V for both
pumps. Thus, based on the obtained result in (81), the fault with bigger magnitude than 0.0878 V
influencing fu1

and 0.6416 V influencing fu2
is detectable. To ensure the obtained results in (81),

the MDF is determined based on the simulation by increasing the magnitude of the fault from 0
V until the magnitude that is detectable. The following magnitude of the fault is obtained at the
end of the simulation (steady state):

f◦
u1

= ±0.0850 V, (82a)

f◦
u2

= ±0.6200 V. (82b)
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Figure 8.: FD test in the case of input sensor fault with the magnitude bigger than 0.0878 V.

Similar to previous cases (actuator and output sensor faults), no significant difference is obtained
by comparing (81), which is computed theoretically based on Theorem 4.2, and (82), which is
obtained base don the simulation. Hence, (82) confirms the magnitude of the fault in (81).
A future study investigating the FD performance is done considering the following scenarios:
• slightly bigger than 0.0878 V,
• slightly smaller than 0.0878 V.
In this regard, Figure 8 shows the FD test in the case that the fault is considered in the input

of the observer model though the pump as a single additive step fault with the magnitude slightly
bigger than 0.0878 V. Moreover, the occurrence of the fault is simulated from time instant k = 200
and it remains until the end of the simulation.
As it can be seen from Figure 8, from time instant k = 0 until k = 200 both residual sets

are inside of the healthy invariant sets. It means, the inputs of the system are not affected by
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the fault and consequently the system is working properly. But, after k = 200 the residual sets
moves toward outside of the healthy invariant sets due to the fault effect. Hence, the existence
of the fault is proved after k = 200 since the intersection between the invariant sets that show
the healthy operation of the system and the residual sets that are generated iteratively during the
simulation can be found empty. Furthermore, the fault with this magnitude can be detected since
0 /∈ 〈crio , b(Rrio)〉. Thus, the fault alarm in Figure 8 gives the value 1 showing the existence of
the fault. But, as it is explained previously, it can be observed that the FD decision is faster using
interval observer-based approach in comparison with the set-invariance theory.

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

R
1

Residual
Invariant set of healthy operation
Bounds of faulty residual
Threshold

0 100 200 300 400 500 600 700 800 900 1000
5

0

5

10

R
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Fa
ul

t a
la

rm Interval obserevr approach
Set invariance approach

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

Fa
ul

t

Time step

Figure 9.: FD test in the case of input sensor fault with the magnitude smaller than 0.0878 V.

Additionally, the FD test is done when the fault occurs in the input of the observer with the
magnitude slightly smaller than 0.0878 V and the result from the simulation is shown in Figure 9.
This figure also shows that the residual sets are inside of the invariant sets at all time range.
Therefore, this magnitude of the fault that is shown in bottom plot of Figure 9 is not detectable
since neither Algorithm 1 nor (25) are satisfied. The overlap between the invariant sets and the
residual sets emphasizes the issue that the fault can not be detected with the magnitude smaller
than 0.0878 V. The fault can never be detected if the overlap between the invariant set and the
residual exists.

5.3. Discussion

This paper seeks to integrate the computation of the MDF using interval observer-based and set-
invariance-based approaches undertaken by the classical sensitivity analysis. In order to detect
the fault using both interval observer-based and set-invariance-based approaches, first the residual
set in healthy operation of the system is obtained. Then, the residual (obtained in real-time) is
compared with the healthy one. Furthermore, the FD test using both approaches is almost similar.
In the interval observer-based approach, 0 is considered as the healthy threshold and the residual
zonotope is calculated on-line. On the other hand, in the set-invariance approach, the healthy
residual set (RPI set), which is computed off-line, is considered as healthy threshold.
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Since the FD principles can be integrated as it is introduced in Section 3.3, the obtained invariant
set in steady state can be fixed as a set introducing the healthy operation of the system for
both approaches. It means that the healthy zonotopic residual set using an interval observer in
steady state, i.e., when k → ∞, converges toward the healthy residual set computed using set-
invariance approach. Then, assuming the initial state estimation error x̃0 belongs to the zonotopic
set X̃0 = 〈cx̃0

, Rx̃0
〉 that is defined as an RPI set, the corresponding residual set is computed as a

zonotopic set using Proposition 3.4.
By understanding the possible way to ingrate the FD test using interval observer-based and

set-invariance approaches as in Proposition 3.6, minimum detectable sensors and actuator faults
are characterized in (45), (55) and (63) using the integrated FD principle, respectively. Using the
classical sensitivity analysis, the MDF formulations in Section 4 is obtained considering the steady
state operation of the system that lead to establish a bridge between set-invariance and interval
observer-based approaches in FD framework. Further research is done in this section based on
a case study to investigate the effectiveness of the obtained expressions for computing minimum
magnitude of the fault that can be detected.
Three different mentioned fault scenarios in Section 4 are considered for the case study in order to

test the obtained MDF formulations for the case of actuator and sensor faults. First, the magnitude
of each type of fault that can be detected is computed theoretically based on the results presented
Section 4. Then, the MDF magnitudes are compared with the one that are obtained form the
simulation where the size of the fault is increased until the detectable magnitude for each case. Then,
for the completion of the analysis, the FD test using the interval observer-based approach and set-
invariance theory are simulated based on Algorithm 1 and (25) for both slightly bigger and slightly
smaller magnitudes of the fault that are obtained theoretically in order to show the effectiveness
and advantage of the interval observer in comparison with the set-invariance theory. As it can be
observed from Figures 3, 6 and 8, both interval observer-based and set-invariance approaches are
able to detect the fault whose the magnitudes are simulated bigger that the obtained MDF. But,
the performance of the interval observer-based approach is faster in FD in comparison with set-
invariance theory since its FD test is based on cheeking if 0 /∈ 〈crio , b(Rrio)〉. On the other hand,

FD decision with set-invariance theory should be done by checking r /∈
〈
cris∞ , Rris∞i

〉
that requires

more time than interval observer-based approach. Faster decision about the existence of the fault
can be understood as the advantage of interval observer-based approach in comparison with set-
invariance theory. Furthermore, the FD test based on both approaches is also done considering the
slightly smaller magnitudes that the obtained MDF. Figures 5, 7 and 9 show that the faults whose
magnitudes are not detectable for the both interval observer-based and set-invariance approaches.
Therefore, using sensitivity analysis with the integrated interval observer-based approach and set-
invariance theory is well suited to also address the minimum magnitude of the fault that can be
detectable for both interval observer-based and set-invariance approaches.

6. Conclusion

This paper has developed a study to characterize the Minimum Detectable Fault (MDF) for lin-
ear uncertain systems when the interval observer-based approach is used. Moreover, sensitivity
analysis and set-invariance approach have been integrated for the Fault Detection (FD) purposes.
Accordingly, the MDF has been characterized based on the sensitivity analysis integrated with set-
invariance approach considering all the possible uncertainties in state and output measurement.
Comparing both approaches yields to the same value of the MDF. Finally, a case study based on
quadruple-tanks system is used to illustrate the obtained results. As a future research, the influ-
ence of the input over the magnitude of the MDF will be further analyzed in order to apply active
diagnosis to design the system input such that both fault detection and isolation are able to be
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better performed. Furthermore, different faults will be considered based on their nature in order
to characterize the minimum detectable incipient, multiplicative or intermittent faults.

Appendix

Definition 1: (Zonotope) A zonotope 〈c, R〉 ⊂ R
n with the center c ∈ R

n and the generator
matrix R ∈ R

n×p is a polytopic set defined as a linear image of the unit hypercube [−1, 1]n, i.e.,

〈c, R〉 = {c+Rs, ‖s‖∞ ≤ 1} . (83)

Moreover, a centered zonotope is denoted by 〈R〉 = 〈0, R〉. Any permutation of the columns of R
leaves it invariant. �

Definition 2: (Minkowski sum) Considering two sets A and B, their Minkowski sum is a set
defined as A ⊕ B = {a+ b| a ∈ A, b ∈ B}. Furthermore, the Minkowski sum of the zonotopes
Z1 = 〈c1, R1〉 and Z2 = 〈c2, R2〉 is Z1 ⊕Z2 =

〈
c1 + c2,

[
R1 R2

]〉
. �

Definition 3: (Interval hull) The interval hull of a given zonotope Z = 〈c, R〉, denoted by �Z,
is the smallest interval box that contains Z and can be evaluated for all i = 1, 2, . . . , n as

�Z = {z : |zi − ci| ≤ ‖Ri‖1} , (84)

where Ri indicates the i-th line of matrix R, and zi and ci are the i-th components of z and c,
respectively. �

Definition 4: (Invariant set) The invariant set Ω ⊆ Z is the set which its existence allowed the
evolution of a constrained system, where z0 ∈ Ω ⊆ Z and then, zK ∈ Ω ⊆ Z for all time steps k.
�

Property 1: (Linear image) The linear image of a zonotope Z = 〈c, R〉 by a compatible matrix L
is L� 〈c, R〉 = 〈Lc, LR〉. �

Property 2: (Reduction operator) A reduction operator, denoted ↓q, permits to reduce the number
of generators of a zonotope 〈c, R〉 to a fixed number q while preserving the inclusion property
〈c, R〉 ⊂ 〈c, ↓q {R}〉. A simple yet efficient solution to compute ↓q {R} is given in Combastel
(2003). It consists in sorting the columns of R on decreasing Euclidean norm and enclosing the
influence of the smaller columns only into an easily computable interval hull, so that the resulting
matrix ↓q {R} has no more than q columns. �

Property 3: (Zonotope inclusion) Given a zonotope Z = 〈c, R〉 ⊂ R
n, a zonotope inclusion,

indicated by � (Z), is defined as � (Z) =
〈
c,
[
mid(R) S

]〉
, where S is a diagonal matrix that

satisfies Sii =
∑m

j=1

diam(Rij)

2
, i = 1, 2, · · · , n, with mid(.) and diam(.) being the center and

diameter of the interval matrix, respectively. �

Property 4: (State zonotope inclusion) Given Xk+1 = AXk ⊕ Buk, where A and B are interval
matrices and uk is the input at time instant k, considering Xk as a zonotope with the center cx,k
and the shape matrix Rx,k such Xk = 〈cx,k, Rx,k〉, the zonotopic state at the next time instant k+1,

29



defined as Xk+1, is bounded by a zonotope X e
k+1 = 〈cx,k+1, Rx,k+1〉, with

cx,k+1 =mid(A) cx,k +mid(B) uk,

Rx,k+1 =

[
�(ARx,k)

diam(A)

2
cx,k

diam(B)

2
uk

]
,

where �(ARx,k) shows the shape matrix of the state bounding zonotope. �
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