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Abstract— This paper presents a new model to make robots
capable of approaching and engaging people with a human-like
behavior, while they are walking in a side-by-side formation
with a person. This method extends our previous work [1],
which allows the robot to adapt its navigation behaviour
according to the person being accompanied and the dynamic
environment. In the current work, the robot is able to predict
the best encounter point between the human-robot group and
the approached person. Then, in the encounter point the robot
modifies its position to achieve an engagement with both people.
The encounter point is computed using a gradient descent
method that takes into account all people predictions. Moreover,
we make use of the Extended Social Force Model (ESFM), and
it is modified to include the dynamic goal. The method has been
validated over several situations and in real-life experiments,
in addition, a user study has been realized to reveal the social
acceptability of the robot in this task.

I. INTRODUCTION

Lately, robots are moving from industry and laboratories to
the real world. Therefore, it is necessary to investigate deeply
in human-robot interactive and collaborative tasks, some of
these could be: accompany people [2], approach people [3],
[4], or recognize if people are interested in interacting with
them [5], [6].

In urban environments, humans tend to approach to other
pedestrians to interact with them. If people navigate in
groups and want to interact with other person outside the
formation, they have to re-organize their configuration to
interact comfortably.

Approaching other people is a natural task for humans,
however, for companion robots it is a complex assignment.
Robot has to understand and adapt its behaviour to both
people, the accompanied person and the approached one.
On the one hand, the robot has to accompany a person in
a human-like way. And, on the other hand, the robot has to
predict the best encounter point as humans do.
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Fig. 1: Real-life experiments in FME. The robot avoids
several pedestrians in the environment while accompanying
a person and approaches another human.

Fig. 1 represents different moments of the real-life ex-
periments. Here, the robot has to carry out some complex
sub-tasks: anticipate the people’s movements, deal with
uncertainties like people occlusions, interaction with several
pedestrians, prediction and autonomous navigation.

One of the objectives of social robots when they collabo-
rate with people, is to follow similar social norms as humans.
Some researchers have worked in the proxemic rules between
humans [7], and in the relations between humans and robots,
[8]. Furthermore, if the robot has to approach people, it must
know when [9] and how [4] to approach humans.

Regarding the researches that use the proxemic rules
between humans and robots, the work [10] investigated how
the personality affects the spatial zones. Syrdal et al [8]
studied the person-robot distances in different interactions:
verbal, physical and no interaction. Some studies [11] found
that people prefer the robot to approach by one of its sides.

Other approaches inferred people behavior and selected
only the person interested to interact with the robot. In [6],
authors evaluated a new approach to deduce through the
trajectory of a person if he/she was interested in interact.
Also, [12] implemented an approaching robot’s behaviour
to select people interested in interact according to their
positions. These approaches could be applied in real-life
applications, as in [13], where the authors deduced the
interest of the person to obtain robot information by its
proximity to the robot. Finally, Kato et al. [9] implemented
a robot proactively behaviour to help the visitors only when
they need it.

Finally, the work of [4] focused on developing robot
strategies to approach moving persons, but their approach
obtained a linear prediction that did not consider the dynamic
and static obstacles.



In contrast to previous approaches, we use the ESFM to
get people’s predictions and the robot’s navigation, thus, the
robot obtains human-like behaviors. Also, the robot has to
develop two complex tasks at the same time: approaching and
accompanying a person, which increases the difficulty for
the robot. Furthermore, the robot predicts the best encounter
position as humans do, taking into account the trajectories
of the group and the approached person.

In the remainder of the paper, Sec. II introduces the
implemented approach. The metrics of performances are
explained in Sec. III. Sec. IV describes the results of syn-
thetic experiments, real-life experiments, and the user study.
Finally, conclusions are given in Sec. V.

II. METHOD

This section explains the approaching and the engagement
tasks, while the robot is accompanying another person.
We assume that the person of the group knows the target
person (it is the person to be approached by the group).
The accompany task follows the same procedure that was
explained in our previous work [14].

A. The Approaching Method

In previous work [1], we implemented a simple strategy
for the pair human-robot to approach the target person. In this
paper, we present a new approach which optimally achieve
the tasks of approaching and engagement.

This section is divided in two parts which are the steps of
the approaching method: approaching to the dynamic goal
and proactive configuration to create an engagement.

1) Stage 1. Approaching to the Dynamic Goal: Our goal
is to make the robot capable of accompanying a person until
his/her destination, Df

n, while approaches a moving target,
Ddg

n , to do it, we use the resultant force of Eq. 1 to control the
movement of the robot. Where n means the actual discrete
time.

Fr = α f goal
r,d (Ddg

n ) + β f goal
r,p (Df

n) + (γ F per
r + δ F obs

r )
(1)

The parameters {α, β, γ, δ} were obtained from [15] and
satify: 1 = α+ β + γ + δ.

This force is composed of four sub-forces: f goal
r,d (Ddg

n ),
the attractive force exerted by the dynamic goal f goal

r,p (Df
n),

the attractive force to maintain the formation between the
robot and the accompanied person F per

r , the repulsive force
respect to pedestrians of the environment, and F obs

r the
repulsive force respect to obstacles.

F per
r allows the robot to avoid unnecessary interactions

with people who are not the accompanied person, or the
approached person. This force was defined in a previous
work [16].

This repulsive force depends on the distance between
the robot and the pedestrian. To calculate this distance we
need to consider all the positions of the pedestrians in the
environment, at each instant of time. Then, to obtain the
propagated positions of all people we use Alg. 2 and the

forces of the lines 7 and 8 are obtained from Eq. 2. The
Alg. 2 calculates the prediction of any moving entity, for
example a pedestrian.

Fpj
= α f goal

pj ,d
(Dn

g) + (γ F per
pj

+ δ F obs
pj

). (2)

Fpj
is the resultant force to move the person at each instant

of time to the person’s final goal. This force is a combination
of three sub-forces: an attractive force exerted by person goal
f goal
pj ,d

(Dn
g) and two repulsive forces F per

pj
and F obs

pj
due to

other people and obstacles.
The parameters values satisfy 1 = α + γ + δ and were

obtained from [15]. The attractive force exerted by the
person’s final goal, f goal

pj ,d
(Dn

g) is analog to the attractive
force exerted by robot’s final goal, f goal

r,d (Ddg
n ). The repulsive

forces respect to pedestrians and obstacles are analog to the
repulsive forces of the robot.

The repulsive force of the robot respect to the obstacles in
the environment is Fobs

r . This force was defined in a previous
work [15]. These repulsive forces are used by the robot to
avoid possible collisions with the obstacles.

The attractive force to maintain the formation between the
robot and the accompanied person, f goal

r,p (Df
n), introduced in

our previous work [14], has been split in two forces, the first
one is f goal

r,d (Ddg
n ) which manages the dynamic goal and the

second one is f goal
r,p (Df

n) which manages the formation of
the group.

The attractive force exerted by the dynamic goal,
f goal
r,d (Ddg

n ), pushes the robot to approach the moving target
person. This force assumes that the robot tries to adapt its
velocity within a relaxation time k−1, but taking into account
at the same time that the final destination is a dynamic goal,
Ddg

n , which is computed by an optimization process. The
definition of this force is:

f goal
r,d (Ddg

n ) = k(v0
r(Ddg

n )− vr) (3)

where, v0
r(Ddg

n ) is the desired velocity vector to reach the
dynamic goal Ddg

n .
Moreover, the robot has to compute the dynamic goal,

Ddg
n = (xdg, ydg), where the group encounters the target

person. This goal is optimally computed using a gradient
descent method, see Alg. 1, which obtains the destination that
minimizes the time until get-together. In combination with
the Anticipative Kinodynamic Planer to Accompany People
(AKP-AP), the method also optimizes the traveled distance,
the effort of accomplishing the companion task and the effort
to avoid obstacles and pedestrians.

Alg. 1, computes tn, which is the minimum encounter
time . The method has to propagate the positions (using the
Alg 2) of all people. In each iteration, the propagation of
the approached person is used as dynamic goal to obtain
the estimated group’s position. Finally, when the termination
condition is fulfilled, the dynamic goal and the minimum
time to approach are obtained.



Algorithm 1 Gradient Descent of Optimal Goal
1: tn−1 = 0
2: Calculate d(0), Eq. 4
3: Calculate ∂d

∂t (0), Eq. 5
4: while d(tn−1) > 0.1 and ∂d

∂t (tn−1) < 0 do
5: tn = tn−1 − λ∂d

∂t (tn−1)
6: (x̂p, ŷp) ← propagation(∆t, xp, yp, vpx, v

p
y , a

p
x, a

p
y)

(see alg. 2)
7: (x̂tp , ŷtp)← propagation(∆t, xtp, ytp, vtpx , v

tp
y , a

tp
x , a

tp
y )

8: (x̂g, ŷg) ←propagation(∆t, xg, yg, vgx, v
g
y , a

g
x, a

g
y)

9: Calculate d(tn)
10: Calculate ∂d

∂t (tn)
11: end while
12: Ddg

n ← (x̂tp , ŷtp)
13: return (tn,Ddg

n )

To compute the time tn and the dynamic goal Ddg
n , d(tn)

and ∂d
∂t (tn) are used. They are computed as follows (we do

not include tn to reduce the formula complexity),

d =
√

(x̂g − x̂tp)2 + (ŷg − ŷtp)2 (4)

(xg, yg) and (xtp, ytp) are the present positions of the group
and the target person, while, (x̂g, ŷg) and (x̂tp, ŷtp) are their
predicted positions.

∂d
∂t =

(x̂g−x̂tp)[vg
x+ag

xt−vtp
x −atp

x t]√
(x̂g−x̂tp)2+(ŷg−ŷtp)2

+

(ŷg−ŷtp)[vg
y+ag

yt−vtp
y −atp

y t]√
(x̂g−x̂tp)2+(ŷg−ŷtp)2

(5)

(vex, v
e
y, a

e
x, a

e
y) are the velocities and accelerations of each

entity, e = {p, tp, g} person, target person or group, respec-
tively.

Alg. 2 computes all the predictions until tn. The predic-
tions are computed in small time intervals, which allows
to use constant speeds in the minimization problem. As we
consider that all the entities have a mass m = 1, the resulting
acceleration is equal to the resulting force. Also in our case,
the biggest component of the group is the robot, therefore
the position of the group is propagated using the resultant
force of the robot, Eq. 1. It has to be mentioned that the
adaptive companion allows the group to pass one by one,
this it must be ensured that at least the biggest component
of the group can pass through the predicted path.

Algorithm 2 Propagation of the states: propagation()
1: Inputs: (∆t, xe, ye, vex, v

e
y, a

e
x, a

e
y)

2: for t = ∆t, 2∆t, . . . , tn do
3: xeti+1

= xeti + vexti
∆t+ aexti

(∆t)2

2

4: yeti+1
= yeti + veyti

∆t+ aeyti

(∆t)2

2
5: vexti+1

= vexti
+ aexti

∆t

6: veyti+1
= veyti

+ aeyti
∆t

7: aexti+1
= m · F e

xti

8: aeyti+1
= m · F e

yti

9: end for
10: return (xetn , y

e
tn)

Algorithm 3 Select goal
1: if diff a(θtr(+ψt),θtp) < diff (θtr(−ψt),θtp) then
2: xrfd = xt

tp + drt cos (θtc + ψt)
3: yrfd = yt

tp + drt sin (θtc + ψt)
4: else
5: xrfd = xtpt + drt cos (θtc − ψt)
6: yrfd = ytpt + drt sin (θtc − ψt)
7: end if

adiff() is a function that calculates the difference between two orienta-
tions

2) Stage 2. Proactive configuration to create an engage-
ment: Once the group and the target person are close, the
group should face the approached person. To achieve this,
we compute the angles of the triangle formed by the robot
and the two humans using the cosine theorem, which uses
the following equations.

dtc
2 = drc

2 + drt
2 − 2drcdrtcos(ψr)

drc
2 = dtc

2 + drt
2 − 2dtcdrtcos(ψt)

drt
2 = dtc

2 + drc
2 − 2dtcdrccos(ψc) (6)

dtc is the distance between the target person and the com-
panion person, drc is the distance between the robot and the
companion person, drt is the distance between the robot and
the target person, ψr, ψt and ψc are the angles of the vertex
where the robot, the target person and the companion person
are positioned.

Then, we select the robot’s position using Alg. 3, which
allows the robot to gaze the target person and create an
engagement.

(xrfd, y
r
fd) is robot’s goal, (xtpt , y

tp
t ) is target person’s

position, θtp is the the target person’s orientation, θtc is
the orientation between the target person and the companion
person, and θtr is the orientation between the target person
and the robot.

III. PERFORMANCE METRICS

The performance metrics used to evaluate the robot be-
haviour are based on the proxemic rules [7].

A. Performance Metrics for the Accompanying Task

The accompanying task is evaluated using three types
of performance’s metrics: area, distance and angle. The
values of the performances are between 0 and 1. The best
performance has value of 1. The graphs of the performance
metrics for distance and angle are described in [14].

Performance area: The best performance is achieved if
the the robot is inside the area around 1m from the best
accompanying position [2]. Moreover, the robot gets a value
of performance 1/2 when its position is inside the social
distances. Finally, the minimum performance is for distances
far from 3 m or near of 0.75 m.

Performance distance: The metric of distance has the
maximum value the robot’s position is inside the interval



Fig. 2: Simulations. These plots represent how the group
adapts its motion to obtain a more friendly encounter. In
both cases the group has to avoid static obstacles.

[1.25− 2] meters from the accompanied person. The perfor-
mance decreases if the robot approaches or moves away.

Performance angle: The metric related to the angle has
value of 1 when the angle between person and robot differs
as much 10 degrees from the optimal angle. The performance
decreases −0.1 each time the difference between the two
previous orientations increases 10 degrees.

B. Performance Metrics for the Approaching Task

To evaluate the approaching task, we verify that the dis-
tance difference between the group and the person decreases
during the task or that the global path length until the
dynamic goal decreases during the task.

C. Performance Metrics for the Engagement Task

As in the accompanying task, the final triangle formation
to engage both people has three types of performance’s
metrics: area, distance and angle.

Performance area: It obtains the maximum value when
the robot is inside the circle of 1 m diameter from the best
robot’s position respect to both people, Alg. 3. This metric
follows the same rules as in the companion case.

Performance distance: It is the same as the performance
distance of the accompanying case, but now the distance is
between target person and robot.

Performance angle: This metric is analog to the metric
of the accompanying task, but the difference of angles
is between the orientation of the group and the contrary
orientation of the target person.

IV. RESULTS

This section addresses the synthetic and real-life experi-
ment results. Also, a user study is analyzed.

A. Synthetic Experiments

The implemented method has been tested and evaluated
in a simulated dynamic environment, it uses C++, ROS and
Gazebo. This environment includes pedestrians and static
obstacles. The simulated people use the ESFM to obtain

Fig. 3: Results. Left: Performance of the approaching task.
Right: Desired and real angles during the accompanying task,
the group has to surpass diverse people who form a corridor.

a more realistic navigation behaviour and their velocities
are set randomly inside the interval [0-1] m/s. The robot
uses the implemented method that combines the companion,
approaching and engagement tasks. Furthermore, the accom-
panied person uses the AKP navigation and the approaching
method, explained in this paper.

Around of 3,600 simulations were performed. In these
simulations the group had to approach the target person from
different directions and avoid several dynamic and static
obstacles, as in the real-life experiments, see Fig. 1. An
example of the simulations is shown in Fig. 2. The markers of
the images are: the cyan cylinder is the accompanied person,
the red cylinder is the target person, the dark blue cylinder is
the dynamic goal, other pedestrians are green cylinders and
static obstacles are marked in black. The black circle around
the robot is the window of the local planner, the local path
is marked in red and the global path until the final goal is
drawn in black.

The robot behaviour combined both stages, the computa-
tion of the dynamic goal and ahieve it while accompanies
his/her, and the proactive configuration to create an engage-
ment with the target person. We evaluated the results using
the metrics of performance presented in Sec. III, all results
are the weighted average of all simulations.

The companion task obtained good results. It achieved
a performance distance of 0.91 and a performance angle
of 0.86, a satisfactory accomplishment, and their variances
were small, 0.01 and 0.015 respectively. The performance
area was 0.84 and its variance was 0.0061. Also, we got
20.32 degrees as maximum difference between the desired
and the real angle, Fig 3-right. Therefore, the robot was able
to perform its task properly.

Regarding the approaching task, it can be seen in Fig 3-
left how the distance between the group and the target person
decreases during the experiment.

The results of the final positioning to do an engagement
were also very good. We obtained a distance performance
of 0.98 and an angle performance of 0.9, which were close
to 1 meaning a satisfactory accomplishment, and their vari-
ances were small 0.0066 and 0.015, respectively. The area
performance was 0.84 and its variance was small 0.0113.
Therefore, we can conclude that the robot performed well
the engagement task.



Fig. 4: User study experiments. Top: Real-life environment.
Bottom: Simulated environment, representation of the Social
Force Model to visualize the real-life behavior of the robot.

B. Real-life Experiments

Real-life experiments were performed using the social
robot Tibi, designed to operate in urban pedestrian areas.
It is equipped with multiple sensors, to detect people in the
experiments we used the front and back lasers located 40 cm
from the ground. The robot is socially accepted and humans
take interest in interacting with it.

First, the method was tested in a controlled environment
with pedestrians and obstacles to reproduce different types of
approaching situations. The experiments were carried out in
the FME (Facultat de Matemàtiques i Estadı́stica) lab, which
is a square urban area of 15x15 meters located at the South
Campus of the Universitat Politècnica de Catalunya (UPC).
The volunteers were technicians and students of degree,
master and doctorate. No instructions were given to them.

The FME’s experiments are shown in Fig. 1, where the
robot was able to accompany a person, obtain the best en-
counter point with another person and rearrange its position
to do an engagement with both people. In the images of the
simulated environment we plot several markers to visualize
the real-life behavior of the robot. In these pictures the green
cylinders are people and their predictions are represent in
the z-axis, which corresponds to time. The blue and red
cylinders corresponds to the accompanied and approached
person, respectively. The map and the static obstacles are
painted in black. The arrows are the robot forces: in pink the
force until the dynamic goal, in blue the force to maintain the
formation with the accompanied person, in black and green
the repulsive forces respect static obstacles and people. These
forces are scaled to see them better. The circle around the
robot is the window of time for the local planner.

The FME’s experiments obtained good performance re-
sults, see Table I. As we explained in Sec. III, the best
performance is near 1. Finally, regarding the results of the
approaching task we obtained graphs where the distance
between the group and the target person always decreases,
as in the synthetic experiments.

Second, we performed 72 real-life experiments with dif-
ferent volunteers in the North campus of UPC, the Barcelona
Robot Lab (BRL). A questionnaire was given to all partici-

pants to carry out the user study of the Section IV-C. The 72
participants ranged in age from 15 to 76 years (M=27.21,
SD=11.72), the 25% were women and 75% men, mainly
students and workers of the polytechnics university campus,
Fig. 4. The level of knowledge in the robotics field was
included in the surveys and was ranged between 1 to 7, the
lowest level of knowledge in robotics (1, 2 and 3) got 65%,
the intermediate level of knowledge in robotics (4 and 5) was
around 18% and the highest level in knowledge of robotics
(6 and 7)was represented by 17%. Then, we can conclude
that the highest amount of the participants were potential
user people not related with robotics.

In each experiment, we randomly selected if the robot
behaved autonomously using our method or if it was moved
using tele-operation. In the experiments, Tibi was accom-
panying one of the participants and both encountered an-
other person, different approach directions were performed.
In addition, the final positioning was improved avoiding
unnecessary movements of the robot. Now, the robot does
a more human-like behavior, by positioning itself in the free
space of the triangle closest to its position. After that, the
robot turns towards the center of the group. This behavior
assumes that both people will be turned towards the center
of the group, as humans normally do.

The BRL’s results of the user study for the companion and
engagement tasks were also good, see Table I. Regarding the
results of the approaching task we obtained similar graphs
to the FME’s case.

We would like to point the reader to check some
videos and additional information on the following link
http://www.iri.upc.edu/people/erepiso/
IROS2018.html

C. User Study

The results presented previously demonstrate that the robot
is able to approach people while accompanies a pedestrian. A
user study was also conducted to determine whether the use
of the ESFM enhances the base-line model, this is, an expert
moved the robot using teleop, and we should highlight that
people perceived a difference between these two approaches.
Social Scales: Participants were asked a set of questions
following their encounter with the robot in each mode of
behaviour. To analyze their responses, we grouped the survey
questions into three scales: the first measured the robot’s
intelligence, while the second and third evaluated robot’s
sociability and comfortableness felt by the volunteers. Both
scales surpassed the commonly used 0.72 level of reliability
(Cronbach’s alpha).

Each scale response was computed by averaging the results
of the survey questions comprising the scale. ANOVAs
were run on each scale to highlight differences between
the two robot behaviours, plotted in Fig. 5. For the robot’s
intelligence score plotted in Fig. 5-left, pairwise comparison
with Bonferroni demonstrate no statistical difference between
the two kind of navigation approaches, p > 0.5. In terms
of robot’s sociability and comfortableness the volunteers



FME BRL FME BRL
Performance of Companion Performance of Engagement

Mean of Distance Performance 0.87 (± 0.03) 0.84 (± 0.024) 0.84 (± 0.019) 0.87 (± 0.029 )
Mean of Angle Performance 0.68 (± 0.04) 0.7 (± 0.022) 0.97 (± 0.0025) 0.84 (± 0.022)
Mean of Area Performance 0.73 (± 0.067) 0.65 (± 0.039) 0.84 (± 0.017) 0.83 (± 0.025)

TABLE I: Performance results of the real-life experiments carried out in the FME and the BRL.
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Fig. 5: User study results. Left: Robot’s Intelligence. Cen-
ter: Robot’s Sociability. Right: Robot’s Comfortableness.

perceived a difference between the two navigation’s, p <
0.01 in both cases.

Therefore, after analyzing these three components in navi-
gation terms, we may conclude that if the robot has the ability
to socially navigate and respect human conventions using our
ESFM, it has the largest acceptance as people perceived the
robot to be more sociable and comfortable.

V. CONCLUSIONS

This paper presents a new method to approach and engage
people, while the robot performs an adaptive companion.
The presented algorithm extends and improves our past work
described in [1]. The major contributions of this paper are
two-fold: First, we obtained a robot’s behavior similar to the
human’s behaviour for approaching and engagement tasks.
Second, the method was extensively and rigorously tested in
a real-live environments in FME and in BRL environments
with non-trained volunteers and a user study showed the
acceptance of the method by inexpert people.

The method reformulated the ESFM to include a dynamic
goal. The dynamic goal was computed using a gradient
descent algorithm that allowed us to compute the optimal
encounter position. Furthermore, the gradient descent method
used the predictions of all people. Then, the optimal destina-
tion minimized the time, the traveled distance, the effort to
accomplish the companion task and the effort to avoid ob-
stacles and pedestrians. Furthermore, the method joined the
companion, approach and engagement tasks, which was more
complex, and it worked on real time. The new model was
extensively tested on simulation and real-life experiments. In
both cases good results were achieved.
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