
sensors

Article

Robust and Real-Time Detection and Tracking of
Moving Objects with Minimum 2D LiDAR
Information to Advance Autonomous Cargo
Handling in Ports

Victor Vaquero *, Ely Repiso * and Alberto Sanfeliu

Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain;
sanfeliu@iri.upc.edu
* Correspondence: vvaquero@iri.upc.edu (V.V.); erepiso@iri.upc.edu (E.R.)

Received: 13 December 2018; Accepted: 25 December 2018; Published: 29 December 2018

Abstract: Detecting and tracking moving objects (DATMO) is an essential component for autonomous
driving and transportation. In this paper, we present a computationally low-cost and robust DATMO
system which uses as input only 2D laser rangefinder (LRF) information. Due to its low requirements
both in sensor needs and computation, our DATMO algorithm is meant to be used in current
Autonomous Guided Vehicles (AGVs) to improve their reliability for the cargo transportation tasks at
port terminals, advancing towards the next generation of fully autonomous transportation vehicles.
Our method follows a Detection plus Tracking paradigm. In the detection step we exploit the
minimum information of 2D-LRFs by segmenting the elements of the scene in a model-free way and
performing a fast object matching to pair segmented elements from two different scans. In this way,
we easily recognize dynamic objects and thus reduce consistently by between two and five times the
computational burden of the adjacent tracking method. We track the final dynamic objects with an
improved Multiple-Hypothesis Tracking (MHT), to which special functions for filtering, confirming,
holding, and deleting targets have been included. The full system is evaluated in simulated and real
scenarios producing solid results. Specifically, a simulated port environment has been developed
to gather realistic data of common autonomous transportation situations such as observing an
intersection, joining vehicle platoons, and perceiving overtaking maneuvers. We use different sensor
configurations to demonstrate the robustness and adaptability of our approach. We additionally
evaluate our system with real data collected in a port terminal the Netherlands. We show that it is
able to accomplish the vehicle following task successfully, obtaining a total system recall of more than
98% while running faster than 30 Hz.

Keywords: lidar perception; object detection; object tracking; single-layer laser scanner; DATMO,
multi-hypothesis tracking; autonomous driving; autonomous transportation of cargo

1. Introduction

Presently, up to 90% of the international trade volume of manufactured goods is performed
by means of multimodal containers [1] and, according to the United Nations Review of Maritime
Transport [2], the container shipping industry is the fastest-growing segment of freight transportation.
Port terminals must achieve a high level of productivity and efficiency in container throughput to
handle this uprising and concentrated container traffic and meet future demands. One of the least
efficient and costly processes in ports comes from internal transportation [3], as for example the
observed area in Figure 1. It refers to the container movement between the harbor, where the cranes
move the containers from/to the vessels, and the storage area where the containers are placed.

Sensors 2019, 19, 107; doi:10.3390/s19010107 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19010107
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 107 2 of 25

Automated Container Terminals (ACTs) are a good solution to this bottleneck, as it allows a
reliable and continuous operation on transport processes as well as decreases possible human errors.
To move the containers through the transport areas, ACTs commonly employ Automated Guided
Vehicles, as seen in Figure 1b. However, container terminals are especially dynamic areas without
pre-defined structures such as paths, sidewalks, buildings or signs (see Figure 1b). Moreover, containers
can be stacked in diverse ways in different areas that may even fully change in short periods of time.
This fact makes it especially challenging to obtain any kind of durable map or to apply standard
automation techniques to help distinguishing drivable areas or even static obstacles. The current
generation of AGVs therefore move attached to electro-magnetic grids embedded in the surface of
transport areas, as can be observed in Figure 1a,b. This technology requires a high investment and
limits AGV usability to only correctly equipped areas of ports and terminals. In addition, every
movement is totally pre-defined by centralized software that regulates the position, direction and
speed of each vehicle, which is a limitation that may cause problems such as collisions or deadlocks [4].

(a) Grid-based AGVs. (b) Traffic in Automated Terminal (c) Grid-less AGVs.

Figure 1. Representation of a current automated port terminal (a) and the aimed next generation
grid-less AGVs (c). Vessels arrive at the seaside of the port and the cranes unload or load the containers.
AGVs move the containers from the cranes area to the stacking area represented here with multi-color
squares. Presently, AGVs follow pre-defined paths which limit their movements (a,b). Grid-less AGVs
will provide vehicles with decision capacity and freedom of movement as seen in (c).

This complex scenario sets our motivation to advance towards the next generation of fully aware
AGVs. We aim to build a DATMO system to provide current grid-based AGVs with wider autonomy
and capabilities to explore and move through the whole port transport area in a decentralized way.
A clear differential factor of the existing DATMO algorithms is the typology of sensors used, such
as cameras, LiDAR or radar sensors and combinations of those [5–7]. Although vision systems can
provide dense color data and very rich features, they are very sensitive to reflections, light changes,
and harsh climatology conditions such as heavy rain or fog. Radars can directly provide motion
information, but they can become very noisy and these sensors are not commonly integrated in
existing AGVs. On the contrary, laser sensors are more robust to illumination changes and adverse
weather conditions, providing stable measurements. From them, 3D LiDARs are obtaining more
presence in autonomous vehicles [8–11]. However, they are expensive sensors and they provide much
information that mobile platforms can struggle to process in real time, apart from the fact that they
are not usually available in currently existing AGV platforms. In contrast, 2D-LRFs are much cheaper
and can already be found placed in current AGVs for extra security purposes such as emergency
brake activation.

Using only 2D-LRF information is a challenging problem due to the little and scarce data perceived
from the environment. For example, a small object occluding a bigger one can force miss-detection of

Sensors 2019, 19, 107 3 of 25

the second object as two different ones in the scene. However, further challenges arise when using
these sensors from a mobile platform, as can be observed in Figure 2. Occlusions and abrupt changes
of perspective will be generated, deriving in more complex scenarios from which detected objects
could easily appear, even to the human eye, as dynamic ones.

a a
a

aa

a

b

b
b

b

b
b

b

b a

a

c
c

c

cc
c

c

c

Frame 1

Frame 15

Frame 1 Frame 5

Frame 20 Frame 25

Frame 10

Frame 15

Figure 2. 2D-LRFs mounted on mobile platforms provide scarce measurements that are sometimes
hard to interpret even for the human eye. We show several frames of a SICK LRF in a port environment
performing the vehicle following task. It can be appreciated how detected objects a and b vary
drastically in size and shape due to occlusions and perspective changes. In the same manner the
moving truck c has a completely different shape comparing frame 1 to frame 15. Best viewed in color.

In this paper, we propose a low-cost and robust DATMO algorithm that can exploit the little
information provided by existing in-vehicle 2D-LRFs obtaining more than 98% of total system recall
while working in real time. This article extends the work presented in [12]. Apart from refactoring our
code to increase the full system speed, other elemental changes have been made. More specifically:

• We have developed and simulated a virtual port environment to account for the lack or real
existing data. With it, we can perform further experiments that validate our system generalization.
We have run a full set of common autonomous transportation situations with several vehicles
such as approaching intersections, joining/leaving platoons, overtaking maneuvers, etc.

• We can run our system employing different sensor configurations on the platform, demonstrating
that our system can easily be introduced in different existing AGV models and therefore its
hardware generalization capabilities.

• We have increased the detector accuracy. A dynamic threshold according to the detected distance
is introduced on the matching step. Moreover, due to the new complete sets of simulations
performed, we are now capable of detecting more robustly different moving objects in ports, such
as straddle carriers, loaded/empty AGVs, automated trucks, cars, etc. We have also improved our
method for propagating the reference point of detected objects through time, gaining robustness
against changes of perspective and occlusions. These changes will be detailed in Section 3.

• We have boosted the general performance of our Multi-Hypothesis Tracker (MHT). Our local
coordinates tracking has been improved obtaining better observations and velocity estimations
from the AGV point of view, which helps in further filtering static objects as well as eliminating
false positive detections. Being able to observe much more different situations in the new virtual
environment, we obtain better insights to adjust our parameters. We are now able to hold tracks for
a longer time when objects get occluded or are temporally not detected. We have also improved
our target grouping strategy by merging the previously generated targets according to track
similarity both in terms of velocity and distance. These changes will be detailed in Section 3.2.

• We perform a comparison of the new DATMO system over the real dataset with respect to [12],
analyzing the contributions of the different improvements performed.

Sensors 2019, 19, 107 4 of 25

The rest of the article is organized as follows. Section 2 reviews the state of the art of DATMO
systems focusing on those works using only single-layer rangefinder sensors. Next, Section 3 details
the different components of the presented DATMO system, especially stressing the new additions.
In Section 4 we present the developed virtual environment along with a representative set of simulated
scenarios. New results from our real data collected on the port of Hengelo in the Netherlands are also
presented and analyzed. Finally, conclusions are presented in Section 5.

2. State of the Art

DATMO has been a problem studied for long time [7,8,13–15]. As a general rule, existing
approaches divide the process in two separated tasks: firstly, a detection algorithm finds objects
in static frames at fixed time; secondly, those objects are tracked in time by using for example, variants
of the Kalman Filter [16] and MHT [17,18].

2D Laser-Based Detection

Detection methods from 2D-LRF sensors usually use segmentation or clustering algorithms
to divide the range measurements into meaningful pieces from which different features or cues
are extracted. In this way, [19] focus on extracting lines and other features from the scans taking
advantage of the ordered set of measurements provided by LRFs. A more deeply comparison on line
extraction algorithms is presented by Nguyen et al. in [20]. Conversely, [21] propose methods for scan
segmentation and matching in polar coordinates. Of special interest about segmenting laser scans, is
the work of Premebida et al. [22]. It describes different algorithms for segmenting 2D-LRF information
and presents methods for feature detection and geometric primitive extraction, such as lines, circles,
and ellipses. Complementary geometric primitives are extracted by Mertz et al. in [14]. They present
a DATMO algorithm which use detected corners as features that are less susceptible to changes of
viewpoint. Aiming to obtain more abstract and descriptive features in 2D lasers, [23] proposes a set of
new features encapsulated in what they called the FLIRT descriptor. These features claim to have a
similar repeatability and matching performance than interest points of much richer domains such as
cameras (SIFT or SURF features). However, they are computationally expensive, and therefore do not
match our requirements of easy computation for real-time working in simple hardware.

Once the information of the sensor has been processed it follows the object detection step, which
can be roughly summarized in two main approaches, to be, model-based and model-free detectors.

Model-based approaches aim to recognize objects with a known model, basically containing
several of the extracted features or a defined shape. These methods have (or learn) prior information
about the classes to be detected and search for them at every frame. In this way, Arras et al. [24,25]
focused on indoor people detection and detect legs of people on 2D-LRFs by extracting 14 different
features from the range measurements and learning a boosted classifier model of people legs applying
an adaboost strategy. Due to its prior knowledge of the classes, model-based detection can solve
some of the inherent complications existing when dealing with the scarce data provided by 2D-LRFs.
Several clusters produced due to over-segmentation or occlusions can be grouped into one if they
fit in the same object model, as it could be done with object a on Figure 2. Moreover, it can alleviate
perspective changes, so that helping to deal with cases such as the object c on Figure 2. In this line of
work, [26] models the geometric properties of the tracked vehicles and impose shape estimations on
them, obtaining more stable reference points of the vehicles through the time. However, unknown
and potentially hazard objects may not be included in the set of pre-defined models and therefore not
detected when using these model-based approaches.

On the other hand, model-free detection approaches such as [14,15] do not have any prior
knowledge (or model) about the classes that can be found in the scene. Therefore, there is no restriction
on the kind of elements it can detect, which means that objects can be found regardless whether
it is a vehicle, a person, or any other unknown entity. Due to this fact, we have implemented our
detector aligned to these model-free approaches. The main drawback, however, is that these kinds

Sensors 2019, 19, 107 5 of 25

of approaches rely deeply on the correctness of the segmented scans and the posterior extraction of
high-quality features, therefore we pay special attention to this point.

As already commented, two-step DATMO paradigms commonly focus on detecting objects in
static frames, leaving for the later tracking phase the task of associating them through time. Yet,
tracking all the extracted features and segmented objects becomes computationally very expensive,
which results in slow performance in a mobile platform. In our DATMO system we aim to alleviate
this processing load by performing a fast-matching step of elements between frames in the detection
stage, therefore filtering out objects that are strongly considered as static.

Tracking by Detection

The main objective of a tracker algorithm is to assign a consistent label detected objects through
time, while retrieving other useful information such as orientation, velocity, size, or shape. It is
commonly done in three steps: target state estimation, object association and target correction. The
first stage, propagates and predicts the new positions of the existing tracks according to their state
vector and the ego-motion. In the second phase, current detections are associated with propagated
tracks. Finally, a target correction step updates the matched targets according to the association data.

Literature tracking strategies commonly fuse sensors (e.g., cameras, LiDAR). In this way, ref. [27]
tracks multiple objects by fusing information from several overlapped cameras and a low-resolution
LiDAR and creates a learning policy from Markov Decision Processes (MDPs) to obtain the appearance,
life, and disappearance of the targets. On the contrary, we seek to use the minimum possible data to
build a low-cost yet robust algorithm that can work independently in case of other sensor failures.
A comprehensive guide with several proposed approaches for object tracking is presented in [28]. We
will focus here on reviewing statistical single and multiple point tracking algorithms, which take into
account uncertainties in the measurement of the object state gaining robustness against the noises from
sensor measurements and motion prediction, as these are the most related to our work.

A general approach for the target estimation step is to consider that the noise and the own object
state have a Gaussian distribution, so that the optimal state can be calculated taking advantage of the
recursive structure of Kalman Filters (KF). Although KF for tracking points have been vastly used since
long time ago, they may provide weak estimations when the object state is not following a Gaussian
distribution or in the presence of motion models with strong non-linearities. These limitations can be
overcome by using Particle Filters [29], although increasing the computational burden.

If multiple objects are meant to be tracked, a one-to-one association between a certain set of
detected objects and the previous known state vectors must be done. In the literature different methods
have been applied for this, from the simple Nearest Neighbor to more complex ones such as MHT [30]
or Joint Probabilistic Data Association Filtering (JPDAF). Extensive reviews of several statistical data
association and fusion techniques can be found in [31,32]. In our approach, we have chosen to use
MHT based on Kalman Filters (MH-KF), as it provides us with a good trade-off between accuracy and
low computation requirements.

Contemporary to our work, [33] proposes to overcome the appearance change problem that
exists when using only 3D LiDAR information and presents a tracking algorithm based on L-shaped
detections. However, we are focused on obtaining a robust and lighter tracking strategy, only using
2D-LRFs without the need for any model. In this way we do not only track certain shapes, but we are
able to dynamically follow visible corners, lines or even the target’s centroid if none of the previous
appear. Moreover, we overcome the benefit that model-based approaches have when dealing with
partial occlusions and perspective changes by employing novel track grouping techniques which help
us on updating the size and other features of the target. We also include policies to have a better control
of the confirmation, hold and deletion of the tracked moving targets, allowing us to reduce the number
of false positives and false negatives. The new set of virtual simulations performed in this version with
respect to [12], allows us to better adjust these control parameters improving the real results.

Sensors 2019, 19, 107 6 of 25

3. DATMO in Port Environments

The exceptional cargo handling activity of port environments motivates us to design a specialized
DATMO algorithm for this environment. Port and cargo terminals are known to be traditional
scenarios in which changes on the work chain are introduced very gradually, mainly due to the
elevated investment needed. Our approach tries to build up a fully working, robust and low-cost
system with minimum intervention over existing AGVs. We therefore reduce the number of sensor
dependencies to the minimum and use already existing single-layer LRFs and odometry sensors as
only input.

Our DATMO approach uses the common two-step paradigm: firstly, we perform detections in a
model-free style; secondly, we employ an MH-KF tracker to follow the dynamic obstacles along the
time. The core of our algorithm is similar to the one presented in [12], in which we have introduced
some novelties. We have refactorized the full code so now communication between modules is more
effective and the speed of the general system is increased. Moreover, we can now easily integrate
information from several 2D-LRF sensors in the system, allowing different placement configurations
as well as not limiting the number of sensors. A general schema of the system working with “D”
2D-lidars is presented in Figure 3. As can be seen, for each sensor, the system launches a detector
instance which filters the detected objects passing to the final tracking the ones considered as dynamic.
The MH-Tracker receives the dynamic objects information from each detector and fuse it, being now
able to easily group elements from different detectors.

Dynamic Targets
Tg: {1,...,N} Object

Tracker

Detector
1

Dynamic Detections: Z(t)1

Dynamic Detections: Z(t)2

Dynamic Detections: Z(t)D

Detector
2

Detector
D

Figure 3. General DATMO proposed schema. Our system can now deal with several LRF sensors
placed in the AGV. For each one, a moving object detector is instantiated having as only inputs
the range measurements and the vehicle’s odometry. The MH-Tracker receives a list of dynamic
objects from each of the detectors and tracks them through time, retrieving their speed, direction and
status. Sections 3.1 and 3.2 detail respectively the internal processes performed by our detector and
tracker modules.

Specific changes have been done in our detection step, by introducing a dynamic threshold that
allows better segmentation of further objects in which LiDAR measurements are sparser. In addition,
the tracking phase has also been optimized and specific changes introduced. For example, we now
perform our grouping strategy over existing tracks attending to similarities both in the velocity and
spatial situation of currently generated targets. If a group already exists, we can now directly associate
several new detections to it, recovering in this way from small occlusions. Finally, we allow generalized
the use of our DATMO system with different sensor configurations, as will be shown in Section 4.1.

In this Section we will expose in more detail the different blocks that take part in our improved
DATMO system, remarking specific changes with respect to [12].

3.1. Detecting Moving Objects with Single-Layer Laser Scanners

We perform a model-free detection step to detect any object regardless its nature or shape, which
is essential in the constantly changing and dynamic environment of port terminals. Our detection
approach contains several processes, as depicted in Figure 4, that are detailed in this section.

Sensors 2019, 19, 107 7 of 25

Frame
Transformation

Scan “t”

Segmentation Feature Extraction

Fast-Object Association

Dynamic Detections

Static DetectionsScan “t - K”

Figure 4. General schema for detecting moving objects with single-layer laser rangefinders (LRFs).
We segment the laser measurements using a dynamic threshold and extract different geometric features
from each cluster obtained. A fast-matching step is later performed between time-separated scans to
filter out static objects, leaving to the next tracking step only the elements of the scene considered as
dynamic. Thus, we can reduce between two and five times the objects arriving to the tracker.

3.1.1. Input Data Pre-Processing

Information provided by LRF sensors can contain multiple echoes (e.g., when a laser ray pass
through a window), or to measure the reflectance intensity (which give information about the obstacle’s
material). For the shake of generalization and allowing compatibility with different sensors, we only
use laser-range information and, in the presence of several echoes, we only account for the first range
measurement. Let Sct be the range information received by an LRF at time t. It can be represented
as a set of points in polar coordinates as Sct = {ri, αi}, i ∈ [1,S], where r is the range distance
measured, α is the bearing angle, and S is the number of laser measurements in our filtered scan.
In this pre-processing step we also eliminate outliers according to the sensor specifications. In addition,
we filter the range laser measurements discarding the ones that are further than 50 m, which we will
consider as the maximum interaction distance of the vehicle.

Our object detector can detect moving objects by comparing and matching frames separated by
a time window. We therefore store the scans on a buffer of k frames, which size will depend on the
scenario where the system is deployed as well as the LiDAR sensor frequency. To choose a correct
buffer size is of capital importance, as other parameters used in the detection step will directly depend
on this one in order to optimize our fast-matching capacities.

As our own vehicle is moving, we need to estimate our motion to compare objects from scan Sct

with previous ones from Sct−k from the same reference point. Odometry sensors, although they are not
very precise when calculating long-term trajectories, provide sufficient information of the ego-motion
of the AGVs in between scans. We first transform both scans to a common reference frame on the
vehicle (·veh), where the odometry data is also referred to, obtaining Scveh

t , Scveh
t−k. Next, we apply to

the older scan the transformation given by the motion measured by the vehicle, getting the scans in a
comparable reference frame Scveh

t and Scveh+o
t−k . For the shake of simplicity, from now on we will omit

the superscript index, as in further steps all the scans will be under the same vehicle’s reference.
Both our real and simulated cargo terminal contain vehicles moving at maximum speeds of 6 m/s

carrying LRF sensors that provide data at 10 Hz. With this scenario we have chosen to set the size
of our buffer to k = 10, thus matching elements from the actual scan Sct and the ones obtained one
second (10 frames) before in scan Sct−10, which represents a maximum displacement of 6 meters.

3.1.2. Scans Segmentation

Before performing the object matching, each scan is segmented in separated elements by spatially
grouping sets of points. We speed up this process by taking advantage of the sequential order
of range measurements provided by LRF sensors using the Point-Distance-Based Segmentation

Sensors 2019, 19, 107 8 of 25

(PDBS) [22]. As the angular step of common LRF sensors is very small, the Euclidean distance
between two consecutive scan points can be easily approximated by just calculating the `1 range
distance `1(ri, ri−1) = |ri − ri−1|, which is much faster. Therefore, points in the scan are grouped in
different objects if the `1 distance between two consecutive ranges is higher than a given threshold
Thsegr . In [12] we used a fixed threshold Thseg for this task, but analyzing the new simulations
performed here we observed that a fixed threshold tends to over-segment objects located far away.
Thus, we have improved this step and set this threshold value as a function of the range such as
Thsegr = Thseg(ri/100 + 1). In our final experiments, initial threshold Thseg is set to 0.3 m and
therefore it grows 1.5 times up to 0.45 m at the maximum interaction distance of 50 m.

At this initial point, every obtained cluster of LiDAR points will correspond to a segmented object
without any specific model. To represent them, each object is initially parameterized by the following
state vector:

objj = [re fact, wth, lth, ϕ, np]T ,

where j ∈ [1,J] refers to each segmented object, re fact is the actual reference frame of the object
(in Euclidean coordinates with respect to our vehicle’s frame) as will be detailed in Section 3.1.4,
wth and lth are respectively the object’s width and length, ϕ is the orientation with respect to the
longitudinal axis, and np is the number of laser points that the object contains. Figure 5c shows an
example of this parametrization over a real scan.

(a) Lines and corners extracted. (b) Associated static objects. (c) Laser detection of objects.

Figure 5. Objects detected and extracted geometric primitives. (a) shows segmented elements from
two overlapped scans Sct and Sct−k and their respective lines and corners extracted. Green lines and
yellow corners belong to the actual scan Sct, whereas purple lines and red corners are extracted from
the past Sct−k scan. We can clearly appreciate how corners and lines are representative features, being
corners more reliable. (b) shows in yellow the segmented objects matched, so that considered as static.
A dynamic detected object in the middle is shown without a match, and both previous and current
scans can be appreciated in red and green, respectively. (c) represents the features extracted from
detected objects, where we can observe the reference propagation of Obj. B. Best viewed in color.

3.1.3. Geometric Primitive Extraction

When perceiving only a single slice of range data from the environment, one of the biggest
problems that we need to face is the absence of trustworthy reference points in partially observed or
occluded objects. The two most-upper red blocks of Figure 5c, which are partially visible without any
additional shape cue, clearly exemplify this situation. However, real port environment objects such as
containers, buildings or vehicles have a strong geometrical structure containing well defined straight
lines and corners. To get reliable features, we extract for each segmented object in Sct and Sct−k its
inherent geometric primitives [14], such as lines and corners, as can be seen in Figure 5a.

In contrast to [12], we have experimented in this article with two different line extraction
approaches as in [20]. On one side, we perform a linear regression over small subgroups of consecutive
points. We next develop a line-merging procedure based on angle similarity between adjacent lines

Sensors 2019, 19, 107 9 of 25

extracted, building bigger lines. For these longer lines obtained, we finally assure that the error from a
new regression performed over all the corresponding points will remain under a certain threshold.
On the other hand, we have also used the Hough Transform to find the best fitting lines in the full set
of points. Although accuracy of the Hough Transform is slightly better, this method requires more
computational power that affects our global processing speed. For this reason, in our final algorithm
we keep using the linear regression method which better fulfills the speed vs accuracy trade-off.

We parametrize the structural lines of every element in a scan as follows:

objj(linel) = [ptinit(x, y), ptend(x, y), ε, ~θ] ,

where l ∈ {1, ...,L} represents each of the lines of an object, ptinit and ptend are respectively initial and
final Euclidean points, ε is the obtained linear regression error and~θ is the line’s director vector.

Apart from structural lines, we extract corners of each of the detected objects given that they exist.
In this way, corners are created when two lines of the same object intersect with an angle larger than
π/6. We define this geometric primitive in a state vector as

objj(cornerc) = [ptcorner(x, y), ρ, γ] ,

being c ∈ 1, ..., C each corner of the object, ptcorner its corresponding Euclidean position, ρ its orientation
and γ its aperture. Notice than in contrast to [12], we now group our lines and corners inside the
containing object and not the other way around, which significantly helps on performing faster object
matching between scans, speeding up the full system.

Apart from these geometrical features, other useful attributes such as perimeter (P) and area (A)
of each object are extracted. In addition to [12], we also extract the polyline that describes the object’s
bounding box, which keeps track of the fully observed shape of the objects, as can be appreciated in
Figure 5c. For defining this polyline, the principal component of the cluster of points is obtained.
This can be done by using Principal Component Analysis (PCA), although it requires additional
computations which would delay our execution, so we simplify this process by selecting the longest
line of the object. Next, we rotate the object clockwise to a zero position according to its principal
component and select the points with maximum and minimum Euclidean positions, which will define
our polyline. Finally, each object is therefore defined by combining its spatial features and geometric
primitives as:

objn = [re fact, wth, lth, ϕ, np, L, C, P, A, polyline] .

3.1.4. Fast Object Matching and Reference Propagation

The final step of our detector exemplifies our efforts to reduce the computational burden of
the next tracking stage. Objects from scans Sct and Sct−k (both in the vehicle’s reference frame) are
matched to perform a fast filtering of static objects, therefore leaving for the tracker the detected
elements with better chances to be dynamic. Each structural feature (including lines and corners) from
scan Sct is compared with the ones of scan Sct−k to match them. If a matching is obtained between
an object in the actual scan with another in the older, it means that the object has not moved so it is
tagged as static. This simple approach allows us to reduce between 2 and 5 times the number of objects
analyzed by the tracker, as it is shown in Section 4.

We use a logical programming approach for performing the object associations, attending to the
presence and the strength of each of the geometrical features extracted on the objects. As corners are
hardly invariant features, if two objects under comparison produce a corner match, we associate them
on both scans and directly tag them as static. Formally, a corner “A” from an object of the scan Sct and
a corner “B” from one of the scan Sct−k are initially matched if the following logic rule is accomplished:

`2(ptA
corner, ptB

corner) < thrdist && (`1(ρ
A, ρB) < thrρ || `1(γ

A, γB) < thrγ) ,

Sensors 2019, 19, 107 10 of 25

which states that the `2-Norm between the corners’ reference point must be less than a defined distance
threshold, and that at least one of the `1-Norms from the aperture or orientation corner features needs
to be within thrγ and thrϕ ranges, respectively.

In the absence of corners, two objects can be matched by its structural lines, although lines may
suffer from more variability due to changes on perspective and occlusions as appreciated in Figure 2.
Formally, objects are associated by means of it lines only if the angle between their orientations is
within t̂hr range and at the same time the `2-Norm between their initial or final points is below the
given distance threshold thrdist, as states:

̂~θA
line,~θ

B
line < thrθ && (`2(ptA

init, ptB
init) < thrdist || `2(ptA

end, ptB
end) < thrdist),

Figure 5b shows a real example of objects matched from two different scans taken in a real port.
The current scan is shown in green, the past one in red and the elements tagged as static appear in
yellow color. As can be appreciated, a dynamic obstacle in the center is not matched, and points from
both previous and current scans are visible in red and green, respectively.

One of the biggest challenges that our model-free detector inherits from the little information
provided by single-layer LRFs is that the same object seen at two particular times can be represented
with a different reference point due to the changes of perspective. Along with the fast-matching step,
we also propagate strong object’s reference points from partially seen obstacles, as well as to update
information about the perimeter, area, and the polyline of the objects.

Object matched by means of corners are considered very reliable so that the corner position is kept
as the actual reference point (re fact) for future frames. Given the case that an object is matched from
two scans in which only a line of the object is observed in one scan and a corner in the other (e.g., due
to a perspective change), the reference point of the object is updated to the corner’s one. On the
contrary case, if an existing object with a corner is matched with an object in a newer scan having only
a line, the initial corner is propagated and kept as the reference point on the object’s state vector.

Figure 6 exemplifies a real situation when the corner’s reference of an observed object is
propagated. Lacking any better reference, initially the object is tracked in T0 from its centroid. Once a
corner is discovered, our system updates the track and starts referencing the object from its corner
position, as seen from T1 to T3. When the corner is not visible anymore, but the object is still matched
between scans, we propagate the previous corner’s position so that it will reference the now partially
visible static object, as seen from T4 to T6.

T0 T1 T2 T3 T4 T5 T6

Figure 6. Size update and reference propagation of an object over associated detections with partial
visibility. In T0, we observe the object with no reliable features, so that its centroid is tagged as reference
point. From T1 to T3, the object is visualized from a different perspective, and the reference is updated
to the visible corner. In times T4, T5, T6, the object is partially observed but, as it is matched during the
fast-matching step, the old corner is propagated, and the reference point updated. Best viewed in color.

Sensors 2019, 19, 107 11 of 25

3.2. Tracking Dynamic Objects in Port Environments

The second stage of our DATMO system receives the detected dynamic obstacles and track them
through the time. We employ the core MHT of [12], which combines Reid’s algorithm [30] along
with the prediction used in [34] that takes into account a window of the previous tracks positions to
calculate the average track velocity. We also integrate in our MHT the ability to run from the moving
reference frame in local coordinates as in [35], which is essential for our application. In addition to [12],
in this article we have improved the confirmation, hold and deletion policies for moving targets as
well as the grouping techniques. In this way, we are now able to better deal with partial occlusions
and perspective changes. A general schema of the full proposed tracker is shown in Figure 7. In the
next sections we detail the our MHT formulation and analyze the different modules along with the
new introduced features and functions.

Dynamic Detections

Static Detections Multi-hypothesis Tracker

Track Confirmation,
Hold and Deletion

Track
grouping

Oworld

Oveh.

World
disambiguation

FP Filtering by
Observe Velocity

Figure 7. Modules included in our MH-Tracker system. Our tracker works in local coordinates from
the ego vehicle, so an initial coordinate transformation is performed to the dynamic detections. In this
local frame, we filter false positively detected dynamic objects attending to their observed velocity. We
further introduce our track confirmation, hold and deletion functions as well as our track grouping,
which is based both on object spatial location and target velocities. Best viewed in color.

3.2.1. Multiple-Hypothesis Tracking

Our MHT have a set of multi-dimensional observations at each time t, represented by Z(t) ≡
{Zm(t), m = 1, 2, ...,Mt}, and a set of target states represented as x(t) ≡ {xn(t), n = 1, 2, ...,N}.
For the shake of fast computation and given the little information provided by LRF sensors, in our
case the observations consist on the object’s reference points and their associated covariances. Targets
are composed by positions, velocities (vx, vy), and their respective covariances. Due to its recursive
structure and lower computational requirements we use a Kalman Filter for the propagation and
correction steps of the tracked targets (x(t)). The possible choice of a particle filter along with the MHT
tracking increase the computational cost affecting the final real-time performance.

In the tracker association step, a distance between the detections Z(t) and the propagated
targets x(t) needs to be measured. We have here discarded the use of Euclidean distance in favor
of Mahalanobis distance which, although is computationally more expensive, it is a more powerful
measurement leading to much better decision boundaries. In this way, we associate a detection and a
target if their Mahalanobis distance is below a threshold as stated in:

(Zm −Hx̄)T(HP̄HT + R)−1(Zm −Hx̄) ≤ η2 ; (1)

Zm = [x, y]T ; x̄ = [x, y, vx, vy]
T ; (2)

R =

[
Gx2 Gxy

Gyx Gy2

]
; P̄ =


Gx2 Gxy Gxvx Gxvy

Gyx Gy2 Gyvx Gyvy

Gvx x Gvxy Gvx2 Gvxvy

Gvyx Gvyy Gvyvx Gvy2

 ; H =

[
1 0 0 0
0 1 0 0

]
; (3)

Sensors 2019, 19, 107 12 of 25

where Zm is the position of the current detection, x̄ is the propagation of the target state, H is the
measurement matrix, P̄ is the covariance matrix of the propagated target, R is the covariance matrix of
the detection and η2 is the association threshold.

In case that a detection could be associated with different targets, our MHT tracker calculates all
the possible association hypotheses along with its own probability following the core equation of [30].
For a better comprehension we present the full formula as:

Pt
i = η”PNdet

det (1− Pdet)
NTGT−Ndet β

Nfal
fal βNnew

new

Ndetector(Zm −Hx̄, B)Pi
t−1Pnc(Nnc)Ph(Nna) (4)

B = HP̄HT + R , (5)

where Pi
t is the probability of the actual hypothesis; η” is a normalization term which serves to make

the sum of all the probabilities of the current hypotheses equal to 1; β f al and βnew are the Poisson
probability distributions for the cases of false alarms and new targets; N f al and Nnew are respectively
the number of detections associated with false alarms and the number of detections associated with
new targets; Pdet and 1− Pdet, are the probability of detection and the probability of not detection; Ndet
is the number of detections associated with existing targets and NTGT is the number of the existing
targets; Ndetector(Zm −Hx̄, B) is the Gaussian probability distribution of the detections for the detector;
and Pi

t−1 is the probability of the previous hypothesis from which derives the current hypothesis.
All these terms share the values stated at [30], where the reader is referred for a deeply explanation.

When there exists any association conflict within a new target hypothesis, [30] takes the hypothesis
with higher probability and propagates it through time in a tree. Conversely, we simplify and speed
up this process in this paper by taking only the hypothesis with the highest probability therefore
discarding the others and pruning the tree expansion.

Additionally, for calculating the probability of each hypothesis as in Equation (4) we included
in [12] two additional terms: (1) Pnc(Nnc), which is the probability distribution for the not confirmed
targets (added to confirm the targets as dynamic objects); (2) Ph(Nna) which is the probability
distribution to hold dynamic targets. In this work, after further experimentation in our new simulated
environment, we have redefined our confirmation function as an exponential one, differently than the
one used in [12]. Nevertheless, both functions are detailed in Section 3.2.3 for the shake of full system
comprehension.

3.2.2. Filtering Static Objects by Velocity

Although our detector step for fast-matching objects between scans reduces the number of false
positively detected moving obstacles between 2 and 5 times, some of them will still exist. In this way,
our tracker algorithm also filters false positive detections (static objects) attending to their observed
velocity. Our DATMO system works in local coordinates on the reference frame of the ego vehicle.
Therefore, an object standing static in the environment will be observed as having our same velocity
but contrary direction in this local frame. In the same manner than in [12], we filter objects with the
following local velocity with a ±0.5 m/s margin:

−→
V obj

local
= −(−→V veh

world
+
−→
W veh

world
×
−→
d)

where
−→
V veh

world
and
−→
W veh

world
are respectively the linear velocity and the angular velocity of the

vehicle in the world coordinates, and
−→
d is the distance between the vehicle and the tracked object.

The super index local and world means the local coordinates of the vehicle and the global coordinates
of the world.

Sensors 2019, 19, 107 13 of 25

3.2.3. Confirmation, Hold and Deletion of Moving Object Tracks

The confirmation and deletion terms Pnc(Nnc) and Ph(Nna) of Equation (4) allow us to have a
better control of the confirmation, hold and deletion of the moving targets.

The term Pnc(Nnc) is introduced to deal with false positive detections (not real moving objects) by
imposing the target confirmation with a slower rate than other tracker approaches. Arras et al [25]
solve this by having two types of targets, ones related to confirmed objects (approved targets) and
the others related to not confirmed objects or no-objects (free targets). However, we define this term
by implementing two separated states of the same target, thus avoiding having twice the targets
and related probabilities. In [12] we formulated this confirmation function in a linear manner. After
carefully analyzing our new simulated scenarios, in this article we model this term with an exponential
probability distribution. In this way, we set the confirmation probability to grow exponentially as
long as the track has a detection associated with it according to:

Pnc(Nnc) =


1− e−λ·Nnc i f Nnc ≥ 1 and target not confirmed

1 i f target confirmed
(6)

where Nnc is the number of times that the target has a detection associated with it and λ controls
the growing speed of the probability, balancing how fast a target is confirmed. In our case, we use
λ = 0.02.

Equation (6) only applies when the target is still not confirmed and increase its confirmation
probability each time that a detection gets associated until it surpasses a confirmation threshold,
so then it is confirmed. We have set this confirmation threshold to 0.9 for our experiments in the
port environment. With this, we gain protection against false positive detections by moderating the
confirmation, contrary to other binary approaches that confirm targets with just one association.

To deal with false negative detections (no detections of moving objects) our tracker holds the
existing moving targets during short periods of time. This is done as in [12] by slowly decreasing the
target probability with the introduction of a probability distribution for holding dynamic targets:

Ph(Nna) =


PNna

h i f target not associated

1 i f target associated
(7)

where Ph is the probability of holding a target, set to 0.99 and Nna is the number of targets without
dynamic detection associated. A target is deleted when its probability decreases under an elimination
threshold that we have set to 0.4 for this paper for better generalization purposes after running our
new set of simulations. Figure 8b shows a real experiment where the tracker can hold a target when
no detection exists (no red boxes exist for the dynamic vehicle ID20). If the detection reappears and is
again associated with the target, it will keep its ID number.

Sensors 2019, 19, 107 14 of 25

(a) Tracker filtering and grouping situation. (b) Tracker holding a false negative detection.

Figure 8. Tracking grouping and holding cases over real data. In green the final moving target with
its identifier. Red objects are segmented elements and blue cylinders are dynamic elements tagged by
the detector. (a) shows how several over-segmented objects are grouped into one unique track in the
center of the image. In addition, our tracker can filter a false positively detected dynamic object as seen
in the top left corner. (b) shows our tracker holding a moving vehicle in a false negative situation.

3.2.4. Track Grouping

Due to occlusions or errors in the segmentation step of our detector, sections of a bigger object can
be detected separately. Moreover, as in this article we include the possibility of using several 2D-LRFs
in our DATMO system, the same object can be detected from different sensors and each one with a
different reference point. We can merge this multiple or partially detected objects in a new track ID
attending to both the actual position of each element as well as its tracked velocity. In contrast to [12],
we included here the grouping by velocity option so that making our algorithm more robust. We use
the following equations to group the tracks using similarities in distance and velocity:

(Hx̄1 −Hx̄2)
T(HP̄1HT + HP̄2HT)−1(Hx̄1 −Hx̄2) ≤ ηd

2 (8)

(Hvx̄1 −Hvx̄2)
T(HvP̄1Hv

T + HvP̄2Hv
T)−1(Hvx̄1 −Hvx̄2) ≤ ηv

2 (9)

Hv =

[
0 0 1 0
0 0 0 1

]
(10)

notice that Equation (9) group the tracks using velocities. We have separated it from Equation (8),
which was used in [12], to further strength the fact that we perform a dual grouping based both
on velocities and spatial positions. H shown in Equation (3), is the H measurement matrix defined
in the same way as in [30], which allows to group the tracks using its spatial proximity and Hv of
Equation (10), allows to group tracks according to their velocity. x̄1 and x̄2 are the propagated and
corrected target states, as shown in Equation (2), and P̄1 and P̄2 are its corresponding covariances as in
Equation (3); ηd

2 and ηv
2 are the thresholds that allows the association of different targets of the same

moving object, using distance and velocity respectively.
When a new group of targets is generated, the new track takes into account the position and

velocities of all its contained targets. We calculate the group velocity, as the average of the target
velocities. When a group is generated, we also estimate the size of the final grouped target using two
different approaches. On the one hand, when detections come from different sensors and the object
areas overlap, we calculate the final shape as an average of each independent detection. On the other
hand, when the grouped detections come from the same laser with no overlapping areas, chances are
that the object was partially occluded and therefore the independent sizes are summed up. In any case,
we propagate the biggest size of each object so that we can keep tracking their real shape while its
observed from different points of view.

Sensors 2019, 19, 107 15 of 25

4. Simulations and Experiments

We describe the most meaningful simulations and experiments performed to test and validate
our DATMO system. For this article, we have simulated a realistic port environment in which different
common situations for autonomous transportation are evaluated. These experiments contain several
moving vehicles and different sensor configurations to show the generalization capacities of our system
under different conditions. We test as well our system with real data captured in the port of Hengelo,
The Netherlands and compare our new results with the ones in [12]. Both scenarios show that our
system can keep the track of dynamic objects with just the little information provided by a 2D-LRF
under challenging situations such as occlusions and changes of perspective.

4.1. Simulated Environment

We have simulated a realistic environment of a port terminal in which our DATMO system could
be validated. The recreated world aims to emulate in a faithful way the harbor conditions, so we have
included several vehicles, standard container sizes, as well as poles and additional elements which can
be seen in Figure 9. Within this virtual world we have recreated an AGV with Ackermann movement
model equipped six LRFs attached to its body which characteristics resemble the SICK LMS511 sensors.
The simulated sensors are placed around the vehicle in the following way: four of them are situated on
the corners, two pointing forward and the other two pointing backwards; the remaining two sensors
are placed on the left and right side of the vehicle. This configuration provides a field of view of 360◦,
with redundancy on the front and back areas, which are critical for the AGV.

(a) Recreated port environment. (b) Measurements taken from simulation.

Figure 9. Samples of our simulated environment that recreates real ports conditions. Our simulations
include different kind of standard containers, vehicles and other elements such as light posts or road
cones. We placed an AGV test platform with Ackermann’s motion model equipped with six SICK LRFs
covering 360◦. Trajectories for each vehicle in the scene can be separately defined as are shown in (b).

We have thoroughly simulated a set of common autonomous driving/transportation situations
that could occur in a cargo terminal, including turns, crossing vehicles, takeovers, occlusions,
and vehicle following scenarios. For each situation, we have tested our system performance with
different sensor configurations, from having only one frontal LRF providing a field of view of 180◦,
to employing four LRFs providing 360◦. In the next sections we present some of the most relevant
simulations performed.

For each experiment, we show four different graphics. In the first one (e.g., Figure 10a), we analyze
the detector performance by showing the number of total objects segmented at each frame (red line)
along with the number of those objects which our detector has tagged as dynamic (blue line). Analyzing
this chart through the simulations, we can see how our fast-matching approach for filtering dynamic
objects in the detector is consistently reducing the tracker load by two to four times. The second graph
(e.g., Figure 10b), shows the tracker false positives (objects tracked as dynamic but actually static), along

Sensors 2019, 19, 107 16 of 25

with the false negatives (objects not tracked as dynamic which actually are). To give an insight of the
tracking performance on each sequence, we present complementary charts (e.g., Figure 10d) showing
the number of frames along the whole scene in which our DATMO system manage to correctly track
each vehicle (true positives per vehicle). Finally, for better understanding each simulated situation,
a snapshot reflecting the motions of the different elements in the scene is shown (e.g., Figure 10c),
so that conclusions about occlusions or changes of perspective can be extracted.

(a) Detector performance (b) Tracker false positives and negatives

(c) Experiment snapshot (d) Moving vehicles tracked

Figure 10. Scene 1. The AGV approximates an intersection where two trucks coming from both sides
cross in front of it. After entering in the AGV’s field of view, our DATMO system keeps tracking both
vehicles. In the mid part of the simulation, Truck 2 occludes Truck 1, and its target is lost after a second
without receiving detections being tracked again when new detections are provided.

4.1.1. Scene 1: Two Trucks Crossing

For this simulation we have tested the capacity of our DATMO system with only one single
2D-LRF. In this situation, as seen in Figure 10c, the AGV approaches an intersection where Truck 1 and
Truck 2 are coming from the right and left sides, respectively. The AGV sees them, stops, and then
continues its way. This is a challenging scene with multiple changes of perspective and occlusions.

Results of this simulation are shown in Figure 10. At the beginning both trucks are outside the
AGV’s field of view (FOV), and do not enter it until frame 50. The vehicles are detected as moving
objects in frame 70 which means a delay of just 20× 0.04 = 0.8 s. It is worth remembering that the
detector compares scans separated within 10 frames, so here is comparing frame 70 (Sct) with frame 60
(Sct−10). If no object matching is produced by the detection module, the object is directly tagged as
dynamic so intrinsically this step does not suppose any special lag. In this case, the delay is mostly
introduced by the segmentation module that needs to discard small groups of far points when the
trucks approach our FOV. By frame 95, both objects tagged as dynamic by the detector are confirmed
by the tracker. This lag is introduced by Equation (6) which was adjusted for our port environment

Sensors 2019, 19, 107 17 of 25

maximum speeds. Due to the relatively low velocities of the vehicles in the port, we trade-off a slower
confirmation of far vehicles for obtaining a system that is more robust against false detections.

This scene contains a full dynamic vehicle occlusion, as in frame 168 Truck 2 starts to occlude
Truck 1, which is completely shadowed in frame 200. The detector begins to see only the back part of
the truck, until it loses it. Our tracker algorithm holds the vehicle’s target for 25 frames and after being
unable to re-connect it, eliminates the target at frame 225. However, around frame 230, Truck 1 appears
again with a very different position in which only the front part is visible. Due to the lack of a vehicle
model, the tracker is not able to associate it with the old target, but anyway is tracked and is confirmed
as a new target in frame 270. At the end of the sequence, Truck 1 stops at frame 405, the detector stops
recognizing it as a dynamic object and the tracker keeps its target during one more second.

4.1.2. Scene 2: AGV Turning Left at Intersection

In this simulation we use two LRFs sensors mounted on the front and the left side of the AGV.
As seen in Figure 11c, the AGV approximates to an intersection for turning left. Truck 1 is coming from
the right side and cross the intersection. Truck 2 comes from the left side and turns right to incorporate
to the AGV’s road. When the intersection is free our vehicle turns left following Truck 1. Our main
objective here is to test the algorithm capacities to group several detections from different sensors,
which is a novelty introduced in this paper with respect to [12].

(a) Detector performance (b) Tracker false positives and negatives

(c) Experiment snapshot (d) Moving vehicles tracked

Figure 11. Scene 2. Our AGV approximates to an intersection for turning left. Truck 2 comes from
its left side and turns right. Truck 1 comes from the right side and cross the intersection. When the
intersection is free, the AGV turns left following Truck 1. Our system detects and tracks correctly both
moving vehicles since they enter AGVs FOV until they stop or go out of range using only two LRFs.

Results from this scene are shown in Figure 11. Trucks slowly enter the AGV’s FOV from
frame 110 until frame 160. Since then, the detector filters between 4 and 5 objects as static (as seen

Sensors 2019, 19, 107 18 of 25

in Figure 11a). It is not until frame 160 when the detector starts to be consistent on the dynamic
detection, and therefore in frame 175 both objects are confirmed by the tracking. The simulation goes
on and the system manages to track correctly both obstacles as shown in Figure 11d. At the end,
in frame 370 Truck 2 stops and is eliminated in frame 395. We can conclude that our system is able to
correctly group and track different detections in a challenging situation with big changes of perspective
and movements.

4.1.3. Scene 3: AGV Turns Right at Intersection to Join Trucks Platoon

Platooning is one key feature that autonomous driving will introduce to make transportation
more efficient. This scene aims to simulate our AGV joining a platoon of several vehicles after turning
in an intersection, as can be observed in Figure 12c. We set four different LRF sensors on the vehicle
obtaining 360◦ of FOV. For each sensor, an object detector is instantiated, so this scenario will further
test our grouping and filtering static obstacles capacities.

(a) Detector performance (b) Tracker false positives and negatives

(c) Experiment snapshot (d) Moving vehicles tracked

Figure 12. Scene 3. The AGV turns right to join a truck platoon, which is a situation of special interest
in the autonomous transportation context. This simulation, performed with a FOV of 360◦, shows the
capacity of our DATMO system to quickly filter real moving obstacles from all the objects detected so
that reducing by a quarter the computational burden of the tracker.

In the results shown in Figure 12, we can see how due to the increased FOV the number of objects
detected rise to 28 elements peak. Analyzing Figure 12a we can conclude that our fast-matching
algorithm is able to filter most of these detections leaving to the tracker just around a quarter of them.
This is a big success, and represents an important reduction on the tracker computational load.

On the scene, it can be observed the 10-frame buffer for the initialization of the fast-matching
module of the detector, in which all the segmented elements are considered as dynamics. Truck 1 is
already in the AGV’s FOV when the simulation begins, and it is confirmed by the tracker around

Sensors 2019, 19, 107 19 of 25

frame 30, whereas Truck 2 enters our FOV on frame 35 and is confirmed by the 85. We can observe how
our performance is affected due to odometry drifts when the AGV turns right (which could be solved
with better localization techniques). In this way, we observe an increase on the number of dynamic
detections between frames 200 to 350 which generates some tracker false positives (see Figure 12b. Yet,
as observed in Figure 12d, our system is robust enough and keeps track of both trucks, even of Truck 1
when it gets almost lost due to occlusions from Truck 2 during our turn around frame 300. When we are
positioned in the platoon, Truck 1 gets totally occluded and it is not tracked anymore from frame 350.

4.1.4. Scene 4: AGV Witnesses a Truck Overtaking Another Truck

This simulation also uses four LRF sensors distributed around the AGV, and follows the previous
line of platooning situations. As can be seen in Figure 13c, the AGV is situated at the back of two
trucks and witnesses how Truck 2 overtakes Truck 1. At this point, the AGV accelerates to cover the
leaved gap and continues in the platoon formation.

In the results shown in Figure 13, we can again observe how the number of moving detections
arriving to the tracker tagged as dynamic is two to four times lower than the number of total objects
initially segmented by the four instantiated detectors. In the sequence, Truck 2 starts its overtaking
maneuver at frame 25. After this moment we will start to perceive Truck 1 that was behind, which
is confirmed by the tracker at frame 60. During the overtaking maneuver, both trucks are spatially
close to each other and with similar speeds, which confuse our grouping strategy to group them at
certain frames. Finally, at frame 330 when the maneuver of Truck 2 ends, it gets occluded by Truck 1
and therefore not detected or tracked.

(a) Detector performance (b) Tracker false positives and negatives

(c) Experiment snapshot (d) Moving vehicles tracked

Figure 13. Scene 4. Taking part of a platoon, the AGV sees how the truck in front of it overtakes the
head truck. It can be observed how in overtaking situations occluded vehicles become visible and the
ones that were in sight get occluded, with the consequences that has to the DATMO system.

Sensors 2019, 19, 107 20 of 25

4.2. Real Environment Experiment

After carefully validate our system over the simulated scenarios and find a balanced parameter
configuration that is able to hold a good trade-off between precision vs recall and detection filtering
vs tracking load, we evaluate our system in the same real scenario of [12] (see Figure 14), which was
collected from the CTT port terminal of Hengelo, The Netherlands. Due to the scarce availability
of real platforms as well as the need for several specific port authorizations to record the transport
area premises we could only dispose of one complete real scene. In it, a sensorized Toyota Prius
vehicle was acting as an AGV performing a vehicle following task. The vehicle was set with 6 Ibeo
LUX laser scanners, mounted to capture pointcloud data over a 360 degrees FOV. Other sensors,
which are detailed in [12] where available but not used here. Ibeo LUX laser scanners provide range
measurements at four different layers covering a vertical FOV of 3.2 degrees and a horizontal FOV
between 85 and 110 degrees with a resolution of up to 0.125 degrees. For our purposes, following our
low-cost and minimum information objectives we only test our DATMO system using the third layer
of the sensor, which was aligned with the horizon. We also use as additional input the longitudinal
velocity of our own vehicle, integrating it to obtain an estimation of the ego-displacement through
the experiment.

For autonomous vehicles, a high detection recall is of vital importance. As we were able to
thoroughly calibrate our system in several scenarios in the simulated environment, we chose a
parameter setup that, while keeps the system recall to the maximum, generalizes well in the different
simulated and real scenarios working in real time.

(a) Vehicle following case. (b) Real data visualization.

Figure 14. Real experimental sequence. Left, we show a snapshot of the sequence captured in the real
port environment where the truck to be followed is appreciated. Right, we show the corresponding
visualization of the 2D-LRF measurements obtained, along with the ground-truth of the vehicles.

Results of our presented approach are in the third column of Table 1. We also perform a comparison
of these results against the ones obtained in [12]. In the previous work, we presented two different
configurations, corresponding to the first two columns of the table. On the one hand, we presented a
more restrictive detector configuration with higher matching thresholds, so that being stricter when
tagging an object as dynamic. This configuration was linked to a tracker focused on keeping track of
the generated targets because the detector recall was lower. On the other hand, we tuned a permissive
detector with lower matching thresholds to obtain a high detection recall to not miss any possible
dynamic object, with the drawback of introducing more false positive detections. To this configuration
a tracker focused on filtering those false positives to get the real dynamic detections was attached.
Due to the scarce data we had available, in [12] we tuned these two configurations using a subset of
the real sequence that comprised the first few seconds. Results there were presented over the rest of
the sequence. For absolute number comparisons, we include here in columns 1 and 2 of Table 1 the

Sensors 2019, 19, 107 21 of 25

results of our initial DATMO approach from [12] although they are favored as contain the manually
tuned frames. However, conclusions can be extracted about the performance of our updated modules.

Table 1. Results over the real captured sequence of the presented extended DATMO system.

Restrictive Case [12] Permissive Case [12] Ours

Total Segmented Obj. 5345 5393 5232
Total Dynamic Det. 1287 1557 1926

Total Tracks 1069 1085 1159
System Recall (%) 0.8842 0.9353 0.9816

Analyzing the results, we can extract several conclusions. Firstly, attending to the total number of
segmented objects (first row), we can see how it gets decreased by our newly presented approach. After
carefully reviewing the results, we can declare that this is due to the introduced dynamic threshold
on the clustering step, as we now avoid over-segmentation of far objects. In addition, we can clearly
observe the reduction on the number of objects tagged as dynamic obtained by the fast-matching step,
as only part of the total segmented objects arrives at the tracker. In [12] this reduction factor was
of 4.1 and 3.4 times respectively for the restrictive and permissive cases. Our current system shows
a more permissive configuration with a 2.7 reduction factor (from 5232 to 1926). This permissive
configuration can easily be explained from our generalization purposes, as we present a system that is
able to properly work over a great variety of scenarios. Even though our tracker is still able to process
the amount of inputs in more than real time, so this permissive configuration does not suppose any
drawback for the system. Attending to the third row of Table 1, we can observe the capacities of our
tracker to reduce the number of false positives. In the current approach, we can filter almost a 40%
of the objects false positively tagged as dynamic, while obtaining a much higher system recall on the
real sequence when compared to the previous versions. A video showing the real performance of our
method can be found in https://youtu.be/El8mGBWESpI.

5. Conclusions

This work has presented a light and robust DATMO system that uses only the minimum
information provided by 2D-LRFs. Our system aims to build on top of currently existing sensors of
grid-based AGVs and only use single-layer laser rangefinders and odometry as input. Our approach
divides the process in two stages, detection and tracking.

The detection algorithm, can segment any object in the port without any previous knowledge
of its shape or model. Moreover, we perform a fast-matching object association between scans that
consistently reduces between two and five times the number of elements that arrive at the tracker by
selecting the ones with strong dynamic cues.

An improved version of MHT has been presented allowing us to track the dynamic objects. We
complemented the MHT by defining special functions to confirm, hold or delete targets. Moreover, we
have defined velocity filters to discard static objects in local coordinates as well as grouping approaches
that are able to track jointly different detections of the same object.

The system has been evaluated both in simulated and real data obtained in the CTT port terminal
in Hengelo, the Netherlands. The results show that, although very little information is provided
by one single-layer laser scanners, our DATMO system accomplish perfectly different common
situations for autonomous transportation such as following vehicles, joining platoons or observing
traffic approaching to an intersection.

https://youtu.be/El8mGBWESpI

Sensors 2019, 19, 107 22 of 25

Author Contributions: Conceptualization and work lead, V.V.; detection step, V.V.; tracking step, E.R.; simulation
scenarios, V.V.; final tuning and analysis, E.R.; writing—original draft preparation, V.V.; writing—review and
editing, V.V., E.R. and A.S.; supervision, A.S.; funding acquisition, A.S. All authors contributed to and approved
the written manuscript.

Funding: This work has been partly funded by the EU project CargoANTs FP7-SST-2013-605598, the Spanish
MINECO projects DPI2016-78957-R (AEI/FEDER EU) and Unidad de Excelencia Maria de Maeztu 2016
(MDM-2016-0656).

Acknowledgments: The authors want to thank the help of John Vissers and Maurice Kwakkernaat from TNO
(The Netherlands).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronyms

DATMO Detecting and Tracking of Moving Objects
LRF Laser RangeFinder
AGV Autonomous Guided Vehicle
MHT Multiple-Hypotheses Tracking
ACT Automated Container Terminal
FLIRT Fast Laser Interest Region Transform
SIFT Scale-invariant feature transform
SURF Speeded-Up Robust Features
MDP Markov Decision Process
KF Kalman Filter
JPDAF Joint Probabilistic Data Association Filtering
MH-KF Multiple-Hypothesis Tracking based on Kalman Filters
PDBS Point-Distance-Based Segmentation
PCA Principal Component Analysis
FOV Field of View

Variables

Sct Laser Scan in time t
ri Range measurement
αi Bearing angle
S Set of point on a scan
k Number of scans buffered
·veh Frame referred to the vehicle
`1 ; `2 Absolute/Euclidean Distance
Th(·) Threshold
objj Observed Object
J Set of segmented objects
re fact Current reference frame of an object
wth ; lth Object’s width/length
ϕ Object’s orientation regarding the longitudinal axis
np Number of laser points in an object
L Set of extracted lines in an object
pt(·) Laser Point in Euclidean coordinates
ε Regression error of the line
~θ Director vector for the line
np Number of laser points of and object
C Set of extracted corners in an object
ρ Corner’s orientation
γ Corner’s aperture

Sensors 2019, 19, 107 23 of 25

P Perimeter
A Area
Tg Tracked Dynamic Target
Z Dynamic observations
Mt Set of dynamic detections at time t
x Tracked Targets
N Set of Targets tracked at time t
H Measurement matrix
x̄ Propagation of the target state
P̄ Covariance matrix of the propagated target
R Covariance matrix of the detection
η Target association threshold
Pi

t Probability of the actual hypothesis
β f al Poisson probability distribution for false alarms
βnew Poisson probability distribution for new targets
N f al Number of detections associated with false alarms
Nnew Number of detections associated with new targets
Pdet Probability of detection
Ndet Number of detections associated with existing targets
NTGT Number of the existing targets
Ndetector(Zm −Hx̄, B) Gaussian probability distribution of the detections for the detector
Pnc Probability distribution for the not confirmed targets
Nnc Number of times that the target has a detection associated with it
Ph Probability distribution to hold a dynamic target
Nna Number of targets without dynamic detection associated
−→
V obj Object velocity
−→
V veh ;

−→
W veh Ego vehicle linear/angular velocity

−→
d Distance between ego vehicle and tracked object

λ Weight controlling the rise of confirmation probability

References

1. Carlo, H.J.; Vis, I.F.; Roodbergen, K.J. Transport operations in container terminals: Literature overview,
trends, research directions and classification scheme. Eur. J. Oper. Res. 2014, 236, 1–13. [CrossRef]

2. UNCTAD. Review of Maritime Transport 2017; United Nations: New York, NY, USA, 2017;
ISBN 978-92-1-112922-9.

3. Vis, I.F.A. Survey of research in the design and control of automated guided vehicle systems. Eur. J.
Oper. Res. 2006, 170, 677–709. [CrossRef]

4. Fazlollahtabar, H.; Saidi-Mehrabad, M. Methodologies to optimize automated guided vehicle scheduling
and routing problems: A review study. J. Intell. Robot. Syst. 2015, 77, 525–545. [CrossRef]

5. Wender, S.; Dietmayer, K. 3D vehicle detection using a laser scanner and a video camera. Intell. Transp. Syst.
2008, 2, 105–112. [CrossRef]

6. Vivet, D.; Checchin, P.; Chapuis, R.; Faure, P.; Rouveure, R.; Monod, M.O. A mobile ground-based radar
sensor for detection and tracking of moving objects. Eurasip J. Adv. Signal Process. 2012, 1–13. [CrossRef]

7. Chavez-Garcia, R.O.; Aycard, O. Multiple Sensor Fusion and Classification for Moving Object Detection
and Tracking. IEEE Trans. Intell. Trans. Syst. 2016, 17, 525–534. [CrossRef]

8. Vaquero, V.; del Pino, I.; Moreno-Noguer, F.; Solà, J.; Sanfeliu, A.; Andrade-Cetto, J. Deconvolutional
networks for point-cloud vehicle detection and tracking in driving scenarios. In Proceedings of the 2017
European Conference on Mobile Robots (ECMR), Paris, France, 6–8 September 2017.

9. Li, B. 3d fully convolutional network for vehicle detection in point cloud. In Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1513–1518.

http://dx.doi.org/10.1016/j.ejor.2013.11.023
http://dx.doi.org/10.1016/j.ejor.2004.09.020
http://dx.doi.org/10.1007/s10846-013-0003-8
http://dx.doi.org/10.1049/iet-its:20070031
http://dx.doi.org/10.1186/1687-6180-2012-45
http://dx.doi.org/10.1109/TITS.2015.2479925

Sensors 2019, 19, 107 24 of 25

10. Vaquero, V.; Sanfeliu, A.; Moreno-Noguer, F. Deep Lidar CNN to Understand the Dynamics of Moving
Vehicles. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018.

11. Luo, W.; Yang, B.; Urtasun, R. Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion
Forecasting with a Single Convolutional Net. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 3569–3577.

12. Vaquero, V.; Repiso, E.; Sanfeliu, A.; Vissers, J.; Kwakkernaat, M. Low Cost, Robust and Real Time System
for Detecting and Tracking Moving Objects to Automate Cargo Handling in Port Terminals. In Robot 2015:
Second Iberian Robotics Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 491–502.

13. Mendes, A.; Bento, L.C.; Nunes, U. Multi-target detection and tracking with a laser scanner. In Proceedings
of the 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004; pp. 796–801.

14. Mertz, C.; Navarro-Serment, L.E.; MacLachlan, R.; Rybski, P.; Steinfeld, A.; Suppe, A.; Urmson, C.;
Vandapel, N.; Hebert, M.; Thorpe, C.; et al. Moving object detection with laser scanners. J. Field Robot.
2013, 30, 17–43. [CrossRef]

15. Wang, D.Z.; Posner, I.; Newman, P. Model-free detection and tracking of dynamic objects with 2D lidar.
Int. J. Robot. Res. 2015, 7, 1039–1063. [CrossRef]

16. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.
[CrossRef]

17. Dellaert, F.; Thorpe, C.E. Robust car tracking using Kalman filtering and Bayesian templates. In Proceedings
of the Intelligent Transportation Systems Conference, Boston, MA, USA, 9–12 November 1997.

18. Ess, A.; Leibe, B.; Schindler, K.; van Gool, L. Moving obstacle detection in highly dynamic scenes.
In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17
May 2009; pp. 56–63. [CrossRef]

19. Zhao, H.; Shao, X.; Katabira, K.; Shibasaki, R. Joint tracking and classification of moving objects
at intersection using a single-row laser range scanner. In Proceedings of the 2006 IEEE Intelligent
Transportation Systems Conference, Toronto, ON, Canada, 17–20 September 2006; pp. 287–294.

20. Nguyen, V.; Martinelli, A.; Tomatis, N.; Siegwart, R. A comparison of line extraction algorithms using 2D
laser rangefinder for indoor mobile robotics. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 1929–1934.

21. Diosi, A.; Kleeman, L. Fast laser scan matching using polar coordinates. Int. J. Robot. Res. 2007,
26, 1125–1153. [CrossRef]

22. Premebida, C.; Nunes, U. Segmentation and geometric primitives extraction from 2d laser range data for
mobile robot applications. Robotica 2005, 2005, 17–25.

23. Tipaldi, G.D.; Braun, M.; Arras, K.O. FLIRT: Interest regions for 2D range data with applications to robot
navigation. Exp. Robot. 2014, 79, 695–710.

24. Arras, K.O.; Mozos, Ó.M.; Burgard, W. Using boosted features for the detection of people in 2d range
data. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; pp. 3402–3407.

25. Arras, K.O.; Grzonka, S.; Luber, M.; Burgard, W. Efficient people tracking in laser range data using
a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In Proceedings of the 2008 IEEE
International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [CrossRef]

26. Petrovskaya, A.; Thrun, S. Model based vehicle detection and tracking for autonomous urban driving.
Auton. Robots 2009, 26, 123–139. [CrossRef]

27. Rangesh, A.; Trivedi, M.M. No blind spots: Full-surround multi-object tracking for autonomous vehicles
using cameras & LiDARs. arXiv 2018, arXiv:1802.08755.

28. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv. 2006, 38, 13. [CrossRef]
29. Kitagawa, G. Non-Gaussian state—Space modeling of nonstationary time series. J. Am. Stat. Assoc. 1987,

82, 1032–1041.
30. Reid, D.B. An algorithm for tracking multiple targets. Trans. Autom. Control 1979, 24, 843–854. [CrossRef]
31. Cox, I.J. A review of statistical data association techniques for motion correspondence. Int. J. Comput. Vis.

1993, 10, 53–66. [CrossRef]
32. Castanedo, F. A review of data fusion techniques. Sci. World J. 2013, 2013, 704504. [CrossRef]

http://dx.doi.org/10.1002/rob.21430
http://dx.doi.org/10.1177/0278364914562237
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/ROBOT.2009.5152884
http://dx.doi.org/10.1177/0278364907082042
http://dx.doi.org/10.1109/ROBOT.2008.4543447
http://dx.doi.org/10.1007/s10514-009-9115-1
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1109/TAC.1979.1102177
http://dx.doi.org/10.1007/BF01440847
http://dx.doi.org/10.1155/2013/704504

Sensors 2019, 19, 107 25 of 25

33. Kim, D.; Jo, K.; Lee, M.; Sunwoo, M. L-Shape Model Switching-Based Precise Motion Tracking of Moving
Vehicles Using Laser Scanners. Trans. Intell. Trans. Syst. 2018, 19, 598–612. [CrossRef]

34. Ferrer, G.; Sanfeliu, A. Bayesian human motion intentionality prediction in urban environments.
Pattern Recognit. Lett. 2014, 44, 134–140. [CrossRef]

35. Corominas-Murtra, A.; Pagés, J.; Pfeiffer, S. Multi-Target & Multi-Detector People Tracker for Mobile
Robots. In Proceedings of the 2015 European Conference on Mobile Robots (ECMR), Lincoln, UK,
2–4 September 2015.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TITS.2017.2771820
http://dx.doi.org/10.1016/j.patrec.2013.08.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	DATMO in Port Environments
	Detecting Moving Objects with Single-Layer Laser Scanners
	Input Data Pre-Processing
	Scans Segmentation
	Geometric Primitive Extraction
	Fast Object Matching and Reference Propagation

	Tracking Dynamic Objects in Port Environments
	Multiple-Hypothesis Tracking
	Filtering Static Objects by Velocity
	Confirmation, Hold and Deletion of Moving Object Tracks
	Track Grouping

	Simulations and Experiments
	Simulated Environment
	Scene 1: Two Trucks Crossing
	Scene 2: AGV Turning Left at Intersection
	Scene 3: AGV Turns Right at Intersection to Join Trucks Platoon
	Scene 4: AGV Witnesses a Truck Overtaking Another Truck

	Real Environment Experiment

	Conclusions
	References

