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Abstract: One of the relevant information provided by the prognostics and health management
algorithms is the estimation of the Remaining Useful Life (RUL). The prediction of the expected
RUL is very useful to decrease maintenance cost, operational downtime and safety hazards. This
paper proposes a new strategy of health-aware Model Predictive Control (MPC) for a Linear
Parameter Varying (LPV) system that includes as an additional goal extending the system RUL
via their estimation using reliability tools. In this approach, the RUL maximization is included
in the objective function of the LPV-MPC controller. The RUL is included in the MPC model
as an extra parameter varying equation that considers the control action as scheduling variable.
The proposed control approach allows the controller to accommodate to the parameter changes.
Through computing an estimation of the state variables during prediction, the MPC model can
be modified to the estimated state evolution at each time instant. Moreover, for solving the
optimization problem by using a series of Quadratic Programs (QP) in each time instant, a new
iterative approach is exhibited, which improves the computational efficiency. A pasteurization
plant control system is used as a case study to illustrate the performance of the proposed

approach.
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1. INTRODUCTION

During the last decade, the improvement in safety, per-
formance, availability, and effectiveness of industrial sys-
tems has been achieved through prognostics and health
management (PHM) paradigm (7). PHM is a system-
atic strategy that is utilized to assess the reliability of
a system in its actual life-cycle conditions, predict fail-
ure progression, and decrease damage via control actions.
There are two roles in PHM, specifically, ” prognostics”
and ” health management’ (7). Prognostic is now identified
as a principal process in maintenance strategies based on
the remaining useful life of the equipment, which makes it
possible to avoid critical damages and reducing costs. The
Remaining Useful Life (RUL) is the useful life that remains
on an asset at a particular time of operation. Its estimation
is fundamental to condition-based maintenance, health
management and prognostics. RUL is generally random
and unknown, and as such it must be estimated from avail-
able sources of information such as the information ob-
tained in condition and health monitoring (?). Therefore,
it can be noted that the reliability estimation of equipment
as well as its RUL prediction is necessary to establish if
the mission goals can be achieved. And, additionally, it
is important to assist in online decision-making activities
such as fault mitigation, mission replanning, among other.

Since the prediction of RUL is critical to operations and
decision making, it is imperative that the RUL is deter-
mined accurately (?).

In recent years, the problem of actuator lifetime and sys-
tem reliability and RUL prediction in service has received
increasing attention. ? incorporated the actuator lifetime
as a controlled parameter to reduce maintenance cost. The
control of actuator lifetime is achieved by implementing a
linear quadratic optimal controller. ? proposed a method
to estimate RUL of a bearing based on its defect growth
while, the fatigue crack propagation is then compared
to the estimation from the diagnostic model. On the
other hand, Model Predictive Control (MPC) has been
recently proved as an adequate strategy for implement-
ing health-aware control schemes because the MPC can
predict the appropriate control actions to achieve optimal
performance according to physical constraints and multi-
objective cost functions. ? designed a MPC techniques
that employed to distribute the loads among redundant
actuators while imposing constraints to ensure that the
accumulated actuator degradation will not reach an unsafe
level at the end of the mission.

The reliability is an exponential form of control input
(?). On the other hand, the expected RUL depends on
the reliability evaluation assessment. Consequently, the



RUL has an exponential relation with the control input
that induces a nonlinear behavior. One major drawback
of the previous approaches to reliability-based MPC is
that they do not consider this issue inside the MPC loop.
One way to deal with non-linear MPC is to represent
the process behavior by means Linear Parameter Varying
(LPV) models (7). LPV models are a class of linear models
whose state-space matrices depend on a set of time-varying
parameters. The main advantage of LPV models is that
the system nonlinearities are embedded in the varying
parameters, which make the nonlinear system become a
linear-like system with varying parameters (?).

This paper presents a health-aware LPV-MPC controller
on the basis of PHM information and the RUL integra-
tion into the control algorithm using a LPV framework.
The non-linear system is modelled using a LPV model
where the scheduling parameters at each time instant
are updated with the state vector value at that time.
Thus, the control inputs are generated to fulfill the control
objectives/constraints but at the same time to extend
the reliability and lifespan of the system components.
The main contribution of this paper consists in designing
an improved health-aware LPV-MPC strategy in order
to formulate an optimization problem that exploits the
functional dependency of scheduling variables and state
vector to develop a prediction strategy with numerically
attractive solution. This attractive solution is iteratively
forced to an accurate solution, thereby avoiding the use of
non-linear optimization. Finally, the proposed algorithm
for health-aware LPV-MPC strategy based on the quasi-
LPV is tested in a simulation of the small-scale pasteur-
ization plant that presents nonlinear behavior.

The remainder of the paper is organized as follows. In
Section 2, the formulation of MPC based on quasi-LPV
and iterative prediction scheme are introduced. Then, the
LPV-MPC approach for EMPC is presented in Section
2.2. The health-aware controller scheme based on an
LPV-MPC algorithm and the RUL integration into the
control algorithm are presented in Section 3. In Section 4,
results of applying the proposed control strategy to the
pasteurization system as a case study are summarized.
Finally,in Section , the conclusion of this work are drawn
and some research lines for future work are proposed.

2. LPV-MPC APPROACH
2.1 Problem formulation

Lets consider that the non-linear system to be controlled
can be represent by the following discrete-time LPV sys-
tems representation
x(k+1) = A(0(k))z(k) + B(O(k))u(k), (1a)
y(k) = C(0(k))x(k), (1b)
where the discrete-time variable is denoted by k € Z>q.
x(k) € R™ is the state vector, u(k) € R"™ is the vector
of manipulated variables, y(k) € R™v is the system output
and 0(k) € ©Vk > 0 is the system vector of scheduling
parameters, where © € R" is a given compact set. This
means that A and B are bounded on ©. Throughout
this paper it is assumed that (A(#), B(6)) is stabilizable
Vo € O.

The MPC controller design is based on minimizing the
finite horizon cost

N, Np—1
T(k) =D (@8 lpws + D Mulilk)lpws),  (2)
i=0 =0

where NN, is the prediction horizon. Furthermore, the
subindex p denotes the norm used (for this paper, the
2-norm) and the weighting matrices w; € R™*"= and
wg € R™ XM are used to establish the priority of the
different control objectives. The value of 2(0|k) and u(0|k—
1) are known at each time instant, and the optimization
problem

min Ju (1) (38)
subject to:
x(i + 1|k) = A(0(i|k))x(ilk) + B(0(i|k))u(ilk),  (3b)

0(ilk) = f(x(ilk), u(ilk)), (3¢)
u(k), Ugy1, s Uk N,—1 €U (3d)
x(k),ukJrl,...,kaer eX (36)
0(ilk) = 6(il0), (3f)
z(0[k) = z(k), (3g

is solved online for all i€ Zp n, 1), where u(k) =
[u(k),u(k+1),...,u(k+ N, —1)]T is the decision sequence
of controlled inputs. X and U define the set of acceptable
states and inputs and it is assumed f(X x U) C ©. The
control law is applied in a receding horizon manner, that
is, at time k control input u(0|k) is applied, whilst at time
k+1 the problem min J(k+1) is solved for u(k+1) then the
newly computed control input u(0]k 4 1) is applied. Also,
z(i|k) is the predicted state at time 4, with ¢ = 0, ..., N},
obtained by starting from the state x(0[k) = x(k).

The LPV model can not be evaluated before solving
the optimization problem (3), because the future state
sequence are not known. Indeed z(i|k) depend not only
on the future control inputs u(k), but also on the future
scheduling parameters 6(k), where for a general LPV
system are not assumed to be known a priori but only
to be measurable online at current time k.

2.2 Proposed solution

In this section, a new MPC scheme is presented in order
to solve the optimization problem of a LPV system with
varying parameters into the prediction horizon. In fact,
the structure (3a) is linear but because of the (3c), the
problem becomes nonlinear. Actually, this issue makes the
problem (3) not easy to solve. The idea is to find a solution
to the problem (3) by solving an online optimization
problem as a QP problem. In this paper, the solution
for this problem is to transform the exact LPV-MPC to
an approximation linear LPV-MPC. This approximation

is based on using an estimation of  instead of using 6.
It means that the scheduling variables in the prediction
horizon are estimated and used to update the matrices
of the model used by the MPC controller. In fact, for
solving this problem, the sequence of the control input
is used to modify to system matrices of the model used
in the prediction horizon. Thus, from the optimal control
sequence u(k), it can be obtained the sequence of states
and predicted parameters
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(4)
Therefore, with slight abuse of notation f can be defined
as: O(k) = f([zT(k) xT(k)],u(k)). The vector O(k)
includes parameters from time k to k£ 4+ N, — 1 whilst the
state prediction is accomplished for time k + 1 to k + IV,,.

Hence, by using the definitions (4), the predicted states
can be simply formulated as follows

x(k) = A(O(K))z(k) + B(O(K))u(k), ()

where A € R"=*"= and B € R"=*™x are given by (6) and
(7). By using (5) and augmented block diagonal weighting
matrices W = diagy, (w1) and Wy = diagn, (w2), the cost
function (2) can be rewritten in vector form as
Np—1
J(k) =Y |la(i+1]k)—zpes(i+1)
i=0

poiy T ||u(i+1|k)”p,ﬁ)2ﬂ
(8)

Since the predicted states ©(k) in (5) are linear in control
inputs u(k), the optimization problem can be solved as
a QP problem, that is significantly further easier than
solving a nonlinear optimization problem. To simplify the
discussion the next assumption is presented. This idea
leads to the following iterative approach at each discrete
time instant k:

e In the first iteration, the problem (3) is solved as a
linear problem due to the quasi-LPV model (1) is re-
placed by the LTT model that is obtained considering
0(0]1) ~ 6(1]1) ~ 0(2|l) ~ ... =~ O(N, — 1|l) along the
prediction horizon N,,.

e The sequence of the scheduling variables O(k) is
repetitively steered to its optimal amount ©*(k) =
f(x*(k),u*(k)), whence x*(k) and u*(k) refer the
input and state sequences related to the optimal
solution.

e The optimal amount ©*(k) obtained by solving the
optimization problem in iteration step ¢ when ©(k)
replaced by ©;(k), and by creating a new premise
sequence from the result of the optimal state sequence
5(1(1{3) as @i+1(k’) = f(f(l(k),ul(k))

e The premise variable for the next iteration Og(k + 1)
is determined when using x;(k) and u;(k), i.e., Og(k+
1) = f(xi(k), u;(k)).

3. HEALTH-AWARE LPV-MPC FOR PRESERVING
THE RUL

3.1 Reliability assessment

One of the motivation in this work is to integrate the
information about actuator health in the controller design.
In this way, the life time of the system will be extended.
The life time will be estimated by means of the RUL
computed using an approach based on the system reliabil-
ity. Reliability is the ability of a system or component to
perform its expected functions and can be formally defined
as follows.

Definition 3.1. (7). Reliability is characterized as the
probability that components, units, types of equipment
and systems will perform their predesignated function for
a certain period of time under some operating conditions
and specific environments.

More precisely, it is the probability of success in perform-
ing a task or reaching a desired property in the process,
based on suitable of components. Mathematically, reliabil-
ity R(k) is the probability that a system will be successful
in the interval from time 0 to time k:

R(k)=P(T>k), k>0 9)

where T is a nonnegative random variable which represents
time-to-failure or failure time.

The reliability of a system with the j-th component can
be assessed by using the exponential function

E
R;(k) = exp( —/ Aj(s) ds), i=12,..,m (10)
0

where \;(k) is the failure rate and the form of R;(k)
displayed on Fig 1. A realistic health measurement should
allows to estimate the actuator degradation according to
the variation of the operating conditions. Certainly, com-
ponent’s lifetime changes according to control strategies
and/or system’s operating points. Definitely, engineering
systems are designed to support varying amounts of loads
where loads can be measured in terms of usage frequency
or busy period (?). Results from literature have established
that the function load strongly affects the component
failure rate. Hence, it is important to consider the load
versus failure rate relationship when presenting system
reliability evaluation. A significant amount of literature
has been produced to include the impact of the load level in
the reliability estimation. In the considered study, failure
rates are obtained from actuators under different levels of
load depending on the applied control input. One of the
most used relations between is based on assuming that
actuator fault rates changes with the load through the
following exponential law (?):

Aj(k) = /\?emp(ﬁjuj(k)>a (11)

j=12,....m
where A) represents the baseline failure rate (nominal
failure rate) and w;(k) is the control action at time & for

the j-th actuator. §; is a constant parameter that depends
on the actuator characteristics.

Fig. 1. Behaviour of the reliability.
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3.2 RUL computation via reliability assessment

Once the reliability function is calculated for each compo-
nent, a method to evaluate Rul function is introduced.

Proposition 3.1. Recalling that Rul function is defined
as the conditional expected time to failure given the current
working time (7?):

Rul(k) = E(T — k|T > k), (12)
the expected Rul is given by
Nk
Rul(k) = VA (13)
J

in case of using the reliability function (9).

Proof. According to the Rul function definition (12) and
considering reliability function (9), the expected Rul can
be computed as follows

oo

Rul(k) = /000 R(k + z|k)dz = /k R(z|k)dz,

Then,
o z
Rul(k) = / emp( —/ Aj(s) ds) dz, t<z<oo
k 0

= /too exp(—X;(z))dz,

_ _exp(—A;2) *
Aj . ’
. exp(—A;(b)) exp(—A;(k))
- bhﬁnolo < B )‘j (7 )\j ))7
_ enp(=N ()
Aj

Actually, in the useful period of life, the component can
be characterized at a given time k by a baseline remaining
useful life measure Rul(k). In the following, Rul(k) will
be assigned to the remaining useful life of system that is
obtained under nominal operating conditions such as:

exp(—AJk)

—
Aj

Thus, the remaining useful life Rul(k+1) can be estimated

from the baseline of the remaining useful life Rul(k) as
follows:

Rul(k) = (14)

exp(—A;k)

Rul(k + 1) = Rul(k) iy
J

(15)

Using the reliability function (10) and the effect of the
control input (11), the Rul function is obtained as a
exponential function of A; that depends on the control
input u; (k).

3.8 Health-aware LPV-MPC

In order to integrate the Rul in the linear MPC model as
an additional state variable, a transformation is required
that allows to compute Rul in a linear-like form. The
proposed transformation is based on using the logarithm
of (13)

log(Rul(k + 1)) = log (Rul(k)W), (16)
that leads to
log(Rul(k + 1)) = log (Rul(k)) — Ajk —log(};).  (17)

Then, by renaming (17), the remaining useful life model
of each actuator is obtained as

hj(k +1) = hj(k) = §(u; (k) — G(k),

where h; is the logarithm of the remaining useful life, (;
is the logarithm of A; at each time instant k& and &(u;(k))
is function of control action of each actuator u;(k), with
7=1,2,....m as

£(uy () = Neap(Bu;(h))

(18)

ji=1,2,..,m. (19)
Using this approach, the MPC model is augmented with
(18) that is a LPV model that has as scheduling variable
the control action wu;(k) associated to teach actuator.
Moreover, a new additional objective based on the new
state variable h is included into the LPV-MPC cost func-
tion (2) that aims to maximize the Rul of the system.
Thus, the problem formulation of the health-aware con-
troller is similar to (3) but including Rul objective and
model:

Np—1
min D M2+ 1k) = 2rep (i + Dllpay + (i + 1E)|p,a,
" i=0

— 1P + 1K) |p,ws
(20a)

subject to:



X(k) = A(©(k))x(k) + B(O(k))u(k)
hi(k+1) = hj (k) = £(u;(k)) = ¢(k), j=1,---,m

u(k)7uk+1; ooy U4+ N, —1 el
(), Up g1y s Thyn,—1 €X
z(0[k) = z(k),

for all 4 € Zg,n,—1]- The health-aware objective with the
corresponding weight ws is appended in the LPV-MPC
cost function to maximize the Rul. According to Section
3.2, there is a direct relation between the reliability and
Rul of the system, hence by increasing the Rul in (20), the
reliability of each system component is preserved. More-
over, according to the nonlinearity term of the Rul in (20¢)
and the dependence on the control action that is not known
in the predication horizon, the Rul for next time instant
hi+1(k) into the predication horizon can be calculated from
the previous control action, h;11(k) = f(u;(k)), similarly
to what is proposed for the LPV parameters in Section
2.2.

4. APPLICATION TO THE PASTEURIZATION
PLANT

4.1 Case study description

The pasteurization process considered is the utility-scale
plant PCT-23MKII, manufactured by Armfield (UK) (?).
This laboratory system is the small version (1.2m, 0.6m,
0.6m) of real-time industrial pasteurization procedure.
The system represents an industrial High-Temperature
Short-Time (HTST) process. In this process, the goal
is to heat and maintain the product at a prearranged
temperature for the minimum time. This procedure is
accomplished by flowing the heated fluid through a holding
tube (?). During the pasteurization process, the fluid is
pumped at a prearranged flow speed from storage tank to
the heat exchanger. The heat is transported to the product
inward the first section of the heat exchanger, which is
named regenerator. By applying lost energy of the pas-
teurized product, the raw product is heated to an average
temperature. Later, in the second section, while utilizing
a hot-water flow Fj, arising from a closed circuit with
a heater, the produce is heated from that intermediate
temperature to the complete pasteurization temperature.
The Tp.st temperature is related to the output of the
holding tube to monitor the temperature of the product
after the pasteurization procedure. Eventually, the prod-
uct is reduced temperature in the third section of the heat
exchanger, where the resting heat is recuperated to the
incoming produce.

Figure 3 includes a block diagram of the pasteurization
simulation model, containing the feedback loops corre-
sponding to the hot-water flow and power of the hat-water
tank. For the modeling purpose, the whole pasteurization
system can be classified into three subsystems that are
a heat exchanger, holding tube and hot water tank. To
model the whole pasteurization plant, models of these sub-
systems are obtained and expressed in terms of behavioral
equations of each subsystem. The mathematical models of
the subsystems are collected from the experimental data
reported in (?). Accordingly, models obtained as transfer
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functions are suitably stated by their equivalent control-
lable realizations in state space, with varying parameters
according to the hot-water flow, F}j, as a state of the
system and the hot/cold-water flow ratio, (R = Fj/F.)
that is a function of hot water flow F}j. Therefore, the
state-space LPV model of the pasteurization plant can be
exist as (1), where the state vector including hot-water
flow, F'h, hot-water tank temperature, T,,, and pasteur-
ization temperature, Tpqs; input system is the vector of
manipulated variables that includes the electrical power of
the heater P and the pump rotational speed N. Finally,
the output is the vector of controlled variables that include
the temperature of the hot water tank and pasteurization
temperature, denoted by T,,, and T}qs:, respectively. The
state-space matrix A, input matrix B, disturbance matrix
D and output matrix C of the model in (1) can be repre-
sented as (21), while 7 and K are time constant and static
gain of the transfer functions regarding the subsystems,
respectively. The indices of 7 and K are linked to the
transfer functions for each subsystem of the complete pas-
teurization plant (see Figure3). The pasteurization system
has four actuators that includes the electrical actuator,
pump actuator and two actuators related to the valves of
system.

The most important objective of the pasteurization pro-
cedure is to ensure that the pasteurization temperature
is attained and preserved as close as to the set-point
amount for a pre-established time. At the same time, the
maximizing RUL of actuator that is a reason to raise
the reliability of the actuator. For this purpose, the input
temperature of hot-water tank Tj,, and the cold temper-
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Fig. 3. Control block diagram.
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ature T;. are maintained constant at 40°C' and 30°C, re-
spectively. Furthermore, the power of the electrical heater
P and the speed of pump can take values in the range
P € [0,1.5]kW and N € [10,80]m?/s, respectively. The
states are constrained to be [0,0,0,0,0,0,0]T < z; <
[120, 120, 120, 120, 120, 800, 120] . The states of the model
is arranged by the initial state zo = [28,0,0,0,0,155,22] "
and the prediction horizon has been selected as N, = 120.

4.2 Results and Discussion

All tests were done using the same weights, initial condi-
tion and perdition horizon as mentioned above. All sim-
ulation and computations have been carried out on an i7
2.40-GHz Intel core processor with 12 GB of RAM running
MATLAB R2016b, and the optimization problem is solved
by using the linear and nonlinear programming technique
operating YALMIP toolbox (?).

Figure 4 shows the evaluation of the output tempera-
ture results that obtained under the new approach of
the health-aware LPV-MPC based on the LPV system
and a state-of-the-art health-aware NMPC algorithm that
included in the OPTI toolbox with the RUL objective and
hard constraints in the input and state. In Fig 4, it can
be seen that the pasteurization temperature, Tpqs and
hot-water tank temperature, T, from proposed approach
are tracked the predetermined appropriate setpoint same
as the behavior of controlled temperatures of the health-
aware NMPC algorithm. Figure 5 provide the power of the
electrical heater and pump control action of the proposed
approach with the RUL objective. The results of the RUL
prediction that obtained from the health-aware LPV-MPC
with and without the health-aware objective are presented
in Fig 6. The single most striking observation to emerge
from the data comparison is differences between the RUL
prediction.

According to the results, it can be observed that the per-
formance results of proposed the new approach of health-
aware LPV-MPC is almost the same as the health-aware
NMPC. Moreover, results form Fig 6 show that the RUL
is maximized about 21.16% in the LPV-MPC controller
with the RUL objective. Due to a strong relationship
between RUL and reliability has been reported in the
literature, when the controller can be increased the RUL
consequently, the reliability of actuator become magnified.

5. CONCLUSION

This paper has proposed a health-aware MPC strategy
in the LPV framework based on the maximization of the
Rul of the system components. The Rul is obtained as a
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Fig. 4. Evolution of controlled temperature of health-aware
NMPC strategy and the proposed algorithm.
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Fig. 5. Evolution of the control action of health-aware
LPV-MPC.

function of control action via the reliability assessment.
The model of the RUL is obtained as a function of control
action with a nonlinear term that is transformed in a
linear-like form via the LPV framework. Then, the maxi-
mizing the Rul has achieved being include in the objective
function and as an additional state in the MPC model. The
new health-aware LPV-MPC approach is efficiently solved
iteratively by a series of QP problems that uses an up-
date MPC model updated via the scheduling parameters
calculated at each time instant. The model prediction in
the MPC horizon is obtained using the previous sequence
of scheduling variables. The results obtained show that
the Rul of the components is maximized with the MPC
controller and the proposed approach is attractive and less
computationally demanding that NMPC implementation
that implies non-linear programming algorithms. Finally,
the pasteurization process was used to assess the proposed
health aware LPV-MPC scheme for extending the Rul.
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