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Llorens Artigas 4-6, 08028 Barcelona, Spain

fthomas@iri.upc.edu

ABSTRACT. A real orthogonal matrix representing a rotation in E
4 can be decomposed into

the commutative product of a left-isoclinic and a right-isoclinic rotation matrix. The double

quaternion representation of rotations in E
4 follows directly from this decomposition. In this

paper, it is shown how this decomposition can be performed without divisions. This avoids the

common numerical issues attributed to the computation of quaternions from rotation matrices.

The map from the 4×4 rotation matrices to the set of double unit quaternions is a 2-to-1

covering map. Thus, this map cannot be smoothly inverted. As a consequence, it is erroneously

assumed that all inversions should necessarily contain singularities that arise in the form of

quotients where the divisor can be arbitrarily small. This misconception is herein clarified.

When particularized to three dimensions, it is shown how the resulting formulation outper-

forms, from the numerical point of view, the celebrated Shepperd’s method.

1. INTRODUCTION

Any rotation in E
4 can be seen as the composition of two rotations in a pair of orthogonal

two-dimensional subspaces [1]. When the module of the rotated angles in these two subspaces

are equal, the rotation is said to be isoclinic. It can be proved that any rotation in E
4 can be

factored into the commutative composition of two isoclinic rotations. Cayley realized this fact

when studying the double quaternion representation of rotations in E
4 [2]. The development of

the first effective procedure for computing this factorization is attributed in [3] to Van Elfrinkhof

[4]. Since this work, written in Dutch, remained unnoticed, other sources (see, for example,

[5]) attribute it to Rosen [6]. The methods of Elfrinkhof and Rosen are equivalent (see [3, 7]

for a detailed explanation). Although formally correct, these methods were not designed taking

into account numerical issues. In this paper, we introduce a slight variation on them which

leads to division-free closed formulas for the elements of the double quaternion corresponding

to a rotation matrix in E
4. This has interesting consequences when particularized to rotations

in E
3. We show how the resulting formulation outperforms, from the numerical point of view,

the celebrated Shepperd’s method widely used in aerial navigation, computer graphics, and

robotics.

This paper is organized as follows. Section 2 summarizes the basic facts about rotations in

E
4 that are used in Section 3 to derive a set of division-free formulas for obtaining the double

quaternion representation of a rotation in E
4. Then, in Section 4, this result is particularized
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to rotations in E
3. Section 5 briefly reviews Shepperd’s method, the standard method used to

compute the quaternion corresponding to a 3×3 rotation matrix. Section 6 compares the new

method and Shepperd’s method from the numerical point of view using a statistical analysis.

Section 7 summarizes the main points.

2. ROTATIONS IN E
4

The elements of the Lie group of rotations in four-dimensional space, SO(4), can be either

simple or double rotations. Simple rotations have an invariant plane of points, while double

rotations have a single invariant point only, the center of rotation. In addition, double rotations

present at least a couple of invariant planes that are orthogonal. Then, a rotation in E
4 has two

angles of rotation, α1 and α2, one for each plane of rotation, through which points in the planes

rotate. All points not in the planes rotate through an angle between α1 and α2. See [8] for

details on the geometric interpretation of rotations in four dimensions.

Isoclinic rotations are a particular case of double rotations in which there are infinitely many

invariant orthogonal planes, with same rotation angles, that is, α1 = ±α2. These rotations can

be left-isoclinic, when the rotation in both planes is the same (α1 =α2), or right-isoclinic, when

the rotations in both planes have opposite signs (α1 =−α2).

Isoclinic rotation have several important properties: (a) the composition of two right- (left-)

isoclinic rotations is a right- (left-) isoclinic rotation; (b) the composition of a right- and a

left-isoclinic rotation is commutative; and (c) any 4D rotation can be decomposed into the

composition of a right- and a left-isoclinic rotations.

Right- and a left-isoclinic rotations form maximal and normal subgroups. Denote S3
R as the

subgroups of right-isoclinic rotations, and S3
R the subgroup of left-isoclinic rotations. The direct

product S3
L×S3

R is a double cover of the group SO(4), as four-dimensional rotations can be seen

as the composition of rotations of these two subgroups, and there are two expressions for each

element of the group.

The left- and right-isoclinic rotations can be represented by rotation matrices of the form

(1) RL =







l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0






,

and

(2) RR =







r0 −r3 r2 r1

r3 r0 −r1 r2

−r2 r1 r0 r3

−r1 −r2 −r3 r0






,

respectively, where

l = σ(l0, l1, l2, l3),(3)

r = σ(r0,r1,r2,r3),(4)

directly correspond to their quaternion representation with σ =±1.

Since (1) and (2) are rotation matrices, their rows and columns are unit vectors. As a conse-

quence,

l2
0 + l2

1 + l2
2 + l2

3 = 1,(5)

r2
0 + r2

1 + r2
2 + r2

3 = 1.(6)

and the quaternions in (3) and (4) are unit quaternions.
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Without loss of generality, we have introduced some changes in the signs and indices of (1)

and (2) with respect to the notation used by Cayley [2, 5] to provide a neat connection with the

standard use of quaternions for representing rotations in three dimensions.

According to the above properties, a 4D rotation matrix, say R, can be expressed as:

(7) R = RLRR = RRRL,

where

(8) RL = l0I+ l1A1 + l2A2 + l3A3,

and

(9) RR = r0I+ r1B1 + r2B2 + r3B3,

where I stands for the 4×4 identity matrix and

A1 =







0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0






, A2 =







0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0






, A3 =







0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0






,

B1 =







0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0






, B2 =







0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0






, B3 =







0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0






.

Now, it can be verified that

(10) A2
1 = A2

2 = A2
3 = A1A2A3 =−I,

and

(11) B2
1 = B2

2 = B2
3 = B1B2B3 =−I.

Expression (10) determines all the possible products of A1, A2, and A3 resulting in

A1A2 = A3, A2A3 = A1, A3A1 = A2,

A2A1 =−A3, A3A2 =−A1, A1A3 =−A2.(12)

Likewise, all the possible products of B1, B2, and B3 can be derived from expression (11).

Moreover, it can be verified that

(13) AiB j = B jAi.

which is actually a consequence of the commutativity of left- and right-isoclinic rotations.

3. THE PROPOSED FACTORIZATION METHOD

The problem of factoring a 4D rotation matrix, say R, into the product of a right- and a left-

isoclinic rotation matrix consists in finding the values of l0, . . . , l3 and r0, . . . ,r3 that satisfy the

following matrix equation:

(14) R =







r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44






=







l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0













r0 −r3 r2 r1

r3 r0 −r1 r2

−r2 r1 r0 r3

−r1 −r2 −r3 r0






.
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To this end, let us first define the matrix of products as:

(15) P4 :=









l0
l1
l2
l3









(

r0 r1 r2 r3

)

=









l0r0 l0r1 l0r2 l0r3

l1r0 l1r1 l1r2 l1r3

l2r0 l2r1 l2r2 l2r3

l3r0 l3r1 l3r2 l3r3









.

Observe that the norm of row i of this matrix is:

(16) +
√

l2
i+1(r

2
0 + r2

1 + r2
2 + r2

3) = |li+1| .

Likewise, the norm of column i is:

(17) +
√

r2
i+1(l

2
0 + l2

1 + l2
2 + l2

3) = |ri+1| .

Now, using equation (14), it can be verified that1:

(18)

P4=
1

4







r11 + r22 + r33 + r44 −r41 + r32 − r23 + r14 −r31 − r42 + r13 + r24 r21 − r12 − r43 + r34

r41 + r32 − r23 − r14 r11 − r22 − r33 + r44 r21 + r12 + r43 + r34 r31 − r42 + r13 − r24

−r31 + r42 + r13 − r24 r21 + r12 − r43 − r34 −r11 + r22 − r33 + r44 r41 + r32 + r23 + r14

r21 − r12 + r43 − r34 r31 + r42 + r13 + r24 −r41 + r32 + r23 − r14 −r11 − r22 + r33 + r44






.

Therefore, the norms of the row and column vectors of the matrix in (18) gives us the modules

of l0, . . . , l3 and r0, . . . ,r3. To assign a consistent set of signs to them, we can take any positive

entry in the matrix given in (18), say pk,l . Then, according to (15), lk−1 and rl−1 are both

positive or negative. If we assume that they are both positive, then we have that:

(19) sign(li−1) = sign(pi,l), i ∈ {1,2,3,4}\k,

and

(20) sign(r j−1) = sign(pk, j), j ∈ {1,2,3,4}\l.

Another set of consistent signs are obtained if we assume that lk−1 and rl−1 are both negative,

thus accounting for the double covering of the space of rotations.

4. PARTICULARIZATION TO E
3

A 4×4 rotation matrix, when representing a rotation in a 3-dimensional subspace, can be ex-

pressed as:

(21) R =







r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1






.

Therefore, in this case, (18) reduces to:

(22) P3=
1

4







r11 + r22 + r33 +1 r32 − r23 r13 − r31 r21 − r12

r32 − r23 r11 − r22 − r33 +1 r21 + r12 r31 + r13

r13 − r31 r21 + r12 r22 − r11 − r33 +1 r32 + r23

r21 − r12 r31 + r13 r32 + r23 r33 − r11 − r22 +1






.

Due to the symmetry of this matrix, li = ri, i = 0, . . . ,3. As we already knew, the double

quaternion representation of rotations in E
4 reduces to a single quaternion representation in E

3.

1The expression given in [7] for this matrix is incorrect.
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Let us denote this quaternion by q = (q0,q1,q2,q3). Therefore, computing the norms of the

rows or the columns of (22), we have that:

|q0|=+
1

4

√

(r11+r22+r33 +1)2 +(r32−r23)2 +(r13−r31)2 +(r21−r12)2,(23)

|q1|=+
1

4

√

(r32−r23)2 +(r11−r22−r33 +1)2 +(r21+r12)2 +(r31+r13)2,(24)

|q2|=+
1

4

√

(r13−r31)2 +(r21+r12)2 +(r22−r11−r33 +1)2 +(r32+r23)2,(25)

|q3|=+
1

4

√

(r21−r12)2 +(r31+r13)2 +(r32+r23)2 +(r33−r11−r22+1)2.(26)

If we assume that q0 is positive, we can give a consistent set of signs to the other elements of

the quaternion by simply assigning the signs of (r32 − r23), (r13 − r31), and (r21 − r12), to q1,

q2, and q3, respectively.

5. SHEPPERD’S METHOD

Since it was first proposed in [9], Shepperd’s method remains as one of the most popular meth-

ods for computing the quaternion corresponding to a 3×3 rotation matrix. It improves on

Hughes’ method [10] via a voting scheme. In this method, there are four different formulas

for computing the quaternion as a function of the entries of the rotation matrix, all of them for-

mally equivalent. Numerically, however, these four formulas are not identical and, depending

on the rotation matrix, one of them is numerically better conditioned than the others. These

four formulas are:

(27) u1 =
1

2











(1+r11+r22+r33)
1
2

(r32−r23)/(1+r11+r22+r33)
1
2

(r13−r31)/(1+r11+r22+r33)
1
2

(r21−r12)/(1+r11+r22+r33)
1
2











,

(28) u2 =
1

2











(r32−r23)/(1+r11−r22−r33)
1
2

(1+r11−r22−r33)
1
2

(r12+r21)/(1+r11−r22−r33)
1
2

(r31+r13)/(1+r11−r22−r33)
1
2











,

(29) u3 =
1

2











(r13−r31)/(1−r11+r22−r33)
1
2

(r12+r21)/(1−r11+r22−r33)
1
2

(1−r11+r22−r33)
1
2

(r23+r32)/(1−r11+r22−r33)
1
2











,

(30) u4 =
1

2











(r21−r12)/(1−r11−r22+r33)
1
2

(r31+r13)/(1−r11−r22+r33)
1
2

(r32+r23)/(1−r11−r22+r33)
1
2

(1−r11−r22+r33)
1
2











.

When computing any of the above solutions, numerical issues arise when square rooting, or

when dividing by, very small numbers [11]. To obtain the better conditioned solution for each
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case, the ordinal number i of the largest element in the following vector is determined:

(31)









r11+r22+r33

r11

r22

r33









.

Then, the best solution, from the numerical point of view, is considered to be ui.

6. COMPARISON

To compare the performance of the derived method with Shepperd’s method, we perform a sta-

tistical analysis using single-precision floating-point arithmetics in MATLABr. We generate

106 random unit quaternions using the algorithm described in [12] (it actually permits gener-

ating uniformly distributed points in S
4). For each generated quaternion, we obtain the corre-

sponding rotation matrix using Rodrigues’ formula, and then we recover the original quaternion

using Shepperd’s and the proposed method. The error committed in both cases is evaluated as

the norm of the vector difference between the original and recovered quaternions. In general,

this is not a good way to compute the distance between two quaternions. Nevertheless, since

in our case the error is assumed to be very small, the length of the vector connecting both ori-

entations in S
4 is going to coincide with the value of the angle formed by them if seen from

the center of S4 (and this angle can be taken as a distance between any two elements of the 3D

rotation group SO(3) [13]).

TABLE 1. Error and time performances of Shepperd’s and the new method.

Quaternions Worst-case Average Standard Average Best-case

Method recovered error error deviation time time

without error ×10−7 ×10−8 ×10−8 (µs) (µs)

Shepperd’s 21.7% 1.35 3.35 4.42 14.04 11.99

New method 31.9% 1.23 2.15 3.26 83.22 74.88

The time and error performances of the two described methods are compiled in Table 1. In this

table, the first four columns refer to the error performance. The first one shows the percentage

of cases in which the original quaternion is recovered without error. The other three correspond

to the error committed in the worst-case, the average error, and the standard deviation of the

error, respectively. Finally, we have two columns with the time performance. The first column

gives the average time required to compute a quaternion from a rotation matrix; and the second

column, the time required in the best of the cases. The worst-case time is not included because it

is meaningless on a multitasking machine. These results have been obtained with a MATLABr

implementation running on an Intelr CoreTMi2 with 8 GB of RAM.

7. CONCLUSION

A singularity-free formulation for computing the double and single quaternion corresponding

to a given rotation in E
4 and E

3, respectively, has been presented. The three-dimensional

version of this formulation has been shown to numerically outperform Shepperd’s method. In

particular, if we take a quaternion at random and we compute the corresponding rotation matrix,

the probability of recovering exactly the original quaternion from this matrix using Shepperd’s

method is about 22%, while using the new method this probability is increased to 32%. As a

counterpart, the computational cost of the proposed method is about six times higher than that

of Shepperd’s, which does not seem to be a major limitation for modern computer technology.
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