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Abstract. Distance-based formulations have successfully been useddmabisure polynomials
for planar mechanisms without relying, in most cases, on vigrieliminations. The methods re-
sulting from previous attempts to generalize these technigugsatial mechanisms exhibit some
limitations such as the impossibility of incorporating ortidn constraints. For the first time, this
paper presents a complete satisfactory generalization. Aseanpde, it is applied to obtain a clo-
sure polynomial for the the general triple-arm parallel robot (thdhi&s3-RFS 3-DOF robot). This
polynomial, not linked to any particular reference frame, is otgdiwithout variable eliminations
or tangent-half-angle substitutions.
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1 Introduction

The distance-based formulation introduced in this papeegdizes the ideas devel-
oped in [1] for the position analysis of planar kinematiciokao solve the position
analysis of spatial mechanisms. The methods resulting frewious attempts to
attain this generalization were limited in scope [2], or eanable to obtain closure
polynomials of minimum degree for mechanisms with origatatonstraints [3].
The proposed formulation permits the incorporation of thied of constraints so
that it can be applied to general spatial linkages. Besidamlgeneral, it is shown
how it highly simplifies the algebraic manipulations neettedbtain closure poly-
nomials up to the point in which no variable eliminations aeeded in many non-
trivial cases. As an example, it is applied to obtain a cleqalynomial for the the
general triple-arm parallel robot (see Fig. 1). This robmisists of a moving plat-
form connected to a fixed base through three revolute-ptisrapherical kinematic
chains, the prismatic joint of each chain being actuatee fbinward kinematics
problem of this robot consists in finding the possible pogesemoving platform,
with respect to the fixed base, for specified values of thead@tuprismatic joints.
Several researchers have studied this probke (4, 5, 6, 7]), but their solutions
assume that the axes of the revolute joints attached to thd base are arranged
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Fig. 1 Triple-arm parallel robot in which the axes supporting the segsfafb, P3P, andPsPs
are skew and its corresponding bar-and-joint framework model.

forming a triangle. In this paper, using the aforementiodistance-based formu-
lation, the forward kinematics of the triple-arm parallebot with skew revolute
joints is solved. It will be shown how this formulation allevobtaining a closure
univariate polynomial that is not linked to any particuleference frame, and is
straightforwardly obtained without variable eliminatsaor tangent-half-angle sub-
stitutions.

The rest of this paper is organized as follows. Section Déhices the basics
of the distance-based formulation and its correspondingeaties and operations.
These ideas are then applied to obtain a closure polynoonidahé general triple-
arm robot in Section 3 which is then applied to solve, in Sect, its forward
kinematics for a particular instance. Finally, we conclird8ection 5.

2 Preliminaries

In what follows, P will denote a point inE?, Pij = ,? Pi.jk = Pi,jxPik, and
s.j = ||pi,j||?. Vector coordinates will be arranged as column vectorstore; j,
pik, andp; j x represent, in general, a non-orthonormal reference framehvwill
be denoted by the column vector of nine components = (P/; Pk ij’k)T.
The tetrahedron defined By, Pj, R, andR, will be denoted byAiﬁjth, and it
will be said that itorigin is located aB, its baseis given by then trianglé&i,j,k, its
base vectorarep; j (first) andp; x (second, and itsoutput vectorsrep; |, p;j,, and

Pk,1-
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2.1 Trilateration in matrix form

Given the tetrahedrod, j x, its output vectop; | can be expressed as a function of
the base vectorg; j andp; x and its squared edge distances as follows (see [8] for
details):

ajk Pil = bij ki Pi,j +Cijkl Pik+0ijkl dijkl Pijks 1)
where
01 1 1 01 1 1
a __ 11 0 s sk b o 1l O sk s
K 411 s; 0 sjk|’ MKETZ1L s sik sg
lsksjk O 1sk 0 g
) 01 11 01 1 1 1
Cijkl == 1O s s : 111 0 sj sk sy
' 41185 0 s dijxi=|31s; O sk Sjil,
1 sk Sjik S ' SlSk Sik 0 s

anda; j x| accounts for the two possible locationsRfwith respect to the plane
supporting\j x| such tha; j x| = +1if | pi j pik piy |> 0, ando; j k| = —1 other-
wise.

Equation (1) can be expressed in matrix form as

it =Wi ki jk (2

whereW; j | = (t;"l:k; I (;fjjjk:l d;jjjk;' I), | being the 33 identity matrix. Thus, the
output vectop; | can be expressed as

P =Pi) —Pij = (Wi ki —Kioo) ik 3)

whereK oo = (I O 0), O being the %3 null matrix. Similarly, for the case of
the output vectopy we have that

P = Pij — Pik = (Wi,jki —Koio) i jk (4)

with Koo = (O | O).
Sinceq; j k represents, in general, a non-orthogonal reference franyeyectorn
can be expressed as- Q q; j x, whereQ = (wll wyl w3I) with ay being a scalar.

Moreover, it can be checked thiat||? = qILkQT Qqi k.
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2.2 Reference frame change

Let us suppose that can be expressed in the reference frame defineql by, as
V=010 mn WwhereQ; = (o}l w}l wil).Letus also assume that the base vectors
of g mn, Pi,m @andp n, can be expressed in the reference frame defined; by
aspim= Q20ijk andp;n = Q30; jk WhereQ, = (w?l w?l wil), andQz =
(wfl w3l w3l), respectively. Then, itis possible to express the reference frame
defined byg;  « as:

V=010 mn= Q1A 4, (5)
where
T (R T
A= @l Gl ),
kil kol ksl
with

ki =3 (wfws — wie})(s,j + 5k —Sjx) +(WFws — wias)si,
ke = — (P — we})s | + 3 (wWhes — w3e3) (S, +Sik—Sj),
o =wfed - afol
Alnff?’ is defined as aeference frame change matribn the particular case in

which w? = 1, w2 = w? = 0, this matrix will be explicitly denoted aAi*fj'fl’(OQ?

Likewise, if wS = 1, w? = w3 = 0, this matrix will be denoted aﬁﬁ-ﬁfo'o.

3 Deriving a closure polynomial for the general triple-arm robot

A link connecting two skew revolute axes can be modeled bintakvo points
on each of these axes and connecting them all with edges rto daietrahedron.
Similarly, a link connecting a revolute axis and a ball jaiah be modeled by taking
two points on the axis and the center of rotation of the sphépair and connecting
them all with edges to form a triangle, and a link connecting ball joints can
be modeled by connecting the centers of rotation of the sqaiqrairs by an edge.
Thus, a triple arm mechanism with skew revolute joints cambeeled as the bar-
and-joint framework shown in Fig. 1. The geometry of thisabis then completely
determined by 9 points, nameBy ... Py; 24 squared distances, namely, s 3,
S1,4, S1,5, S1,65 S1,7, $2,3: 2,4, 2,5, 2,65 2,75 S3,4, S35, S3.6, S3.8) 4,5, 4,6, 4,8, 5,6, 5,9,
S6.9, S7,:8, S7,9, andsg o; and the orientation of 3 tetrahedra, namély, 34, A1 245,
andA1,275’6.
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According to the notation of Fig. 1, and applying the openagiintroduced in
Section 2, next we derive a closure condition for this patéicrobot. To this end,
we are going to expresg ¢ as a function ofg 7. In other wordssz 7 is going to
be used as a parameter in terms of which the configurationeofdhot can be
expressed.

For the fixed base, which involves poifs. .. Ps and tetrahedré\; 234, A1 2435,
andA; 256, we have

P14 =W12340123, (6)
KiooW1.234

P15 =W12450124=Wi1245A1,3 0123, (7)
KiooW1,245 5 KiooW1,2,34

PLe =Wi12560125 =Wi1256A154 ~ A1zz G123 8

Equations (6), (7), and (8) correspond to a representafibimeovectorsps 4, P15,
andpq e in the non-orthonomal reference frame definedjpy 3. Now, we derive a
representation gb; 7 andpyo in the same reference frame to compute the closure
vector equatiome g = —P1.6 + P1,7 + P7,0- For the case of vectqr 7, we straight-
forwardly have

P17 =W12370123. 9)
For the case of vectqr; o, we first compute
p73=—P37=—(W1237—Koi0)0123 = 2730123 (10)

Similarly, from equations (6) and (9), we get

p74=—Pr7+P14a=(W1234—W1237)qr23= Q740123 (11)
Then,
Pre =Wr3480734 = Wr348A T3S a123 = Q780123. (12)

Moreover, from equations (7) and (9), we obtain

KiooW1234

p75=—P17+P1s= (W1,2,4,5/\ 123 —W1,2,3,7) 0123 = Q750123, (13)
and from equations (7), (9), and (12),

Psg = —P15+P17+P78
KiooW
= (—W1,2,4,5/\ 128 4+ Q7g+ W1,2,3,7) O123= Q580123  (14)

Then, using equations (12) and (13), we have

Q760
P79 =W7g8590785 =W7g59A173 0123 (15)
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Using equations (8), (9), and (15), we can now wpgg in the reference frame
defined byg 23 as:

P69 = —P16+PL7+P79 = Q690123, (16)
with
Qg9 =—W156A f'zo ) T? 234 1 Wy g5 0/ 577+ W23y,
Thus, we finally conclude that
S6.0 = 0123 Q69 Q6901.23. (17)

The right hand side of the above equation is a function of thlenawn squared
distancessz 7, &4.7, S57 andss g. However, from equations (11), (13), and (14), we
have that

47 =0]1230274Q740123, (18)
S5.7=0123Q75Q750123, (19)
S5.8= 0123 Q53 Q5801.23. (20)

Then, the substitution of these expressions in (17) yiektsadar radical equation in
a single variabless 7. The real roots of this closure condition determine therasse
bly modes of the analyzed robot. These roots can be complateiistance, from
the univariate polynomial resulting from clearing the r=d in this expression,
as explained in [9]. For each real root, we can determinedbation of the three
points of the moving platform by computing, for example, following sequence
of trilaterations: obtaining, 7 from p; » andpy 3, thenpz g from pz 7 andpsz 4, and
finally psg from ps7 andpsg. This leads to up to eight locations 8. At least
one of them necessarily satisfies the distance constrapuset byss 9 and hence
corresponds to a valid assembly mode.

4 Numerical example

According to the notation of Fig. 1, let us consider the &igfm mechanism with the
following known squared lengthsj > = 1,513 =17,814 = 10,515 = 26,51 6 = 20,
$,7=101,%3=16,%4=11,5%5=19,5%5 = 13,57 = 102,534 = 3, 35 = 11,
S36=13,%38=126,55=20,546= 18,548 =101,556 = 2,559 = 145,59 = 123,
s78 = 10,579 = 26, andsgg = 10; with 01234 = +1, 01245 = —1, andoy 256 =
+1. Substituting these values in (17), using the expressmns, 7, Ss7 andss g in
terms ofsz 7, and clearing radicals, we obtain the following polynomial
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37 = 19026 S37=19373 S37=19813

Fig. 2 The six real solutions to the forward kinematics of the analy@ptetarm robot.

4.3635 10'°s}% — 1.1184 10'°s}% + 1.3683 10'%s}% — 1.0517- 10°%s3%
+5.6413 107533 — 2.2259- 10°'s3Y + 6.6546- 107953 — 1.5332: 10°2- 53 ;
+2.7456:10°4- 5}, — 3.8296. 10°6- s} ; +4.1433 10°8 - 537 — 3.4390- 10°%s3 ,
+2.1463 10*%s3 ; — 9.7358 10™s3 ; +3.0275 10755 , — 5.7676- 10*°s3 7
+5.0725-10%. (21)
This polynomial has six real roots: 128, 14093, 18675, 19026, 19373, and
19813. The corresponding robot configurations for the case iichvR; is lo-

cated at the origin, angy 2 = (1,0,0)T, p13 = (1,4,0)7, p14 = (0,3,1)T, p15 =
(4,3,-1)T, andp16 = (4,2,0)7, appear in Fig. 2.

5 Conclusion

Solving the position analysis of kinematic chains basederidea of obtaining clo-

sure conditions using n-laterations and constructive gggnarguments has been
quite successful for the planar case. However, the extewnsitis approach to three
dimensions, to solve the position analysis of spatial meishas, remained elusive
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despite the efforts to generalize the planar techniquesnTdin drawbacks of these
previous attempts include the impossibility of dealinghngtrientation constraints,
the limited range of mechanisms that can be analyzed usamg,thnd the complex-
ity of the algebraic manipulation needed to solve even iyt simple problems.
This paper has introduced the basic concepts and propeftedistance-based ma-
trix formulation that clears all these disadvantages. Elcarique has been applied
to solve the forward kinematics of the triple arm mechanisith wkew revolute
joints.
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