
Yet Another Approach to the

Gough-Stewart Platform Forward Kinematics

Josep M. Porta and Federico Thomas

Abstract— The forward kinematics of the Gough-Stewart
platform, and their simplified versions in which some leg end-
points coalesce, has been typically solved using variable elimina-
tion methods. In this paper, we cast doubts on whether this is the
easiest way to solve the problem. We will see how the indirect
approach in which the length of some extra virtual legs is first
computed leads to important simplifications. In particular, we
provide a procedure to solve 30 out of 34 possible topologies
for a Gough-Stewart platform without variable elimination.

I. INTRODUCTION

A general Gough-Stewart platform consists of six extensi-

ble legs attached to a static base and a moving platform at six

arbitrary fixed attachment points through spherical joints [1].

The forward kinematics problem consists of determining

the pose (position and orientation) of the moving platform

relative to the base given the length of the legs, and the

coordinates of the attachment points in their local reference

frames. Algebraic geometric methods have shown that this

problem has 40 solutions [2], [3], [4], all of which can be

real [5]. Since the methods to obtain these 40 solutions

are quite involved, several researchers have examined the

use of additional sensors to uniquely determine the true

pose of the moving platform, and to simplify the solution.

One example is the work of Bonev et al. [6], who use

three additional distance measurements from passive legs,

together with the assumption of a planar moving platform,

to derive an expression with a unique solution for the relative

pose. More recently, Trawny et al. [7] have shown that four

additional distance measurements are enough to obtain a

unique solution for a generic platform. Nevertheless, this is

so for additional distances between arbitrary points. If the

points are carefully chosen, the required set of extra distances

reduces to three. Indeed, if we consider a general Gough-

Stewart platform, the additional distances corresponding to

the three segments in dashed lines appearing in Fig. 1

permit the determination of the coordinates of points a, c,

and e, which define the pose of the moving platform, by

performing three trilaterations [8]. Taking the triangle bdf

as a reference, the following simple procedure is applied:

1) Two possible sets of coordinates for point a can be

obtained from the length of the leg connecting points

a and b, and the additional distances ad and af .
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Fig. 1. Gough-Stewart platform whose forward kinematics can be solved
by trilateration if the lengths of the segments in dashed line are known.

2) The coordinates of e can be determined, taking fab

as a reference, and the fixed distances ef and ea and

the additional distance eb. The two valid solutions in

this step applied over the two solutions of the previous

step, yield four solutions.

3) Finally, the coordinates of c can be computed, taking

ade as a reference, and the known distances ca, cd,

and ce. With this, we come up with eight solutions.

This is the situation for the general Gough-Stewart plat-

form. However, it is important to observe that the forward

kinematics of some platforms with particular topologies can

be solved by trilaterations without requiring any additional

distance. These particular platforms are called trilaterable

for obvious reasons [9], [10] and, despite their simplicity,

they have interesting properties [11].

If we exclude the trilaterable platforms and the general

6-6 case, all others require 1 or 2 additional distances to be

solvable by trilateration. In this paper, we discuss this kind

of platforms, and we present a procedure for solving the

forward kinematics of any member of the class that requires

only one additional distance as follows: (1) the additional

distance is obtained from all other known distances as roots

of a closure polynomial; and (2) the forward kinematics

is trivially solved by trilateration. This procedure is more

general than the one introduced in [12], in the sense that now

we can fix the orientation of arbitrary tetrahedra in the prob-

lem. Due to this limitation, the approach presented in [12]



could only provide minimum degree closure polynomials in

particular situations (e.g., when the points in the base and

in the platform are coplanar). A closely related procedure to

the one described here was recently presented in [13]. Here,

a new matrix formulation is introduced leading to important

simplifications. Moreover, a novel classification of parallel

platform topologies is presented based on classes with a

representative, from which all other members of the class

can be deduced.

This paper is organized as follows. In the next section, we

identify all platform topologies requiring 0, 1 or 2 additional

distances and we show that the class of platform requiring

one distances is composed of two disjoint subclasses with

one representative each. Then, in Section III, we describe the

procedure to generate a polynomial whose roots correspond

to the valid values for the additional distance. In Section IV,

we apply this procedure to solve the forward kinematics

of the two representative platforms previously identified.

Finally, in Section V, the main points presented in this paper

are summarized.

II. CLASSES OF GOUGH-STEWART PLATFORMS

It is possible to design simplified versions of the general

platform by coalescing some leg end-points. These simplifi-

cations are usually identified by the number of attachments

in the fixed base and the moving platform. Actually, there

are 34 different possible topologies, first identified in [14],

which can be classified into the classes 6-6, 6-5, 6-4, 6-3,

5-4, 5-3, 4-3, and 3-3. However, this classification does not

permit the identification of the topology of the platform. For

example, the following three topologies are possible for a

3-3 platform

kg, ia, c, e

b d, h f, j, l

a, c e, g i, k

lb, f d, h, j

a, c e, g i, k

b, l d, f h, j

It is possible to divide all possible topologies given in [14]

into those requiring 0, 1, 2, or 3 additional distances to

become trilaterable. In what follows, we will say that these

distances correspond to the lengths of virtual legs, in contrast

to the real legs lengths defining the problem.

Table II shows all possible topologies for a trilaterable

platform. This table also includes a possible sequence of

trilaterations as a sequence of tetrahedra. In an abuse of

language, the notation a,b,c,d also denotes a trilateration

where the coordinates of point d are obtained from those

of points a, b, and c. Moreover, if one of these tetrahedra

is enclosed in brackets, we mean that its orientation is

fixed, i.e., we get only one solution for the corresponding

trilateration.

Among all the trilaterable topologies, we can select the

TABLE I

ALL POSSIBLE TOPOLOGIES FOR A TRILATERABLE STEWART-GOUGH

PLATFORM.

kg, ia, c, e

b d, h f, j, l

a, c e, g i, k

lb, f d, h, j

b,d,f,a, d,f,a,g, f,a,g,k b,d,a,e, d,a,e,i, b,d,i,l

g i, ka, c, e

b d lf, h, j

ka, c e, g, i

j ld, hb, f

[ b,d,f,l],

b,d,f,a, f,l,a,i, f,a,i,g

[ b,d,j,l],

b,d,j,e, b,d,e,a, l,a,e,k

a i, kc, e, g

f lb, d h, j

kg, ia, c, e

b d j, lf, h

[ b,f,h,l],

b,f,h,c, h,l,c,i, b,c,i,a

[ b,d,f,j ],

b,d,f,a, f,j,a,g, j,a,g,k

g i, ka, c, e

b d j lf, h

kg, ia, c, e

b d f h j, l

[ b,d,f,j ], [ b,d,f,l],

b,d,f,a, j,l,a,i, f,a,i,g

[ b,d,f,h], [ b,d,f,j ],

b,d,f,a, h,j,a,g, j,a,g,k

kg, ia, c, e

b d j lf, h

k

b d l

a, c, e g, i

f h j

[ b,d,f,j ], [ b,d,f,i],

b,d,f,a, f,j,a,g, a,g,l,k

[ b,d,f,h], [ b,d,f,j ], [ b,d,f,l],

b,d,f,a, h,j,a,g, l,a,g,k

following one as the representative

ka, c, e g, i

b d h jf l (1)

because all other topologies in the class can be seen as sim-

plifications where some attachments merge without leading

to a degenerate platform. A general method for solving the

forward kinematics of the representative is also applicable to

all other member in the class and hence its interest.

Tables II and III show all topologies for platforms whose

forward kinematics can be solved via trilateration when

properly adding one virtual leg. For each case, one valid

virtual leg is shown in dashed line, and a possible trilateration

sequence is also indicated. In all the topologies in Table II,

three real leg attachments coincide. The length of the three

involved legs control the position of a point in the moving

platform and the remaining three legs define the platform

orientation about this point. In contrast, in the topologies in

Table III there is not a direct relation between particular leg

lengths and the position/orientation of the platform. Observe

that both classes are disjoint. While, the representative of the



TABLE II

ALL POSSIBLE TOPOLOGIES FOR A DECOUPLED STEWART-GOUGH

PLATFORM. THEY ONLY REQUIRE ONE VIRTUAL LEG, E.G., THE ONE

SHOWN IN DASHED LINE, TO BECOME TRILATERABLE.

a, c e, g i, k

b j ld, f, h

g i ka, c, e

b d j, lf, h

[ b,d,j,l],

b,d,j,e, b,d,e,a, d,e,a,i

[ b,d,f,j ],

b,d,f,a, b,f,a,g, j,a,g,i,

[ a,g,i,k]

g i ka, c, e

b d lf, h, j

e g ka, c, i

b d j lf, h

[ b,d,f,l],

b,d,f,a, b,f,a,g, f,a,g,i

[ a,g,i,k]

[ b,d,j,f ], [ b,d,j,l],

b,d,j,a, b,f,a,e, f,a,e,g,

[ a,e,g,k]

a i kc, e, g

f lb, d h, j

g i ka, c, e

b d j lf, h

[ b,f,h,l],

b,f,h,c, b,h,c,i, b,c,i,a,

[ c,a,i,k]

[ b,d,f,j ], [ b,d,f,l],

b,d,f,a, b,d,a,g, j,a,g,i,

[ a,g,i,k]
g ii ka, c, e

b d f h j l

[ b,d,f,h], [ b,d,f,j ], [ b,d,f,l],

b,d,f,a, b,h,a,g, j,a,g,i,

[ a,g,i,k]

class in Table II is
g ii ka, c, e

b d f h j l (2)

the representation of the class in Table III is

ii ka, c e, g

b d f h j l (3)

Finally, Table IV includes the platform topologies that

need two virtual legs to become trilaterable. The representa-

tive for this class is

e g ii ka, c

b d f h j l (4)

To solve the forward kinematics of the platform using

trilateration, first we need to fix the length of the added

virtual legs. Since the real leg lengths define a discrete set

of valid platform poses, and the platform pose unequivocally

i

j

k

l

Fig. 2. The trilateration step denoted as i,j,k,l, has its origin at i, its

base is given by then triangle i,j,k , its base vectors are pi,j and pi,k ,
and its output vector is pi,l. These vectors are always chosen following the
right hand rule | pi,jpi,kpi,l |> 0.

defines the virtual leg lengths, arbitrary values of the virtual

leg lengths are not valid. Next, we describe how to identify

the valid values as the roots of a minimum degree closure

polynomial. These roots are fed into the trilateration process

to obtain the valid poses of the platform. In this paper, we

focus on the platforms requiring only one virtual leg thus

covering most parallel platform topologies (20 out of 24, if

trilaterable topologies are excluded).

III. THE GEOMETRY OF STRIPS OF ORIENTED

TETRAHEDRA

In what follows, Pi will denote a point in E
3, pi a column

vector with its coordinates in a given reference frame, pi,j =
pj −pi, pi,j,k = pi,j×pi,k, and si,j = ‖pi,j‖2. To light the

notation, Pi will be also denoted as i when no confusion is

possible. Vectors pi,j , pi,k, and pi,j,k represent, in general,

a non-orthonormal reference frame (Fig. 2), which will be

denoted by the matrix

Qi,j,k = [pi,j pi,k pi,j,k] .

The trilateration step i,j,k,l is said to have its origin

located at i, its base, Qi,j,k, is given by the triangle i,j,k,

its base vectors are pi,j and pi,k, and its output vector is

pi,l, which can be used to determine the coordinates of l in

Qi,j,k since pl = pi + pi,l.

The Cayley-Menger bi-determinant of two sets of points,

i1, . . . , in and j1, . . . , jn, is defined as

D(i1, . . . , in; j1, . . . , jn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 . . . 1
1 si1,j1 . . . si1,jn
...

...
. . .

...

1 sin,j1 . . . sin,jn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If the two sets of points are the same, then D(i1, . . . , in) =
D(i1, . . . , in; i1, . . . , in) is called the Cayley-Menger deter-

minant of the involved set of points. An alternative com-

mon definition of the Cayley-Menger determinants includes



TABLE III

ALL POSSIBLE TOPOLOGIES, THAT ARE ARE NOT DECOUPLED, FOR A STEWART-GOUGH PLATFORM WHICH REQUIRE ONE VIRTUAL LEG, E.G., THE

ONE SHOWN IN DASHED LINE, TO BECOME TRILATERABLE.

a, c e, g i, k

b, l d, f h, j

a, c e, g i, k

j ld, hb, f

a, c e, g i, k

b ld, f h, j

i ka, c e, g

b h j, ld, f

b,d,h,e, b,d,e,a, b,h,e,i
[ b,d,j,l],

b,d,j,a, b,d,a,e, j,a,e,i

[ b,d,h,l],

b,d,h,e, b,d,e,a, h,a,e,i

[ b,d,h,j ],

b,d,h,e, b,d,e,a, j,a,e,i,

[ a,e,i,k]

i ka, c e, g

j ld, hb, f

e ka, c g, i

b h j, ld, f

i ka, c e, g

b ld, f h, j

a, c e, g i, k

b h j ld, f

[ b,d,j,l]

b,d,j,e, b,d,e,a, j,a,e,i,

[ a,e,i,k]

[ b,d,h,j ],

b,h,j,g, b,d,g,a, d,a,g,e,

[ a,e,g,k]

[ b,d,h,l],

b,d,h,e, b,d,e,a, h,a,e,i,

[ a,e,i,k]

[ b,d,h,j ], [ b,d,h,l],

b,d,h,e, b,d,e,a, j,a,e,i

i ka, c e, g

b d f h j, l

i ka, c e, g

b f h ld, j

ii ka, c e, g

b h j ld, f

a, c e, g i, k

b d f h j l

[ b,d,f,h], [ b,d,f,j ],

b,f,h,e, b,d,e,a, j,a,e,i,

[ a,e,i,k]

[ b,d,f,h], [ b,d,f,l],

b,f,h,e, b,d,e,a, d,a,e,i,

[ a,e,i,k]

[ b,d,h,j ], [ b,d,h,l],

b,d,h,e, b,d,e,a, j,a,e,i,

[ a,e,i,k]

[ b,d,f,h], [ b,d,f,l],

b,f,h,e, b,d,e,a, d,a,e,i,

[ a,e,i,k]
ii ka, c e, g

b d f h j l

[ b,d,f,h], [ b,d,f,j ], [ b,d,f,l],

b,f,h,e, b,d,e,a, j,a,e,i,

[ a,e,i,k]

TABLE IV

ALL POSSIBLE TOPOLOGIES FOR A STEWART-GOUGH PLATFORM THAT

REQUIRES TWO VIRTUAL LEGS, E.G. THE ONES SHOWN IN DASHED

LINES, TO BECOME TRILATERABLE.

e g ii ka, c

b d j lf, h

[ b,d,f,j ], [ b,d,f,l],

b,d,f,e, b,d,e,a, f,a,e,g,

[ a,e,g,i], [ a,e,g,k]
e g ii ka, c

b h j ld, f

[ b,d,f,j ], [ b,d,f,l],

b,d,f,e, b,d,e,a, h,a,e,g,

[ a,e,g,i], [ a,e,g,k]
e g ii ka, c

b d f h j l

sb,e, sf,a
[ b,d,f,h], [ b,d,f,j ], [ b,d,f,l],

b,d,f,a, b,f,a,e, h,a,e,g,

[ a,e,g,i], [ a,e,g,k]

a constant factor, which is dropped here to simplify the

formulation. The Cayley-Menger determinants play a central

role in distance geometry. For more details on them and their

properties see [15], [16].

A. Trilateration in matrix form

Given i,j,k,l, the output vector pi,l can be expressed as

a function of the base vectors pi,j and pi,k and its squared

edge distances as follows (see [8] for details):

pi,l =
Bi,j,k,l

Ai,j,k

pi,j+
Ci,j,k,l

Ai,j,k

pi,k+σi,j,k,l

Di,j,k,l

Ai,j,k

pi,j,k, (5)

where

Ai,j,k = −D(i, j, k),

Bi,j,k,l = D(i, k, l; i, j, k),

Ci,j,k,l = −D(i, j, l; i, j, k),

Di,j,k,l = σi,j,k,l

√

2D(i, j, k, l),

and where σi,j,k,l accounts for the two possible locations of l

with respect to the plane supporting i,j,k such that σi,j,k,l

is the sign of | pi,j pi,k pi,l |.
Equation (5) can be expressed in matrix form as

pi,l = Qi,j,k ωi,j,k,l, (6)



where

ωi,j,k,l =

(

Bi,j,k,l

Ai,j,k

,
Ci,j,k,l

Ai,j,k

,
Di,j,k,l

Ai,j,k

)T

.

Using pi,l, we can obtain the vector between l and any

other point already expressed in the same base, say m, as

pl,m = pi,l − pi,m

= Qi,j,k ωi,j,k,l −Qi,j,k ωi,j,k,m

= Qi,j,k ωl,m

with ωl,m = ωi,j,k,l −ωi,j,k,m. Then, the squared distances

between l and m is

sl,m = pT
l,m pl,m = ω

T
l,m QT

i,j,k Qi,j,k ωl,m. (7)

These new distances can be used in subsequent trilateration

steps.

Observe that all terms in a trilateration depend on the

coordinates of the base points, the squared distances between

points, and the orientations of the tetrahedrons, if provided.

This operation is defined irrespectively of whether or not

the involved terms are fixed. If so, the computed coordinates

and distances will be constant and, otherwise, they will be

symbolic and expressed in terms of the squared length of the

virtual leg. In trilaterable mechanisms, all trilaterations rely

on constant terms and, thus, a trilateration sequence provides

coordinates for all the points in the problem. In problems

where a virtual leg has to be introduced, the last trilateration

step provides a closure condition: if any of the real legs is not

used in the trilateration process, its squared constant length

can also be expressed symbolically using (7). Clearly, the

two expressions must be equal. Such closure condition can

be processed as described next to obtain a minimum degree

univariate polynomial in the squared length of the virtual leg.

B. Removing radicals

The closure condition derived using the procedure de-

scribed in the previous section includes radical expressions.

As trilateration steps are applied in sequence, radicals will

appear nested and clearing them will consist in an iterative

process starting from the outer one. At each step of this

process, the expressions involving a radical will have the

general form

α0 + α1

√
r + α2

(√
r
)2

+ α3

(√
r
)3

+ · · · = 0,

where r and αi are symbolic expressions. This equation can

be rewritten as

(α0+α2r+α4r
2+ . . . )+

√
r (α1+α3r+α5r

2+ . . . ) = 0,

which can be unfolded into two equations, one for each sign

of
√
r. Since we are interested in the roots of both equations,

we obtain their product, which can be written as

(α0+α2r+α4r
2+ . . . )2− r (α1+α3r+α5r

2+ . . . )2 = 0,

which does not include the radical any more. By repeating

this procedure, all radicals can be cleared.

C. Eliminating singularity factors

While clearing radicals as explained above introduces no

extraneous roots, one cannot expect to obtain the minimal

degree polynomial due to the presence of singularities in the

formulation. Indeed, each trilateration step without a fixed

base introduces a dividing term, Ai,j,k, which vanishes when

i, j, and k are aligned. If this happens, the mechanism can

be divided in two parts which can freely rotate about the axis

defined by points i and j. These degenerated cases have to be

considered separately from the general analysis. Assuming

that the mechanism does not degenerate, i.e., that Ai,j,k 6= 0,

these factors can be removed from the final expression.

This can be simply performed by iteratively dividing the

expression obtained after clearing radicals by them until the

remainder is not null. This finally leads to the sought-after

minimum degree univariate closure polynomial.

D. Obtaining coordinates

Each real root of the obtained polynomial can be used to

compute possible coordinates for the points in the problem,

as if the mechanisms were trilaterable, following the same

trilateration sequence used to derive the closure condition.

Observe that, if the orientation of a trilateration step is

not fixed, two mirror locations are obtained for the output

point with respect to the trilateration base. The first of such

trilaterations will produce 2 sets of possible coordinates, the

second 4, the third 8, etc. Therefore, we will obtain 2N sets

of possible coordinates, either real or imaginary, N being the

number of trilateration steps without fixed orientation. Only

the real solutions yield feasible configurations, compatible

with the fixed distances in the mechanism. Typically, this

process produces only one real solution, except in the cases

where different platform poses define the same lengths for

the real and virtual legs, e.g., a robot with a planar base where

the solutions are split in two sets symmetric with respect to

the base.

IV. NUMERICAL EXAMPLES

To show the generality of the procedure introduced in

this paper, we use a Maple implementation to validate it

using two platforms with the topologies of the representatives

given in (2) and (3). Both of them are 6-4 platforms which

have been studied before using different methodologies. In

contrast, here we apply the same procedure for both of them.

It is well-known that the forward kinematics of the first

example has a maximum of 16 solutions [17]. Actually, the

robot described in [17] has 16 real solutions, but its base

and platform are coplanar. Thus, the solutions are split in

two subsets symmetric with respect to the base. To show

the ability of the proposed procedure to deal with oriented

tetrahedra, we use the same set of parameters but modifying

the z-coordinates of the points to avoid coplanarity. Thus, in

our case, the coordinates of the points of the base in local

reference are

pb = (0, 0, 5)⊤ pd = (5.1962,−3,−1)⊤

pf = (10.3923, 0, 1)⊤ ph = (5.1962, 6,−1)⊤

pj = (5.1962, 9, 1)⊤ pl = (0, 6,−1)⊤



Fig. 3. The 10 different solutions for the forward kinematics of the decoupled platform used to validate the proposed approach.

Fig. 4. The 10 different solutions for the forward kinematics of the coupled platform used to validate the proposed approach.

and the coordinates of the attachments in the platform in

local reference are

pa = (0, 0, 1)⊤ pe = (10.3923, 6,−1)⊤

pi = (5.1962, 9, 1)⊤ pk = (0, 6,−1)⊤

The leg lengths are set to

da,b = 12.80624847 da,d = 19.57589575
da,f = 18.50488312 dg,h = 16.61324773
di,j = 16.61324773 dk,l = 16.61324773

After introducing a virtual leg between b and g, and using

points b, d, and f to define a reference, the coordinates of

the rest of points and their relative distances can be deter-

mined using the trilateration sequence [ b,d,f,h], [ b,d,f,j ],
[ b,d,f,l], b,d,f,a, b,h,a,g , j,a,g,i, and [ a,g,i,k]. Then,

the squared constant distance between k and l, sk,l, can be

also expressed using (7). This provides a closure condition

whose solutions are the valid values for sb,g . The closure

condition includes radical expression, which can be removed

using the procedure described in Section III-B. This yields

a polynomial in sb,g of degree 40. Observe, however, that

the trilateration steps b,h,a,g and j,a,g,i have variable

basis which can degenerate. Thus the conditions Ab,h,a = 0
and Aj,a,g = 0 define singularity factors, which have to be

removed from the polynomial, as described in Section III-C.

After this process we obtain the sought after 16-th degree

closure polynomial

s16b,g − 7730.9 s15b,g + 2.69 107 s14b,g − 5.58 1010 s13b,g

+ 7.69 1013 s12b,g − 7.47 1016 s11b,g + 5.31 1019 s10b,g

− 2.81 1022 s9b,g + 1.1327 1025 s8b,g − 3.45 1027 s7b,g

+ 7.96 1029 s6b,g − 1.36 1032 s5b,g + 1.67 1034 s4b,g

− 1.42 1036 s3b,g + 7.80 1037 s2b,g − 2.43 1039 sb,g

+ 3.22 1040.

This polynomial has 10 real solutions which give rise to the

10 configurations shown in Fig 3. The procedure in [12]

derives a polynomial of higher degree to account for the two

possible orientations of the tetrahedron in the platform.

The second test case is a coupled platform with at most 32

real solutions [14]. The parameters used here are the same



Fig. 5. Solutions of the closure polynomial in the complex plane as we
vary the length of the leg providing the closure condition.

as in [18]. Thus, the coordinates of the points of the base

and of the platform in local reference are, respectively,

pb = (0, 0, 0)⊤ pd = (5, 0, 1)⊤

pf = (−2, 4,−1)⊤ ph = (3,−1, 1)⊤

pj = (6,−2, 2)⊤ pl = (−3, 5, 1)⊤

and
pa = (4, 1, 4)⊤ pe = (0, 3, 3)⊤

pi = (4, 1, 5)⊤ pk = (−4, 3, 3)⊤.

Finally, the leg lengths are set to

da,b = 5, 74 da,d = 3, 32
de,f = 4, 58 de,h = 5.39
di,j = 4.69 dk,l = 4.58

In this case, a virtual leg between b and e is introduced

and points b, d, and f are used to define the reference

frame for the rest of points. Their coordinates and rela-

tive distances are obtained using the trilateration sequence

[ b,d,f,h], [ b,d,f,j ], [ b,d,f,l], b,f,h,e, b,d,e,a, j,a,e,i,

and [ a,e,i,k]. Once the coordinates and distances are com-

puted, the squared distance between k and l provides a

closure condition which, after removing the radical terms,

is a polynomial of degree 232. This degree reduces to 32,

the minimum possible, after removing the singularity factors

introduced by the trilateration steps b,f,h,e, b,d,e,a, and

j,a,e,i.

For the used parameters, the final closure polynomial

has 10 real solutions which yield 10 valid configurations.

Such configurations are shown in Fig. 4. The obtained

coordinates coincide with the ones given in Table 1 of [18].

An additional advantage of the proposed procedure is that

the leg lengths directly appear in the closure polynomial.

Thus, we can easily modify such lengths and obtain the new

set of solutions. For instance, Fig. 5 shows the solutions of

the closure polynomial in the complex plane as we vary the

length of the leg between k and l, i.e, the leg used to generate

the closure condition.

V. CONCLUSION

This paper introduces a novel perspective on the Gough-

Stewart forward kinematics by elaborating on the idea of

using virtual legs. We have shown that there are parallel

platform requiring 0, 1, 2, or 3 virtual legs to become trivially

solvable by trilateration. Since the set of platforms requiring

one virtual leg can be divided in two groups, the whole

variety of parallel platforms can be classified in five classes.

This means that only five representatives need to be con-

sidered. Each of them give an idea of the complexity of the

corresponding forward kinematics problem. In this paper, we

have proved that three of these representatives and, thus, 30

out of 34 possible topologies for a Gough-Stewart platforms,

can be solved without variable elimination. This result is

remarkable since up to now different solving procedures

have been used for particular topologies in these classes that

typically rely on variable elimination.

Our current effort focus on extending the presented pro-

cedure to solve the representative of the platform topologies

requiring two virtual legs and eventually solving the general

Gough-Stewart platform forward kinematics.
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