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Abstract: This paper proposes a distributed model predictive control (DMPC) scheme based on population games for a system
formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller
addresses a coupled constraint that involves the sum of all control inputs. This constraint models an upper bound on the total
amount of energy supplied to the plant. The proposed approach does not need a centralized coordinator when having a coupled
constraint involving all the decision variables. The proposed methodology, which takes advantage of evolutionary game theory
concepts, provides an optimal solution for the described problem. Moreover, it is shown that the methodology has plug-and-play
features, i.e., for each already designed local MPC controller nothing changes when more sub-systems are added/removed to/from
the global constrained control problem. Furthermore, the stability analysis of the proposed DMPC scheme is presented.

1 Introduction

An advantage of model predictive control (MPC) compared to other
control techniques relies on its capability to deal with physical and
operational constraints. Hence, this optimal control strategy has been
successfully applied in different industrial applications, e.g., in net-
worked large-scale systems [1], hydro-thermal power systems [2],
wind farms [3], and drinking water system [4]. Nonetheless, if the
goal is controlling large-scale systems, the big number of variables
involved in the underlying optimization problem of MPC is an issue
that limits the implementation of this controller, especially for satis-
fying sampling time constraints. To overcome the referred situation,
a common approach is splitting the optimization problem into a set
of smaller sub-problems that are addressed by local processors. This
solution architecture is the so-called distributed model predictive
control (DMPC). There are several problems that have been tackled
by means of DMPC schemes. Among such problems, one issue that
arises in many applications is the need to restrict the total energy sup-
plied by the controller to the whole system. Basically, this constraint
takes into account the limited amount of available resources (e.g.,
electric power, mechanical forces, cooling/heating power, inflows,
etc.) that are used for controlling the plant. It is worth to mention
that classic MPC formulations are able to take into consideration
the aforementioned energy constraints. However, this classic scheme
uses full information, i.e., there is a centralized authority that is in
charge of finding optimal control inputs for the whole system. Thus,
as was pointed out before, these centralized authorities suffer from
computational burden issues. In contrast, the last few years have wit-
nessed the emergence of novel techniques based on game theory to
overcome the requirement of full information. A motivation to use
a game-theoretical approach is the close relationship between this
framework and distributed optimization. This connection has been
identified and exploited in several works. For instance, [5] and [6]
develop a methodology for designing payoff functions that ensure
convergence to global optima of certain problems under distributed
learning strategies. Similar ideas are studied in [7], where the authors
point out the strong connection between variational inequality the-
ory and game theory for solving convex optimization problems in
a distributed way. In [8], the authors use replicator dynamics, a

learning mechanism of game theory, for addressing combinatorial
optimization, while the same strategy is employed in [9–12] to solve
distributed resource allocation problems in several contexts, i.e., eco-
nomic dispatch of electric generators, urban drainage systems, and
building temperature control. Other applications of game theory to
engineering and economics problems that involves distributed opti-
mization can be found in [13–16]. For further details on this topic,
we refer the reader to [17].

DMPC has been extensively studied in recent years (see [18, 19]
for a comprehensive review). Literature distinguishes several cate-
gories of DMPC techniques according to the type of model, coupling
source, control architecture, and so forth. The technique proposed
in this document aims to control a set of linear time-invariant sys-
tems that are coupled by an input constraint (which is related to an
energy limitation). This problem has been tackled before using other
distributed methods, e.g., Lagrangian relaxation of coupling con-
straints [20], alternating direction method of multipliers (ADMM)
[21], local planning optimization and constraint tightening [22], and
ADMM with early stopping criterion based on finite time consen-
sus [23]. However, reported methods require either a centralized
coordinator [21] or high communications load. These shortcom-
ings are addressed by our approach. In fact, the method presented
in this manuscript is fully distributed, i.e., it does not require the
use a centralized authority. Among fully distributed methods, there
are a variety of approaches. One of the most employed is based
on the distributed alternating direction method of multipliers (D-
ADMM). This approach was first proposed in [24] and it is possible
to find several extensions in the literature (e.g., [22]). Even though
D-ADMM-based techniques are flexible and efficient, they require
more complex communications for solving the problem addressed
in this research than the communications needed by our approach.
The advantage of our method compared to D-ADMM comes from
the fact that each node in D-ADMM handles a set of manipulated
variables, while in our approach each node handles only a single
variable. Therefore, the computation required by each node is also
simplified. Other methods based on cooperative control have also
been proposed in the literature to solve the problem tackled in this
document [25, 26]. However, they either require that each agent has
complete information of the constraints [26] or need a centralized
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agent at some step of the algorithm [25]. Thus, they demand higher
bandwidth communications.

Regarding the plug-and-play features in non-centralized MPC
controllers, the main challenge consists on reducing the amount of
required modifications over the design when plugging in or unplug-
ging sub-systems of the whole systems. For instance, in [27], when
sub-systems are added or removed, the distributed plug-and-play
solution requires to redesign a number of controllers. Additionally,
in [27] it is assumed that sub-systems get plugged in and unplugged
in an off-line manner. In [28], before the modification is made
by plugging or unplugging sub-systems, the feasibility should be
verified. Moreover, when a new sub-system i is connected to a sub-
system j, then the jth controller should be redesigned. Likewise,
the plug-and-play feature presented in [29] implies the modifica-
tion of local control laws when it is desired to plug in or unplug
sub-systems. Also, it is assumed that the modification is notified pre-
viously to the corresponding neighborhood by a request message.
Differently, the advantage of the plug-and-play feature of the pro-
posed method in this paper is that it does not require to modify any
of the existing local controllers. In addition, the plug-and-play can
be performed in an on-line manner.

The main contribution of this paper is the formalization of a
distributed game-theory-based methodology for decoupling a tradi-
tional MPC scheme that controls medium/large scale plants formed
by collections of sub-systems, which are subject to a coupling energy
constraint. First, we propose to design local MPC controllers (one
per sub-system) that are in charge of managing only local vari-
ables. Then, at a second stage, outputs from all local controllers
are coordinated in a distributed fashion (without using a central-
ized authority) to satisfy the coupling constraint. Different from
traditional dual decomposition and alternative direction method of
multipliers [20], [30], the proposed distributed model predictive con-
trol (DMPC) scheme based on population dynamics does not require
a central coordinator when managing a coupled constraint involv-
ing all the decision variables. Regarding the population dynamics
stage in the proposed scheme, under some mild assumptions, it is
shown that the solution computed by using the proposed method
asymptotically converges to the optimal solution, while all con-
straints are satisfied. Besides, the stability of the closed-loop system
with the DMPC is ensured by proving that there exists an equiv-
alence between the proposed distributed scheme and a centralized
MPC controller (CMPC).

The remainder of this paper is organized as follows. Section
3 presents the problem statement addressed throughout this
manuscript. Section 4 introduces preliminary concepts about pop-
ulation games. Then, Section 5 presents the proposed distributed
approach based on population games. Section 6 shows an illustrative
example consisting in a system involving a limited resource with dis-
tributed information-sharing network. Next, Section 6 also presents
the results and develops a discussion comparing the performance of
the proposed DMPC with the performance obtained by using a cen-
tralized scheme. Finally, concluding remarks are drawn in Section 7.

2 Notation

Lower-case bold style denotes column vectors, e.g., p. Non-bold
style denotes scalar numbers, e.g., m. Calligraphic style denotes
sets, e.g., S. Real numbers, all the non-negative real numbers, and
all the strictly positive real numbers are denoted by R, R≥0, and
R>0, respectively. Non-negative integer numbers are denoted by
Z≥0. Besides, 1n is a column vector of dimension n whose entries
are all ones. The number of elements of a set is denoted by | · |. The
identity matrix of size n× n is denoted by In, and 0 is a matrix or
vector with null entries with suitable dimensions. Moreover,∇f(p)
denotes the gradient of the function f(p), and [·]+ = max(0, ·).
In the discrete time notation of the MPC controller, xk+j|k refers
to the prediction at time k of x for k + j, where k, j ∈ Z≥0, i.e.,
in the argument k + j|k, the first element k + j denotes predic-
tion, whereas the second element k denotes current simulation time
instant.

3 Control Problem Statement

Let S̃ = {1, . . . , m̃} be the set of m̃ controllable and stable sub-
systems, which can share information according to a communi-
cation network. Let G̃ = (S̃, Ẽ , Ã) be an undirected connected
non-complete graph representing the topology of the information-
sharing network, where S̃ represents the nodes (i.e., each node is a
sub-system), Ẽ ⊆ {(i, j) : i, j ∈ S̃} corresponds to the edges, and
Ã is the graph adjacency matrix. Each sub-system has a linear
time-invariant discrete-time dynamics given by

xi,k+1 = Aixi,k + Biu
f
i,k, ∀i ∈ S̃, (1)

where xi ∈ Rnx,i denotes the state vector, uf
i ∈ Rnu,i is the input

vector of the ith sub-system. Besides, matrices Ai ∈ Rnx,i×nx,i

and Bi ∈ Rnx,i×nu,i are the system matrices with constant ele-
ments. Moreover, let nx ,

∑m̃
i=1 nx,i be the total number of states

and nu ,
∑m̃

i=1 nu,i be the total number of control inputs in
the system. Consider the optimization problem behind an MPC
controller, denoted by PMPC, stated as

min
uk,uk+1,....,uk+Hp−1

Jk =

m̃∑
i=1

Ji,k, (2a)

Ji,k = Jf
i

(
xi,k+Hp|k

)
+

Hp−1∑
j=0

J`
i

(
xi,k+j|k,ui,k+j|k

)
,

s. t. xi,k+1+j|k = Aixi,k+j|k + Biui,k+j|k,

∀i ∈ S̃, j ∈ [0, Hp] ∩ Z≥0, (2b)

xi,k+j|k ∈ Xi, ∀i ∈ S̃, j ∈ [0, Hp] ∩ Z≥0, (2c)

ui,k+j|k ∈ Ui, ∀i ∈ S̃, j ∈ [0, Hp − 1] ∩ Z≥0, (2d)

m̃∑
i=1

1
>
nu,i

ui,k+j|k ≤ π, ∀j ∈ [0, Hp − 1] ∩ Z≥0, (2e)

whereXi , {xi ∈ Rnx,i : xi ≤ xi ≤ x̄i} andUi , {ui ∈ Rnu,i :
ui ≤ ui ≤ ūi}. Moreover, vectors xi and x̄i are the lower and
upper bound of the ith sub-system state, respectively, while ui ≥ 0
and ūi ≥ ui are the minimum and maximum admissible control
inputs, respectively. The value π ∈ R≥0 in (2e) is the available
resource (energy constraint) for the whole system. If the problem
in (2) is feasible, there exists an optimal control sequence ũ∗k ,
(u∗k,u

∗
k+1, ....,u

∗
k+Hp−1) that minimizes the cost Jk in (2a) (ũ∗i,k

minimizes the cost Ji,k for each sub-system i ∈ S̃), which generates
an optimal state trajectory x̃∗k , (x∗k+1,x

∗
k+2, ....,x

∗
k+Hp

). The
optimal control input that is applied to the system is uMPC,k = u∗k,
i.e., the control input for each sub-system, according to (1), is given
by uf

i,k = uiMPC,k, for all i ∈ S̃. Finally, the terms in the cost
function Jk of the optimization problem (2) are of the following
form [31][32]:

J`
i

(
xi,k,ui,k

)
= ‖xi,k − ri,k‖2Qi

+ ‖ui,k‖2Ri
, (3)

and

Jf
i (xi) =

{
Jc
i (xi) , xi ∈ X f

i

πci , xi /∈ X f
i ,

(4)

where Qi ∈ Rnx,i×nx,i is a positive semi-definite matrix whose
entries are weights associated with the system’s states, and Ri ∈
Rnu,i×nu,i is a positive definite weighting matrix that penalizes
the control inputs. The set-point for the ith sub-system is given by
the vector ri,k. The function Jc

i is continuous and Jc
i (xi) ≥ 0, for

all xi ∈ Xi, and the set X f
i = {xi ∈ Xi : Jc

i (xi) ≤ πci }, where
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xs
i ∈ X

f
i being xs

i the steady state of the ith system. The afore-
mentioned considerations are essential components for the MPC
stability [31][33]. Consequently, Jf

i is also continuous. For instance,
one selection might be Jc

i

(
xi,k

)
= ‖xi,k − ri,k‖2Vi

, where Vi ∈
Rnx,i×nx,i is a positive semi-definite weighting matrix that penal-
izes the state error at the end of the prediction horizon. The afore-
mentioned functions are selected in an appropriate way such that
Assumption 1 holds [33].

Assumption 1. For each state xi,k ∈ X
f
i , there exists a control

input uf
i = ui ∈ Ui such that xi,k+1 ∈ X

f
i for system in (1), i.e.,

min
ui ∈Ui

{
Jf
i

(
xi,k+1

)
+ J`

i

(
xi,k,ui,k

)
: xi,k+1 ∈ X f

i

}
≤ Jf

i

(
xi,k

)
,

which holds for all xi,k ∈ X
f
i . �

The problem addressed in this paper consists in the design of
a DMPC by solving the optimization problem (2), which involves
a full-coupled constraint (2e) and subject to the non-complete
information-sharing graph G̃. In order to solve this problem in a
distributed way, population games are used and presented next.

4 Population Games

Assume a large population of agents (players) involved in a game,
where each agent chooses a strategy from the set S = {1, . . . ,m}
of available strategies. Agents try to pursue an improvement on their
benefits. There are nu strategies associated to each one of the con-
trol inputs, plus a strategy representing the decision of not select
any control input within the system (this latter strategy is going
to be related to a slack variable in the optimization context), i.e.,
m = nu + 1. Moreover, the set of strategies can be expressed as
S = {S1,S2, . . . ,Sm̃,m}, where |Si| = nu,i, for all i ∈ S̃. Let
pi ∈ R≥0 be the amount of population playing strategy i ∈ S.
Hence, the vector

p = [p>1 . . . p>m̃ pm]> = [p1 . . . pm]>,

with p1 ∈ R|S1|, . . . ,pm ∈ R|Sm| and pm ∈ R describes the pop-
ulation state, i.e., the distribution of the mass of players among
the available strategies, i.e., p describes the population state, where
pi ∈ Rnu,i

≥0 , for all i ∈ S̃. The set of all feasible population states is
the following simplex:

∆ = {p ∈ Rm
≥0 : p>1m = π}, (5)

where πR>0 is a constant value that represents the total mass
of the population. The interior of the set of population states is
denoted by int∆ =

{
p ∈ Rm

>0 : p>1m = π
}

. The fitness func-
tion fi : ∆→ R maps a population state into a payoff (real value)
that the population pi receives for playing the ith strategy. For nota-
tional convenience, f = [f1 . . . fm]> is the column vector of
all fitness functions. This paper focuses on full-potential games due
to their convergence properties and the relationship between this
class of games with optimization problems (see Proposition 1).

Definition 1. A game f is a full-potential game if there exists a con-
tinuously differentiable function f(p), known as potential function,
satisfying f(p) = ∇f(p), for all p ∈ Rm

≥0. �

The reason to focus our work on this class of games is that in full-
potential games, the Nash equilibrium of f(p), which is denoted by
p∗ ∈ ∆, is the solution of the following optimization problem:

max
p

f(p), (6a)

G G̃

Fig. 1: Example of three sub-systems m̃ = 3, where u1 ∈ R3, u2 ∈
R2, and u3 ∈ R5, then nu = 10.

subject to ∑
i∈S

pi = π, (6b)

pi ≥ 0, ∀ i ∈ S, (6c)

where f(p) is strictly concave.

Proposition 1. (Adapted from [34]) If f is strictly concave on ∆,
then the Nash equilibrium of the corresponding full-potential game
is the unique maximizer of f on ∆.

Proof: This proof has been presented in [34]. �

4.1 Distributed Smith Dynamics

As well as other population dynamics, Smith dynamics describe the
changes along time of a population whose individuals are playing a
strategic game [34]. An important feature of Smith dynamics is that
population playing each strategy require complete knowledge of the
whole population state (distribution of the population among avail-
able strategies) to decide how to evolve, i.e., individuals using Smith
dynamics require full information. Recently, in [14], the authors pro-
pose an alternative formulation of Smith dynamics that only relies on
local information∗, the so-called distributed Smith dynamics (DSD).
Under these dynamics, an agent playing the ith strategy only needs
information about agents playing certain strategies (the neighboring
strategies) to evolve. This local framework is represented by means
of an undirected and connected graph G = (S, E ,A), where the set
of nodes S is associated with the available strategies of the game,
the set of links E ⊆ {(i, j) : i, j ∈ S} represents allowed interac-
tion among strategies, where the sub-graphs, which represent the
control inputs at each sub-system, correspond to a complete graph,
i.e., {(i, j) : i, j ∈ S`} ⊂ E , for all ` ∈ S̃ (see example in Figure
1). Finally, A is the adjacency matrix whose element aij = 1 if
(i, j) ∈ E , and aij = 0 otherwise.

Notice that the graphs G and G̃ are equivalent only if nu,i = 1, for
all i ∈ S̃, but they are different in the general case. As an illustrative
example, consider a system composed of three heterogeneous sub-
systems communicated by a path graph and with nu,1 = 3, nu,2 =
2, and nu,3 = 5. Therefore, the information-sharing graphs G and G̃
are presented in Figure 1.

The DSD are given by

ṗi =
∑
j∈Ni

pj [fi − fj ]+ − pi
∑
j∈Ni

[fj − fi]+, (7)

where Ni = {j : (i, j) ∈ E} is the set of neighbors of the node i ∈
S. The DSD can also be written as

ṗi =
∑
j∈Ni

1

2

(
(1− φij)pi + (1 + φij)pj

)
[fi − fj ], (8)

where φij = sgn(fi − fj). The following propositions show that,
the constraint associated to the simplex, including the positiveness of
the amount of population, is satisfied under the DSD in (7), and that
the DSD also solve the optimization problem in (6a), i.e., the Nash
equilibrium given in Proposition 1 is asymptotically stable under the
DSD.

∗Information depending only on the neighbors.
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Proposition 2. (Introduced in [14]) The simplex ∆ in (5) is an
invariant set along the trajectories of the DSD in (7), i.e., if p(0) ∈
∆, then p(t) ∈ ∆, for all t > 0.

Proof: The DSD can be written by using the adjacency matrix of the
graph G as follows:

ṗi =
∑
j∈S

aijpj [fi − fj ]+ −
∑
j∈S

aijpi[fj − fi]+,

∑
i∈S

ṗi =
∑
i∈S

∑
j∈S

aijpj [fi − fj ]+ −
∑
i∈S

∑
j∈S

aijpi[fj − fi]+,

and, since G is an undirected graph aij = aji, then∑
i∈S

ṗi =
∑
j∈S

∑
i∈S

ajipj [fi − fj ]+ −
∑
i∈S

∑
j∈S

aijpi[fj − fi]+.

(9)

Notice that both terms in (9) have the same value (the only difference
is the sub-index notation). Hence,

∑
i∈S ṗi = 0. Moreover, notice

that when pi = 0 for any i ∈ S, then ṗi ≥ 0. Hence, if pi(0) ≥ 0,
then pi(t) ≥ 0 for all t ≥ 0 and for all i ∈ S. �

Proposition 3. (Adapted from [14]) Let the following assumptions
hold:

• f is a full-potential game with strictly concave potential function
f(p).
• ṗ is given by the DSD in (7).
• p∗ = arg maxp∈∆ f(p).
• The graph G is connected.
• The equilibrium point p∗ of the DSD belongs to int∆.

Then, p∗ is asymptotically stable.

Proof: Since f(p) is strictly concave,Ef (p) = f(p∗)− f(p) can
be taken as a Lyapunov function candidate. The derivative of Ef (p)
along the trajectories of (7) is given by

Ėf (p) = − (∇f(p))> ṗ,

= −(f(p))>ṗ,

= −(f(p))>L(p)f(p),

where L(p) =
[
l
(p)
ij

]
is a matrix whose entries l(p)

ij are defined as
follows:

l
(p)
ij =


−
aij
2

(
(1− φij)pi + (1 + φij)pj

)
if i 6= j,

∑
k∈S

aik
2

(
(1− φik)pi + (1 + φik)pk

)
if i = j.

Notice that L(p) is the Laplacian of the graph given by the tuple
G(p) = (V, E ,A(p)), where A(p) = [a

(p)
ij ] is the adjacency matrix

whose entries are defined as

a
(p)
ij =

aij
2

(
(1− φij)pi + (1 + φij)pj

)
.

These entries are nonnegative since p ∈ ∆. Thus, L(p) ≥ 0 and
Ėf (p) ≤ 0. Therefore, the system is stable. Hence, a set B around
p∗ can be defined such that if p(0) ∈ B, then p(t) ∈ int∆, for all
t ≥ 0. Thus, if p(0) ∈ B, the null space of L(p) is equal to span{1}
since G(p) is connected. Notice that it is possible to conclude that
G(p) is connected since:

1. G(p) and G have the same topology in B, i.e., if p ∈ B, a(p)
ij = 0

only if aij = 0, and

2. G is connected.

In this case, Ėf (p) = 0 if and only if fi(p) = fj(p), for all i, j ∈
S, i.e., Ėf (p) = 0 only in p∗. Therefore, applying the LaSalle’s
invariance principle, p∗ is asymptotically stable. �

Corollary 1. The asymptotic stability of p∗ ∈ int∆ under the DSD
stated in Proposition 3 holds for connected time-variant graphs
G(t) = (V, E(t),A(t)). This statement can be seen from the Lya-
punov function considered for the proof of Proposition 3 since it is a
common function for all possible connected-graph topologies. �

5 Proposed DMPC Design

The DMPC proposed in this paper has two main stages: at the first
stage, local MPC controllers are designed for each one of the sub-
systems that compose the entire system. These MPC controllers
solve a local problem (considering only decision variables of the cor-
responding subsystem). Then, at the second stage, local solutions are
coordinated in a distributed fashion by using DSD in order to provide
an optimal solution for the whole system, i.e., an optimal solution for
the problem in (2). Next, we elaborate on these two stages.

5.1 Designing of local MPC controllers

If constraint (2e) is omitted, then the problem in (2) can be decou-
pled since the dynamics of the sub-systems are decoupled as well as
constraints (2b)-(2d). Hence, a local MPC controller for the ith sub-
system is designed by considering an optimization problem denoted
by PLMPC as follows:

min
ûk,i,ûk+1,i,....,ûk+Hp−1,i

Ji,k, (10a)

Ji,k = Jf
i

(
xi,k+Hp|k

)
+

Hp−1∑
j=0

J`
i

(
xi,k+j|k, ûi,k+j|k

)
,

s. t. xi,k+1+j|k = Aixi,k+j|k + Biûi,k+j|k,

∀i ∈ S̃, j ∈ [0, Hp] ∩ Z≥0, (10b)

xi,k+j|k ∈ Xi, ∀i ∈ S̃, j ∈ [0, Hp] ∩ Z≥0, (10c)

ûi,k+j|k ∈ Ui, ∀i ∈ S̃, j ∈ [0, Hp − 1] ∩ Z≥0. (10d)

At time instant k, these local MPC controllers compute the opti-
mal sequences (û∗i,k, û

∗
i,k+1, ...., û

∗
i,k+Hp−1) for all sub-systems

i ∈ S̃, from which û∗i,k is obtained. Notice that it is not guaran-
teed that the control inputs û∗i,k, for all i ∈ S̃, satisfy the coupled
constraint (2e) associated to a limited resource.

5.2 Coordination of the local control inputs via DSD

With the purpose of addressing the coupling constraint in (2e) in
a distributed way, we design a full-potential game where players
evolve according to DSD. The key idea is to take advantage of
the optimality result in Proposition 1, so that the Nash equilibrium
denoted by p∗ of the designed population game is the optimal solu-
tion of the entire control problem in (2). Thus, the control input
applied to the ith sub-system at time instant k is given by uf

i,k = p∗i ,
for all i ∈ S̃.

To this end, since (2e) is not an equality constraint, then the addi-
tional strategy m ∈ S is a slack variable (i.e., the one that does not
correspond to any control input), denoted by pm, to the game. This
slack variable is treated as a new node added to the graph and can be
connected to any other arbitrary node. Additionally, its fitness func-
tion is chosen as fm = 0. The slack variable allows the controller
to use less than the total available resource when it is convenient.
On the other hand, we consider bounds that guarantee feasibility
of the computed control sequence. The bound umin

i ∈ Rnu,i is
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locally computed by solving the optimization problem in (10a) with
weighting matrices Qi = Vi = 0nx,i×nx,i and Ri = Inu,i×nu,i

according to the structure presented in (3) and (4). The bound
umax
i ∈ Rnu,i is similarly found with Qi = Vi = Inx,i×nx,i and

Ri = 0nu,i×nu,i . Both problems are solved subject to (2b), (2c),
and (2d).

Remark 1. In general, the bounds ui and ūi in (2d) are different
from umin

i and umax
i , respectively. The values ui and ūi deter-

mine the physical constraints for the control inputs, whereas umin
i

and umax
i determine the bounds of control inputs that guarantee

feasibility of the problem (10a). �

To design the desired full-potential game, we employ the control
inputs provided by local MPC controllers. Specifically, once the opti-
mal control input has been computed from each local MPC controller
by means of (10), we propose a strictly-concave full-potential func-
tion. This function corresponds to the objective function of problem
(6a), which is denoted by PDSD. The full-potential function is
written as follows [14]:

f(p) = −
m̃∑
i=1

(û∗i − pi)
>ωi(û

∗
i − pi), (11)

where ωi ∈ Rnu,i×nu,i assigns a weighting factor to each control
input. The function f in (11) should be concave so that the corre-
sponding full-potential game is stable, and it should be satisfied that,
when there is enough resource, the maximum of the function f(p)
is obtained when pi = û∗i . Notice that this function represents an
error between an ideal case with infinite resources and the real case
with limited resources, then the objective is to minimize the dif-
ference. Under the proposed full-potential function in (11), fitness
functions of the population game are given by f(p) = ∇f(p), i.e.,
fi(pi) = −2ωi(û

∗
i − pi). It is worth to mention that the described

methodology does not need complete information about all control
inputs and/or all sub-systems’ states because:

1. the graph G, which models the information constraints is non-
complete, and
2. fi only depends on information of the ith sub-system, i.e, fitness
functions are not coupled.

In order to satisfy the constraints of the optimization problem (2),
the DSD are modified as follows:

ṗi =
∑
j∈Ni

p̂j [fi − fj ]+ − p̂i
∑
j∈Ni

[fj − fi]+, ∀i ∈ S, (12)

where the vector p̂ = [p̂>1 . . . p̂>m̃ p̂m]>, or equivalently p̂ =
[p̂1 . . . p̂m]>. Moreover, p̂i = (pi − umin

i ), for all i ∈ S̃, and
p̂m = pm.

Summarizing, each one of the sub-systems is equipped with a
local MPC controller that solves the optimization problem in (10a)
every time instant k ∈ Z≥0. The control inputs computed by the
local MPC controllers are then used for defining the fitness functions
of the population game as in (11). Finally, population involved in
this game evolve to the Nash equilibrium using the DSD. This Nash
equilibrium solves the problem in (2). Therefore, it corresponds to
the optimal control input applied to each sub-system.

In order to compute the fitness functions of the game, the DSD
need u∗i , for all i ∈ S̃. Furthermore, the DSD also require a fea-
sible initial condition and the limits (umin

i ,umax
i ), for all i ∈ S̃,

to guarantee that the vector of final control inputs p∗ is feasible,
i.e., umin

i ≤ p∗i ≤ umax
i , for all i ∈ S̃. Hence, to establish this

initial condition, a distributed algorithm for solving the associated
constraint satisfaction problem (CSP) is needed. For instance, an
alternative is to employ the CSP algorithm presented in [35].

Figure 2 presents the general scheme corresponding to the infor-
mation requirements for the ith sub-system. First, the local MPC

0nx,i×nx,i

Inu,i

Qi,Vi

Ri LMPCi

umin
i

umax
iQi,Vi

Ri LMPCi

Qi,Vi

Ri LMPCi

û∗
i

ith node
CSP

ith strategy
DSD

ith

sub-system

pi(0) p∗
i

Information from the
neighborhood of the

ith sub-system

xi

Fig. 2: General scheme for the information dependency at the ith

sub-system using the proposed approach.

controller computes the optimal control input û∗i , and the vectors
umin
i and umax

i are provided to the distributed CSP algorithm,
which determines a feasible initial condition for the DSD. Finally,
the DSD block computes the final control input that is applied to the
sub-system.

5.3 Plug-and-play Property

The proposed DMPC controller has plug-and-play capabilities,
which are consequence of Corollary 1 and the fact that control
problems of sub-systems are independent of each other.

Assume that a new sub-system is added to the original problem in
(2). Therefore, now we have m̃+ 1 sub-systems. Notice that, under
this assumption, the upper limit m̃ of the sums in (2a) and (2e) is
the only quantity that has to be changed in the optimization prob-
lem of the MPC formulation. Notice that for this new optimization
problem, the decoupled set of optimization problems is the same
as in (10a), including the optimization problem associated to the
sub-system m̃+ 1, and the bounds umin

m̃+1 and umax
m̃+1 can be found

without requiring information from other sub-systems. Finally, a
new node is added to the graph G and the CSP computes a feasible
initial condition for the DSD. Consequently, the proposed control
scheme is plug and play since it is not necessary to modify previ-
ously already designed parts of the MPC controller in order to add
a new sub-system to the overall problem. The same analysis can be
done for the removal of sub-systems to the problem, but it should be
taken into account that the graph G should remain connected after
this modification.

5.4 Control Convergence Cases

The adjacency matrix A(p) of the graph G(p) (see the proof of
Proposition 3) depends on the amount of population in the popu-
lation game. Consequently, when a constraint within the population-
dynamics optimization problem is active, this might cause the dis-
connection of the graph (an element within the adjacency matrix
A(p) becomes null). However, this fact also depends on the topology
of G. The following two possible cases might occur when comput-
ing the optimal control input in a distributed way with the proposed
methodology.

Case 1: u∗i > umin
i , for all i ∈ S̃. It is known that the optimal point

p∗ ∈ int∆, the graph G(p) is connected for all the time since u∗

is an interior point of U , and Proposition 3 holds.
Case 2: u∗i = umin

i , for any i ∈ S̃. The optimal control input u∗

is at the edge of U , i.e., there is an active constraint. Conse-
quently, the node associated to that decision variable disappears
and G(p) might get disconnected depending on its topology. Then,
each problem at each sub-complete graph G′ ⊂ G(p) converges to
an optimal solution. However, the optimal solution of the global
problem is not reached. This drawback can be overcome by means
of an appropriate design of the graph considering redundant links.

After having presented the proposed population-games-based
DMPC controller, which is composed of two different main stages,
i.e., designing of local MPC controllers, and a full-potential game
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smaller possible connected graph representing a critic situation, and
(b) The case when unplugging sub-systems 1 and 2.

with DSD, it is necessary to develop the stability analysis for the
proposed approach. The stability analysis of the population-games-
based DMPC is presented in Proposition 4.

Proposition 4. The system (1) is stabilized by the proposed
population-games-based DMPC controller with invariant region
of attraction XA

i =
{

xi ∈ Xi : Jc
i (x∗i,k+Hp

) ≤ πci
}

, for all the

sub-systems i ∈ S̃, and considering that

1. xi,0 ∈ Xi, for all the sub-systems i ∈ S̃, and
2. Assumption 1 holds for all the sub-systems i ∈ S̃.

Furthermore, given a CMPC with parameters Qi, Ri, Vi, and
references ri, for all i ∈ S̃, there is an equivalent population-
games-based DMPC with parameters Q̂i,k = ψiQi, R̂i,k = ψiRi,
V̂i,k = ψiVi, where ψi > 0 and the weights for fitness functions at

each sub-system ωi =
[
B>d,iQ̂i,kBd,i + R̂i,k

]
∈ Rnu,i×nu,i , for

all i ∈ S̃, i.e., u∗i,k = p∗i , for all i ∈ S̃. �

Proof: This proof is presented at the Appendix. �

Corollary 2. Given a CMPC with parameters Qi = Qj , Vi = Vj ,
and Ri = Rj , for all i, j ∈ S̃, the equivalent population-games-
based DMPC is obtained with the parameters Q̂i,k = ψi,kQi,
R̂i,k = ψi,kRi, V̂i(k) = ψi,kVi, and ωi = B>d,iQ̂i,kBd,i +

R̂i,k, with ψi,k = (ri − xi,k|k)>(ri − xi,k|k), for all i ∈ S̃. �

Remark 2. Notice that the proposed DMPC approach implies more
computational burden since extra tasks are required, i.e., (i) solving
m̃ optimization problems, (ii) a constraint satisfaction problem, and
(iii) distributed evolutionary game. �

6 Numerical Results

6.1 Proof-of-Concept Example

The considered case study is an industrial process composed of
m̃ = 10 continuously stirred tank reactors (CSTR) as presented in
Figure 3, with constraints over the information interactions for the
DMPC as presented in Figure 4(a). The vector of states for each sub-
system is xi = [Ci Ti]

>, where Ci is the concentration, and Ti is
the temperature inside the ith CSTR, and the control input is given

by ui = qi, where qi corresponds to the inflow. This is a proof-of-
concept problem that shows the performance of the control approach
proposed in this manuscript. Moreover, the methodology is scalable
to any higher dimension, i.e., for systems composed of any number
of sub-systems. The control objective here is to maintain the concen-
trations [1 0]x1, [1 0]x2, [1 0]x3, . . . , [1 0]x9, [1 0]x10 as
close as possible to the references r1 = 0.15, r2 = 0.16, r3 =
0.17, . . . , r9 = 0.23, r10 = 0.24 mol/l, respectively. Additionally,
the system has a limited total inflow resource for the control inputs
q1, q2, q3, . . . , q10 given by π = 1500 l/min. The physical con-
straints for the inflows are given by the range (ui, ūi) = (0, 300)
(in l/min). It is assumed that there are local controllers guaranteeing
that inflows achieve the values determined by the MPC controller,
i.e., the proposed MPC controllers presented in this paper compute
the references to local controllers. The discrete-time linear model
with a sampling time τ = 0.1 minutes, for the first CSTR around
the operational point given by C′1 = 0.0823 mol/l, T ′1 = 442 K, and
q′1 = 100 mol/l is written as follows:

x1,k+1 =

[
0.33 1.29× 10−5

0.61 2.45× 10−5

]
x1,k +

[
5.49× 10−4

1.95× 10−4

]
u1,k,

y1,k =

[
1 0
0 1

]
x1,k.

All the sub-systems have different models and they can be expressed
in terms of the first CSTR, i.e., Ad,` = 1.01`Ad,1, Bd,` =
1.01`Bd,1, for all ` = 2, . . . , 10. On the other hand, the weights
for the CMPC controller are given by Qi = [10000 0; 0 0], and
Ri = 1, for all i = 1, . . . , 10.

Five different scenarios are presented, all of them with prediction
horizon Hp = 5, i.e.,

Scenario 1: CMPC with weights Qi and Ri, and without resource
constraint, i.e.,

∑10
i=1 ui ≤ +∞. The optimization problem

behind this CMPC controller corresponds to Problem in (2)
neglecting the constraint in (2e).

Scenario 2: CMPC with weights Qi and Ri, and with resource con-
straint, i.e.,

∑10
i=1 ui ≤ 1800. The optimization problem behind

this CMPC controller corresponds to Problem in (2).

Scenario 3: Population-games-based DMPC with weights corre-
sponding to Proposition 4, i.e., Q̂i,k = ψiQi, R̂i,k = ψiRi, for
all i = 1, . . . , 10, with the weights in the population dynamics as
in Proposition 4, i.e., wi = B>d,iQ̂i,kBd,i + R̂i,k, with ψi,k =

(ri − [1 0]xi,k|k)2, for all i = 1, . . . , 10, and with resource
constraint, i.e.,

∑10
i=1 ui ≤ 1800.

Scenario 4: Population-games-based DMPC with local MPC
weights Q̂i and R̂i as in Scenario 3, with
ψi = 100(ri − [1 0]xi,k|k)/ri, with weights in the population
dynamics wi = ψi, for all i = 1, . . . , 10, and with resource con-
straint, i.e.,

∑10
i=1 ui ≤ 1800.

Scenario 5: Population-games-based DMPC with local MPC with
parameters as in Scenario 4, and with resource constraint, i.e.,∑10

i=1 ui ≤ 1800. Moreover, at the interval of time between 8
minutes and 12 minutes, the sub-systems 1 and 2 are discon-
nected to illustrate the plug-and-play features of the proposed
method (see Figure 4(b)).

6.2 Simulation Results

Evolution of system states (concentrations) is shown in Figure 5 for
the ten CSTRs, for all i ∈ S̃, and the five scenarios. As expected,
the concentration of each CSTR achieves its corresponding set-
point if the total inflow is not constrained. Otherwise (i.e., when the
sum of inflows is limited to a value lower than 1800 l/min), con-
centrations are below their corresponding set-points since there is
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Fig. 5: Evolution of system states in [mol/l] for the case study and five different scenarios.

not enough feed-flow rate in the reactor mass balance to increase
the concentration up to the desired value. Nevertheless, in the lat-
ter situation, controllers employ all the available resource to keep
the controlled variables close to the desired value. Furthermore,
for the fifth scenario, two sub-systems are unplugged from the
system and the remaining seven sub-systems have more available
resource achieving the required reference. However, once the two
sub-systems are plugged into the system, then the available lim-
ited resource is newly optimally distributed. Figure 6 shows the
evolution of the control inputs for the different scenarios. Addition-
ally, the equivalence between the results obtained with Scenarios 2
and 3 as stated in Proposition 4 can be seen. Besides, notice that
this equivalence between the solutions can be modified by selecting
different prioritization in the distributed evolutionary-games-based
algorithm, which is in charge of projecting the local controllers’
solutions onto the feasible set. This modified behavior can be seen
in Scenario 4. Regarding the Scenario 5, it can be seen that once the
two sub-systems are unplugged from the system, then the resource
that they were using is distributed throughout the other seven sub-
systems, and afterwards, when the two sub-systems are plugged into
the system, then the other seven sub-systems share the resource back
again. Figure 7 shows the evolution of the total resource, where the
satisfaction of the coupled constraint for all the scenarios is achieved.

Table 1 shows the steady-state error for the different scenarios
considering the coupled constraint. The equivalence between the
CMPC and the population-games-based DMPC can be seen (by
comparing Scenarios 2 and 3). Besides, when weights ωi, for all
i ∈ S̃ (see Proposition 4), are selected to be the current error, e.g.,

Table 1 Steady-state error for Scenarios 2, 3, and 4.

CSTR Scenario 2 Scenario 3 Scenario 4
1 24.3 % 24.2 % 17.6 %
2 22.1 % 22.0 % 17.6 %
3 20.7 % 20.5 % 17.6 %
4 19.2 % 19.2 % 17.6 %
5 18.1 % 18.0 % 17.6 %
6 17.0 % 17.1 % 17.7 %
7 16.0 % 16.0 % 17.5 %
8 15.0 % 15.2 % 17.7 %
9 14.2 % 14.3 % 17.6 %
10 13.5 % 13.7 % 17.7 %

time-varying weights for the population-games-based DMPC, then
an evenhanded distribution of the resource is performed achieving a
stationary state where all the percentages of error are the same (see
the behavior of Scenario 4). Consequently, the general distributed
scheme can be tuned to the population game without modifying the
local MPC controllers.

7 Conclusions

This work developed a novel methodology that use distributed popu-
lation games to make an MPC controller perform under a distributed
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Fig. 7: Sum of control inputs for the five scenarios.

scheme with plug-and-play capabilities and considering a limited
resource. Stability of the closed-loop system with the proposed
DMPC is guaranteed. Results showed that the methodology satisfies
the coupled constraint in a distributed way. Moreover, when select-
ing appropriately the potential-game weighting parameters, the same
performance as a CMPC is obtained. In addition, it is shown that the
same steady-state error can be achieved for all sub-systems by mod-
ifying the population-game weights and maintaining the design of
the overall local MPC controllers. Furthermore, since this distributed
methodology is composed by different local and independent MPC
controllers, the addition or removal of sub-systems to/from the

entire system does not imply the modification of local MPC con-
trollers. The new design is obtained by modifying only the number
of strategies in the DSD and guaranteeing the communication-graph
connectivity.
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Appendix

Proof of Proposition 4: This proof is divided into two parts. First, it
is shown that there exists a CMPC whose solution is equivalent to
the solution obtained with the proposed DMPC. Then, the equiva-
lence allows to derive stability conditions of the closed-loop system
controlled by using population-games-based DMPC.

First part: It is shown that there exists a relationship between the
prioritization of the MPC controller in the cost function (2a), i.e.,
values of Qi, Vi, and Ri, with i ∈ S̃, and the prioritization of the
DSD in the potential function, i.e., ωi, for all i ∈ S̃ (one weight ωi
for each control input vector since ui ∈ Rnu,i ) such that the optimal
control input u∗ obtained from the solution of the centralized opti-
mization problem PMPC is the same as the optimal control input
p∗ obtained from the multi-stage distributed strategy through the

optimization problems PLMPC and PDSD. For simplicity and with-
out loss of generality, a constant reference for each sub-system is
considered, i.e., ri,k = ri, for all k.

Consider the vectors

Xi,k =
[
x>i,k+1|k x>i,k+2|k . . . x>i,k+Hp|k

]>
∈ Rnx,iHp ,

and

Ui,k =
[
u>i,k|k u>i,k+1|k . . . u>i,k+Hp−1|k

]>
∈ Rnu,iHp .

Then, the prediction model can be written as Xi,k = Ψixi,k|k +
ΘiUi,k, and constraints of the form xi ≤ xi ≤ x̄i, and ui ≤
ui ≤ ūi, may be compacted as ΞiUi,k ≤ ξi,k. In order to deter-
mine the cost function in its matricial form, consider Φi =
[r>i . . . r>i ]>, i.e.,

Jk =

m̃∑
i=1

Ji,k,

Ji,k =
(
Xi,k −Φi

)>
Q̃i

(
Xi,k −Φi

)
+ U>i,kR̃iUi,k.

Defining Ei,k = Φi −Ψixi,k|k, Gi,k = 2Θ>i Q̃iEi,k, and
Hi = Θ>i Q̃iΘi + R̃i, the cost function is written as∗

Ji,k = U>i,kHiUi,k −U>i,kGi,k + E>i,kQ̃iEi,k.

Besides, consider the expression
1>nu,i

0

. . .
0 1>nu,i


︸ ︷︷ ︸

αi

Ui,k =


1>nu,i

ui,k|k
...

1>nu,i
ui,k+Hp−1|k

 .

1) The optimization problem PMPC behind the MPC controller is
stated as follows:

min
Ui,k

Jk =

m̃∑
i=1

{
U>i,kHiUi,k −U>i,kGi,k + E>i,kQ̃iEi,k

}
,

(13a)

subject to

ΞiUi,k ≤ ξi,k, ∀ i ∈ S̃, (13b)

m̃∑
j=1

αjUj,k ≤ 1[Hp]π. (13c)

For the optimization problem in (13), the following Lagrangian
function is defined:

J̄k =

m̃∑
i=1

{
Ji,k + µ>i,k

[
ΞiUi,k − ξi,k

]}

+ ε>k

 m̃∑
j=1

αjUj,k − 1[Hp]π

 ,

∗Notice that Ei,k is a known and constant value at each iteration since Φi

and Ψi are constant and the current system state xi,k|k is also known for

all i ∈ S̃. Therefore, Gi,k is also constant at each time instant.
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where µi, and ε are associated to the Lagrange multipliers. Then,
the corresponding KKT conditions for each sub-system are written
as follows:

2HiU
∗
i,k −Gi,k + µ>i,kΞi + ε>k αi = 0, (14a)

ΞiU
∗
i,k ≤ ξi,k, (14b)

m̃∑
j=1

αjU
∗
j,k ≤ 1[Hp]π, (14c)

µ>i,k
[
ΞiU

∗
i,k − ξi,k

]
= 0, (14d)

ε>k

 m̃∑
j=1

αjU
∗
j,k − 1[Hp]π

 = 0, (14e)

µi,k, εk ≥ 0. (14f)

2) When the minimization of the costs functions for the sub-
systems considers the coupled constraint, more importance is
assigned to those sub-systems with higher errors and with more
prioritization weights. However, when the coupled constraint is
neglected, the prioritization in the multi-objective cost function is
lost. In order to take into account this effect, an auxiliary weight
ψi
−1 with ψi > 0 is considered at each decoupled Ji,k for main-

taining the original prioritization throughout the proof. Therefore,
the cost function corresponding to the local MPC controller is given
by

Ji,k =
(
Xi,k −Φi

)>
ψ−1
i Q̃i

(
Xi,k −Φi

)
+ U>i,kψ

−1
i R̃iUi,k.

Notice that the addition of ψi
−1 does not modify the optimal solu-

tion of the optimization problem whose cost function is Ji,k. Then,
the optimization problem behind the local MPC controllers, PLMPC,
are stated as follows:

min
Ûi,k

Ji,k = Û>i,kĤiÛi,k − Û>i,kĜi,k + E>i,kQ̃iEi,k, (15a)

subject to

ΞiÛi,k ≤ ξi,k, (15b)

where Ĝi,k = 2Θ>i ψ
−1
i Q̃iEi,k, and Ĥi = Θ>i ψ

−1
i Q̃iΘi +

ψ−1
i R̃i (matrices Q̃i, and R̃i are selected in a way that

Θ>i ψ
−1
i Q̃iΘi + ψ−1

i R̃i > 0 to ensure that Ĥ−1
i exists [36]). In

order to avoid confusion between the control inputs from the CMPC
controller and those from the local MPC controllers, the optimal
output of the local MPC controller is denoted by Û∗i . The related
Lagrangian function is written as follows:

J̄i,k = Ji,k + λ>i,k
[
ΞiÛi,k − ξk

]
,

where λi are associated to the Lagrange multipliers. Then, the
corresponding KKT conditions are written as follows:

2ĤiÛ
∗
i,k − Ĝi,k + λ>i,kΞi = 0, (16a)

ΞiÛ
∗
i,k ≤ ξi,k, (16b)

λ>i,k
[
ΞiÛ

∗
i,k − ξi,k

]
= 0, (16c)

λi(k) ≥ 0. (16d)

3) The variables of the optimization problem in the population
dynamics are denoted by qk. The related problem is solved by
using the DSD, i.e., q∗k is the Nash equilibrium of the full-potential
population game.

Consider that Pi,k = [q>i,k|k q>i,k+1|k . . . q>i,k+Hp−1|k]>.
Besides, due to the fact that the proportion of agents is constrained
by umin

i,k ≤ qi,k ≤ umax
i,k , then the optimization problem given by

the population dynamics, PDSD, is stated as follows:

min
Pi,k

fk =

m̃∑
i=1

(
Pi,k − Û∗i,k

)>
Wi

(
Pi,k − Û∗i,k

)
, (17a)

subject to

ΞiPi,k ≤ ξi,k, ∀ i ∈ S̃, (17b)

m̃∑
j=1

αjPj,k ≤ 1[Hp]π, (17c)

where the matrix Wi, for all i ∈ S̃, is non-singular. For the opti-
mization problem in (17), the following Lagrangian function is
defined:

f̄k =

m̃∑
i=1

{(
Pi,k − Û∗i,k

)>
Wi

(
Pi,k − Û∗i,k

)
+

θ>i,k
[
ΞiPi,k − ξk

]}
+ β>k

 m̃∑
j=1

αjPj,k − 1[Hp]π

 ,
where θi, and β are associated to the Lagrange multipliers. Then,
the corresponding KKT conditions, for all sub-systems i ∈ S̃, are
written as follows:

2WiP
∗
i − 2WiÛ

∗
i,k + θ>i,kΞi + β>k αi = 0, (18a)

ΞiP
∗
i,k ≤ ξi,k, (18b)

m̃∑
j=1

αjP
∗
j,k ≤ 1[Hp]π, (18c)

θ>i,k
[
ΞiP

∗
i,k − ξi,k

]
= 0, (18d)

β>k

 m̃∑
j=1

αjP
∗
j,k − 1[Hp]π

 = 0, (18e)

θi,k,βk ≥ 0. (18f)

From (18a), it is obtained that

Û∗i,k = P∗i +
1

2
W−1

i θ>i,kΞi +
1

2
W−1

i β>k αi. (19)

Now, replacing (19) in (16a), it is obtained

2ĤiP
∗
i − Ĝi,k +

(
ĤiW

−1
i θ>i,k + λ>i,k

)
Ξi + ĤiW

−1
i β>k αi = 0.

Notice that if the weights for the local MPC controllers (denoted
by Q̂i, R̂i, and V̂i) in the optimization problem are selected to be
Q̂i = ψiQi, R̂i,k = ψiRi, and V̂i,k = ψiVi, for all i ∈ S̃, then
Ĥi = Hi, and Ĝi,k = Gi,k. In addition, if Wi is selected to be
Ĥi, for all i ∈ S̃, then it follows that

2HiP
∗
i −Gi,k +

(
θi,k + λi,k

)>
Ξi + β>k αi = 0,

this condition is the same as (14a), and P∗i satisfies constraints (18b),
and (18c). Therefore, the equivalence with the solution of the cen-
tralized optimization problem PMPC is shown. Due to the fact that
only the first control input can be applied to the system, then it yields
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ωi = B>d,iQ̂i,kBd,i + R̂i,k, for all i ∈ S̃.

Second part: Now, it is considered the optimal cost function
of the CMPC controller as a Lyapunov function and it is pro-
ceed as in [31]. The cost is denoted by Jk =

∑m̃
i=1 Ji,k, and the

optimal cost is denoted by J∗k =
∑m̃

i=1 J
∗
i,k. At time instant k,

ũ∗i,k =
(
u∗i,k|k, . . . ,u

∗
i,k+Hp−1|k

)
is the optimal control sequence

for the ith sub-system. Similarly, the optimal control sequence at
time instant k + 1 for the ith sub-system is given by ũ∗i,k+1 =(
u∗i,k+1|k+1, . . . ,u

∗
i,k+Hp|k+1

)
. Furthermore, there are feasible

control sequences given by

ũi,k =
(
u∗i,k|k,u

∗
i,k+1|k+1, . . . ,u

∗
i,k+Hp−1|k+1

)
, and,

ũi,k+1 =
(
u∗i,k+1|k,u

∗
i,k+2|k, . . . ,u

∗
i,k+Hp−1|k,uiMPC,k+Hp|k

)
.

The four previously introduced control sequences generate the costs
J∗k , J∗k+1, Jk, and Jk+1, respectively. Then,

J∗i,k = Jf
i

(
xi,k+Hp|k

)
+

Hp−1∑
j=0

J`
i

(
xi,k+j|k,u

∗
i,k+j|k

)
,

J∗i,k+1 = Jf
i

(
xi,k+Hp+1|k+1

)
+

Hp∑
j=1

J`
i

(
xi,k+j|k+1,u

∗
i,k+j|k+1

)
,

Ji,k = Jf
i

(
xi,k+Hp|k+1

)
+ J`

i

(
xi,k|k,u

∗
i,k|k

)
+

Hp−1∑
j=1

J`
i

(
xi,k+j|k+1,u

∗
i,k+j|k+1

)
,

Ji,k+1 = Jf
i

(
xi,k+Hp+1|k

)
+

Hp−1∑
j=1

J`
i

(
xi,k+j|k,u

∗
i,k+j|k

)
+ J`

i

(
xi,k+Hp|k,u

∗
iMPC,k+Hp|k

)
.

Notice that J∗k ≤ Jk, and J∗k+1 ≤ Jk+1. Consequently J∗k+1 +
J∗k ≤ Jk+1 + Jk, and

J∗k+1 − Jk ≤ Jk+1 − J∗k . (20)

The terms in (20) are

J∗k+1 − Jk =

m̃∑
i=1

{
J`
i

(
xi,k+Hp|k+1,u

∗
i,k+Hp|k+1

)
−

J`
i

(
xi,k|k,u

∗
i,k|k

)
+ Jf

i

(
xi,k+Hp+1|k+1

)
−

Jf
i

(
xi,k+Hp|k+1

)}
,

Jk+1 − J∗k =

m̃∑
i=1

{
J`
i

(
xi,k+Hp|k,u

∗
iMPC,k+Hp|k

)
−

J`
i

(
xi,k|k,u

∗
i,k|k

)
+ Jf

i

(
xi,k+Hp+1|k

)
−

Jf
i

(
xi,k+Hp|k

)}
.

Replacing in (20) and removing the term J`
i

(
xi,k|k,u

∗
i,k|k

)
at both

sides from (20), it follows that:

m̃∑
i=1

{
J`
i

(
xi,k+Hp|k+1,u

∗
i,k+Hp|k+1

)
+

Jf
i

(
xi,k+Hp+1|k+1

)
− Jf

i

(
xi,k+Hp|k+1

)}

≤
m∑
i=1

{
J`
i

(
xi,k+Hp|k,u

∗
iMPC,k+Hp|k

)
+

Jf
i

(
xi,k+Hp+1|k

)
− Jf

i

(
xi,k+Hp|k

)}
(21)

≤ 0, (according to Assumption 1).

The following steps of the proof are developed following the anal-
ysis presented in [31]. Suppose first that xi,k+Hp|k+1 = xs

i , then
the optimality implies that xi,k+Hp+1|k+1 = xs

i and it is con-
cluded that xi,k+Hp+1|k+1 ∈ X

f
i . The other option occurs when

xi,k+Hp|k+1 6= xs
i , in which case, using (21) and the fact that

J`
i

(
xi,k+Hp|k,u

∗
i,k+Hp|k

)
> 0, then

Jf
i

(
xi,k+Hp+1|k+1

)
< Jf

i

(
xi,k+Hp|k+1

)
, ∀ i ∈ S̃.

According to (4), the only possibility to satisfy the strict inequality is
that Jf

i

(
xi,k+Hp+1|k+1

)
= Jc

i < πci , and Jf
i

(
xi,k+Hp|k+1

)
=

πci , for all i ∈ S̃. This fact implies that xi,k+1|k+1 ∈ XA
i , where

XA
i =

{
xi,k ∈ Xi : Jc

i (xi,k+Hp|k) ≤ πci
}
.

Hence, it is concluded that XA
i is an invariant set. In order to prove

the stability, it is recalled the fact that J∗k+1 ≤ Jk+1, which implies
that J∗k+1 − J

∗
k ≤ Jk+1 − J∗k , i.e.,

J∗i,k+1 − J
∗
i,k ≤ J

f
i

(
xi,k+Hp+1|k

)
− Jf

i

(
xi,k+Hp|k

)
+

J`
i

(
xi,k+Hp|k,u

∗
iMPC,k+Hp|k

)
− J`

i

(
xi,k|k,u

∗
i,k|k

)
, ∀i ∈ S̃.

Using Assumption 1, it is concluded that

J∗k+1 − J
∗
k ≤−

m̃∑
i=1

J`
i

(
xi,k|k,u

∗
i,k|k

)
.

The cost function J∗k is a decaying sequence. Hence the system
(1) controlled by using a CMPC controller is stable. As a conclu-
sion, according to the first part of the proof, there exists a CMPC
controller whose solution is equal to the solution computed by
the proposed population-games-based DMPC controller. Moreover,
since the system controlled with the equivalent CMPC controller is
stable according to the second part of the proof, then the system
controlled with population-games-based DMPC is also stable. �
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