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Summary

This paper presents both analysis and comparison of the interval-observer-based
and set-membership approaches for the state estimation and fault detection (FD) in
uncertain linear systems. The considered approaches assume that both state distur-
bance and measurement noise are modeled in a deterministic context following the
unknown but bounded approach. The propagation of uncertainty in the state estima-
tion is bounded through a zonotopic set representation. Both approaches have been
mathematically related and compared when used for state estimation and FD. A case
study based on a two-tanks system is employed for showing the relationship between
both approaches while comparing their performance.
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1 INTRODUCTION

Nowadays, engineering systems are becoming more and more complex and difficult to deal with. Faults affecting these systems
may cause economic losses or even damage to human life, directly or indirectly. In order to keep safety in their operation and
with the expected performance, several diagnosis and fault-tolerant control techniques have been proposed1. These techniques
allow to know about the existence of a fault in the system and to activate mechanisms for compensating its effects as well as to
cope with the effect of the disturbances and noises that are inevitable in practice.
Basically, fault diagnosis in dynamical systems is based on checking if the deviation of the system performance from its

nominal behaviour can be due to the occurrence of a fault and it is not related to the disturbances (unknown inputs) and noises.
Generally speaking, in a faulty dynamic system, first the the fault should be detected and isolated. Then, if needed, fault size can
be estimated. Finally, the controller can be re-designed for adapting the closed-loop system to cope with the diagnosed fault. To
this aim, fault-tolerant control (FTC) techniques have been developed for addressing the re-design of the controller for either
decreasing or hiding the negative effects of faults on the system performance2.
On the other hand, the state estimation problem is an important topic in control theory since knowing the state of a system

might be crucial for implementing many control and fault diagnosis methods. There are several approaches in the literature
for estimating system states (and outputs). According to3, depending on the way uncertainties are modeled, state estimation
approaches can be categorized into stochastic and deterministic approaches. In stochastic approaches, measurement noises and
state disturbances are considered that can be modeled by some known statistical distribution (typically Gaussian). On the other
hand, deterministic approaches assume noises and disturbances as unknown variables with known bounds. Among the fam-
ily of deterministic approaches, interval observers and set-membership estimators have been introduced separately. The state
estimation provided by both approaches is given in a form of a set of states at each time instant4,5.



2 Pourasghar ET AL

Interval observers have appeared during the last decade as an attractive approach for the state estimation of uncertain dynam-
ical systems6,7,8. In this approach, the state set can be estimated at time instant k based on the state estimation set at time instant
k − 19,10. Interval observers are also nowadays one of the ways for dealing with uncertainty in FD applications. A fault can be
detected using an interval observer by generating an adaptive threshold for the residual signal that allow checking the consis-
tency of the measurements with the estimated output. In other words, the existence of the fault can be detected by comparing
the residual with a threshold value. In the case that the residual is larger than the threshold, the fault is detected. Otherwise,
the effect of the fault cannot be detected since the fault effect is lower than the effect of the uncertainties. Likewise, the set-
membership state estimation is an alternative approach that allows to estimate the system state including the measured output
and bounded noises11,12 by means of the intersection between the prediction state set and the set of states consistent with the
output measurements (as it will be further explained in the following part of the paper)10. The set enclosing the state estimation
considering uncertainty can be approximated by means of several geometrical shapes, e.g., polytopes13,14, ellipsoids15,16,17,18
and zonotopes19,20,11,21.
A considerable amount of literature has also been published on a variety of approaches to increase the robustness of the FD

methods such that the residual is obtained to be insensitive to uncertainty, while at the same time sensitive to fault22,23,24. This
is the case of FD filters that are designed by considering the robustness against disturbances, noise or any uncertainties using,
e.g.,H∞ optimization, Linear Matrix Inequality (LMI) techniques24,25. But, recent results show that the filter design technique
considering only the rejection of the effect of uncertainties has a major drawback since the sensitivity to the fault needs to be
considered in FD filter design26. This is the case of27 where the multi-objective FD design based on H−∕H∞ techniques is
considered. Indeed, the worst-case of the fault sensitivity is taken into account by the smallest not a null singular value of the
transfer function matrix from fault to residual at either ! = 0 or in given frequency range28,29,30. Likewise, a significant amount
of literature has been published discussing this multi-objective design optimization problem, e.g.,H∞∕H∞,H2∕H∞ orH2∕H2
problems26,31,32,33.
Furthermore, several model-based FD methods have been developed for computing the minimum magnitude of the fault that

can be detected through the use of interval-observer-based and set-membership approaches. The difference between the model-
based approaches regarding the minimum detectable fault is related to the different ways of modeling the fault. A fault in a state
estimation scheme can be modeled as a state or as an unknown input34. Additionally, the effect of observer gain and its influence
on the computation of the minimum detectable fault has already been studied in35.
However, to the best of the authors knowledge, both interval-observer-based and set-membership approaches are still consid-

ered as two different approaches. Therefore, the main contribution of this paper is to analyze and compare both approaches in
order to find out their relationship in mathematical terms when applied to state estimation and FD, and to establish the advan-
tages and disadvantages of each approach. to find out their relationship in a formal mathematical framework. Moreover, the
comparison is also performed in the context of FD application by means of proposing a novel FD test to connect the approaches
for the characterization of the minimum detectable fault. Finally, the relationship between both approaches when applied to both
the state estimation and FD is illustrated by using a two-tanks case study.
The remainder of this paper is organized as follows: first, the problem formulation regarding state estimation for each approach

and the way to relate them is discussed in Section 2. Then, the approaches are compared into the FD application context in
Section 3. In Section 4, a case study based on a two-tanks system is proposed in order to show the aforementioned relationships
and present the comparison results. Finally, in Section 5 the main conclusions of the paper are drawn. For completeness, relevant
definitions and properties of zonotopes are recalled in the Appendix.

Notation
Throughout this paper, ℝ denotes the set of real numbers, ℝn denotes the set of n-dimensional real numbers, ℤ+ indicates the
set of non-negative integer numbers, ⊕ denotes the Minkowski sum, the matrices are written using capital letter e.g., A, the
calligraphic notation is used for presenting the sets, e.g., , Br is a r-dimensional unitary box and the inequalities are interpreted
element-wise, ‖.‖s denotes the s-norm,min andmax are the operators that allow to obtain the minimum and the maximum value
of a given interval, respectively, and□ shows the interval hull of a set  .
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2 STATE ESTIMATION
2.1 System set-up
This paper considers a linear uncertain discrete-time invariant system modeled as

xk+1 = Axk + Buk + E!!k, (1a)
yk = Cxk + E��k, (1b)

where xk ∈ ℝnx is the state vector, uk ∈ ℝnu and yk ∈ ℝny denote the input and the output vectors, respectively. The system
matrices are A ∈ ℝnx×nx , B ∈ ℝnx×nu and C ∈ ℝny×nx . The disturbance/noise distribution diagonal matrices are denoted by E!
and E� with appropriate dimensions while k ∈ ℕ indicates the discrete time. Moreover, !k ∈ ℝn! denotes the state disturbance
and �k ∈ ℝn� represents the sensor noise, both assumed unknown but bounded, i.e.,

 =
{

!k ∈ ℝn! ∶ |
|

!k − !c|| ≤ !̄, !c ∈ ℝn! , !̄ ∈ ℝn!
}

, (2a)
 =

{

�k ∈ ℝn� ∶ |
|

�k − �c|| ≤ �̄, �c ∈ ℝn� , �̄ ∈ ℝn�
}

, (2b)

where !c , !̄, �c and �̄ are constant vectors. Disturbance and noise bounds in (2) can be represented using a zonotopic
representation of the set1 as

 = !c ⊕H!̄Bn! , (3a)
 = �c ⊕H�̄Bn� , (3b)

where H!̄ ∈ ℝn!×n! and H�̄ ∈ ℝn�×n� are two non-zero diagonal matrices composed of !̄ and �̄ in their diagonal entries.
Moreover, Bn! and Bn� are unitary boxes.

Remark 1. Noticed that the inequalities associated to |
|

!k − !c|| and ||�k − �c|| in (2) are considered component-wise.

Assumption 1. The pair {A,C} is detectable. □

Assumption 2. Additive uncertainties represented in (3) are assumed to be bounded by unitary hypercube zonotope centered
at the origin. It means, ∀ k ≥ 0, ! = [−1, 1], i.e., !c = ∅ and H!̄ = In! . Moreover, � = [−1, 1], i.e., �c = ∅ and H�̄ = In� ,
where In! ∈ ℝn!×n! and In� ∈ ℝn�×n� denote identity matrices. □

For the sake of simplification, the acronyms IOA and SMA will be used to denote the interval-observer-based and
set-membership approaches, respectively.

2.2 State estimation using SMA
The state estimation in the case of SMA is carried out based on10 and Proposition 1.

Proposition 1. Considering the dynamical model (1), the center x̂csm and the segment (shape) matrix Ĥxsm of the state-bounding
zonotope ̂ sm corrected by the ith output, i.e.,

̂ sm
k,i = x̂

csm
k ⊕ Ĥxsm

k Bnx+nω+1, (4)

can be obtained by intersecting the prediction state set e
k and the set of states consistent with each output strip 

yk
k,i as

x̂csmk = x̂cek + �k,i(yk,i − Cix̂
ce
k ), (5a)

Ĥxsm
k =

[

(I − �k,iCi)H
xe
k −�k,iE�,i

]

, (5b)

with

x̂cek =Ax̂
csm
k−1 + Buk−1, (6a)

Hxe
k =

[

AĤxsm
k−1 E!

]

, (6b)

where �i is a vector that provides degrees of freedom to tune the systemmonitoring, e.g., optimizing the state-bounding zonotope
to be as robust as possible with respect to effect of uncertainties.

1See Appendix for background on zonotopes.
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Algorithm 1 State estimation based on SMA
Step I: Compute the set of predicted states e

k using (7),
Step II: Compute the set of consistent states yk

k,i using (8),
Step III: Compute the guaranteed state estimation set ̂ sm

k,i satisfying 
e
k ∩ yk

k,i ⊆ ̂ sm
k,i by using (5) for i = 1, ..., ny.

Proof. Considering the dynamical model (1), the prediction state set can be computed as a zonotope, i.e.,

e
k = x̂

ce
k ⊕Hxe

k Bnx+nω , (7)

where x̂ce andHxe denote the center and segments of the zonotope e, respectively. Furthermore, x̂ce andHxe can be calculated
using (6) at time instant k. Additionally, a strip yk

k is computed by considering each measurement component yk as

yk
k,i =

{

xk ∈ ℝnx ∶ |
|

Cixk − yk,i|| ≤ E�,i
}

. (8)

According to10, intersection between the zonotope in (7) and the obtained strip in (8) provides the state estimation using
SMA corrected by each measurement. In order to compute the intersection between a zonotope and a strip, the Property A2 in
Appendix can be used. Therefore, using Property A2 to compute the intersection of (7) and (8), the time evolution of the center
and the segments of state-bounding zonotope (4) are given as it is derived in (5).

Remark 2. According to36, in order to apply Algorithm 1 to multi-output cases, i.e., ny > 1, the system can be considered as
several single-output systems based on the dimension of the measurement ny. Then, Algorithm 1 can be applied at each step to
compute the intersection between the predicted state set and the obtained strip for each component of the measured output using
Property A2. Considering the system as several single-output systems leads to use Property A2 towards computing the optimal
vectors �1, �2,… , �ny , independently

2.

Based on (5), the obtained state-bounding zonotope using SMA is parametrized by means of a �. Computing the parameter
� can be done using several methods, e.g., singular value decomposition, segments minimization, volume minimization and the
P-radius minimization10 11. In this paper, the optimal value of � is explicitly computed by using Theorem 1.

Theorem 1. Considering the dynamical model (1) and the state-bounding zonotope (5) at time instant k, the optimal value of
� that minimizes the F-radius of the zonotope (5) to be robust with respect to effect of uncertainties at time instant k + 1 is
computed as

�∗k,i =
(

Ĥxsm
k Ĥxsm⊤

k C⊤
i

)(

CiĤ
xsm
k Ĥxsm⊤

k C⊤
i + E�,iE

⊤
�,i

)−1
, (9)

where the superscript ∗ denotes the optimal value.

Proof. The proof follows from the results presented in10.

Finally, Algorithm 1 summarizes the state estimation procedure using SMA following the results presented in this section.

2.3 State estimation using IOA
Monitoring the dynamical model (1) can be done by designing a Luenberger observer of the form

x̂iok = Ax̂
io
k−1 + Buk−1 + L

io
k (yk−1 − Cx̂

io
k−1), (10)

where x̂io is the state estimation using IOA. Moreover, the observer gainLio should be computed such that (A−LioC) is a Schur
matrix.

Assumption 3. The initial state x0 belongs to the zonotopic set ̂ io
0 = x̂

cio
0 ⊕Ĥxio

0 Bnxio , where x̂cio0 ∈ ℝnx denotes the center and
Ĥxio
0 ∈ ℝnx×nR0 is a non-empty matrix containing the generators matrix of the initial zonotope ̂ io

0 . □

According to19, the resulting interval observer of the dynamical model (1) can be defined by considering the observer (10)
and Assumptions 1 and 2, both x̂ciok and Ĥxio

k from the state-bounding zonotope ̂xio
k , i.e.,

̂ io
k = x̂

cio
k ⊕ Ĥxio

k Bnx+nω+1, (11)

2This approach called equivalent single-measurement approach in 36
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are obtained as

x̂ciok = p̂ciok + Liok (yk−1 − Cp̂
cio
k ), (12a)

Ĥxio
k =

[

(I − Liok C)Ĥ
p̂io
k −Liok E�

]

, (12b)

with

p̂ciok = Ax̂ciok−1 + Buk−1,

Ĥ p̂io
k =

[

AH̄xio
k−1 E!

]

,

where H̄xio =↓q
{

Ĥxio
}

(see Property A3 in Appendix). Furthermore, the state inclusion property holds by using the reduction
operator for all k ≥ 0.
In37, an special type of IOA named Zonotopic Filter (ZF) is proposed. This approach can be viewed as the deterministic

counterpart of the stochastic Kalman filter when uncertainties (noise and disturbance) are assumed to be unknown but bounded.
The ZF yields the same zonotopic representations for the set in (12) for the state estimation of (1) but using the optimal observer
gain given by Theorem 2.

Theorem 2. Considering x ∈ ̂ io at time k, the optimal observer gain Lio,∗k that minimizes the F-radius of the state-bounding
zonotope (11) at time instant k + 1 is computed as

Lio,∗k =
(

AĤxio
k Ĥ

xio⊤

k C⊤
)(

CĤxio
k Ĥ

xio⊤

k C⊤ + E�E⊤
�

)−1
. (13)

Proof. According to37, minimizing the F -radius and FW -radius of a zonotope is equivalent to minimize the trace of its covari-
ance. Therefore, the proof is based on the minimization of the F -radius and the FW -radius of the zonotope that is computed by
the observer. The F -radius of the zonotope in (11) can be obtained as

J = ‖Ĥxio
k ‖

2
F = tr(Ĥ

xio
k Ĥ

xio⊤

k ) = tr(Pk), (14)

where J denotes the Frobenius radius and P is the covariance of the zonotope matrix Ĥxio
k . Likewise, the FW -radius of the

zonotope in (11) will lead to
JW = ‖Hk+1‖

2
F ,W = trĤxio

k Ĥ
xio⊤

k = tr(WPk), (15)
where JW denotes weighted Frobenius radius andWPk is the weighted-function covariance of the zonotope matrix Ĥxio

k . Hence,
the Frobenius radius in (14) can be written as

J = tr(
[

(A − Liok C)Ĥ
p̂io
k −Liok E� E!

] [

(A − Liok C)Ĥ
p̂io
k −Liok E� E!

]⊤
).

Then, by considering Q! = E!E⊤
! and Q� = E�E⊤

� , (14) can be rewritten as

J = tr
(

(A − Liok C)Pk(A − L
io
k C)

⊤ + LiokQ�L
io⊤
k +Q!

)

.

Similarly, the weighted Frobenius radius Jw in (15) is computed as

Jw = tr
(

W (A − Liok C)Pk(A − L
io
k C)

⊤ +WLiokQ�L
io⊤
k +WQ!

)

.

Therefore, the minimum Lio is obtained when
)Jw
)Lio

= 0, then using the definition of matrix trace in Appendix yields

)Lio tr(WLiok (CPkC
⊤ +Q�)) = 2)Liok tr(WALiok L

io⊤
k ),

where )Lio tr(⋅) is a short notation for )tr(⋅)
)Lio

. If W is an SPD matrix (see Appendix) and W = W T ≻ 0, by transposition and
left multiplication ofW −1 and considering Definition A6, it can be written that −APkC⊤ + Liok (CPkC

⊤ + Q�) = 0. Then, the
optimal gain Lio,∗k will be computed as it is written in (13) 3.

Note that the optimal observer gain in the case of using IOA (11) for the state estimation is computed by using Theorem 2.

3The proof follows from the results available in 37
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(a) State estimation using IOA.
(b) State estimation using SMA.

FIGURE 1 Graphical interpretation of state estimation algorithms using IOA and SMA.

2.4 Comparison from the state estimation point of view
The state estimation using SMA and IOA is introduced in Sections 2.2 and 2.3 based on10 and37, respectively. The main goal
of this section is to compare these approaches from the state estimation point of view. Just for sake of clarity, the analytical
comparison will be focused on the single-measurement case in this section as in10. But, according to36, the generalization of
the comparison can be easily extended to the multi-measurement case considering Remark 2. It is worth mentioning that there
are other manners to formulate the state estimation for the multi-measurement case using SMA approach based on36. But, the
comparison will be less clear for the reader considering this approach.
The main difference between the SMA and IOA is related to the different way that measurements are taken into account to

obtain the state estimation. This difference can be seen in Figure 1 , where the graphical interpretation of both approaches is
presented. In the case of IOA, the state estimation is obtained in an explicit way by combining the model and the measurements
through the observer gain. On the other hand, the SMA carries out this process implicitly by means of the intersection between
the set of states consistent with the model and the measurements.
Comparing (5) with (12), it is not evident how to relate both state estimation approaches because of the different tempo-

ral information of the measured output used for each approach. More precisely, the state estimation using the IOA considers
information of the output measurements at the previous time instant while state estimation using SMA is obtained by using the
information of the measurements at the current time instant. But, in the case that the parameter � in SMA and the observer gain
in IOA are identical, the same width of the state-bounding zonotopes will be obtained. However, the center of the state-bounding
zonotopes are still different due to use of different temporal information of the measured output. Therefore, both state estimation
approaches should be synchronized such that both use the measured output y given at the same time instant.
Following38, the IOA proposed by37 can be modified leading to a current IOA (CIOA) given by

̂cio
k = x̂cciok ⊕ Ĥxcio

k Bmx+mω+1, (16)

where x̂cciok and Ĥxcio
k denote the center and the segments of the zonotope (16) bounding the set of estimated states. Both center

and segments can be propagated along the discrete-time instant k as

x̂cciok = p̂cciok + Lciok (yk − Cp̂
ccio
k ), (17a)

Ĥxcio
k =

[

(I − Lciok C)Ĥ
p̂cio
k −Lciok E�

]

, (17b)

with

p̂cciok = Ax̂cciok−1 + Buk−1,

Ĥ p̂cio
k =

[

AĤxcio
k−1 E!

]

.

As it can be seen from (16) and (17), the state estimation can be performed based on the information of the measurement given
at the current time instant. When using the CIOA, the similarity of the p̂cciok with the x̂cek and also Ĥ p̂cio

k withHxe
k can be observed

by comparing (17) with (5). It can also be noted that, using the same initial condition for both approaches, i.e., x0 belongs to
the both initial zonotope ̂cio

0 = x̂ccio0 ⊕ Ĥxcio
0 Bnxcio and ̂ sm

0 = x̂csm0 ⊕ Ĥxsm
0 Bnxsm , and taking into account the formulation of
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CIOA, the only difference between the approaches is related to the different manners of selecting the observer gain Lcio and the
parameter �.
According to10, state estimation using SMA is parametrized by means of a vector � at each time instant k in (4) and the

proposed method to minimize the size of the zonotope (4) is designed based on the minimization of its segments. In addition,
the optimal value of � is obtained as in (9) according to10. Therefore, if the observer gain is designed following Theorem 3, the
state-bounding zonotopes provided by CIOA and SMA are identical.

Theorem 3. Considering the dynamical model (1) and x ∈ ̂cio at time k, the optimal observer gain Lcio,∗k that minimizes the
F-radius of the state-bounding zonotope in (17) at time instant k + 1 is computed as

Lcio,∗k =
(

Ĥxcio
k Ĥxcio⊤

k C⊤
)(

CĤxcio
k Ĥxcio⊤

k C⊤ + E�E⊤
�

)−1
. (18)

Proof. Taking into account the segments of the zonotope ̂cio
k are obtained as the columns of the matrix in (17b), the size of

the estimated state at each time instant depends on the Frobenius norm of this matrix. Therefore, the optimal observer gain Lcio
given by (18) is computed by minimizing the Frobenius norm of Ĥxcio

k in (17). Furthermore, taking into account the facts that
minimizing F -radius of a zonotope (which plays the same role as P-radius in LMI-based robust stability analysis) is equivalent
to minimize the trace of its covariance and considering Definition A6 in Appendix, it can be written that

‖Ĥxcio
k ‖

2
F = tr(Ĥ

xcio
k (Ĥxcio

k )⊤) = tr

([

(ΠkC)Ĥ
p̂cio
k

−Lciok E�

]

[

(ΠkC)Ĥ
p̂cio
k −Lciok E�

]

)

= tr
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

(

(ΠkC)Ĥ
p̂cio
k

)(

(ΠkC)Ĥ
p̂cio
k

)⊤ (

(ΠkC)Ĥ
p̂cio
k

)

(

−Lciok E�
)⊤

(

−Lciok E�
)

(

(ΠkC)Ĥ
p̂cio
k

)⊤
(

−Lciok E�
) (

−Lciok E�
)⊤

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=
(

(ΠkC)Ĥ
p̂cio
k

)(

(ΠkC)Ĥ
p̂cio
k

)⊤
+
(

−Lciok E�
) (

−Lciok E�
)⊤ ,

(19)

where Πk = I − Lciok . Therefore, the optimal value of the observer gain Lcio is determined such that
)‖Ĥxcio

k ‖

2
F

)Lciok
= 0. Thus, by

considering (19), it can be written that

−2Ĥ p̂cio
k Ĥ p̂cio⊤

k + 2Lcio,∗k CĤ p̂cio
k Ĥ p̂cio⊤

k C⊤ + 2Lcio,∗k E�E
⊤
� = 0. (20)

Finally, after the suitable manipulation of (20), the optimal observer gain can be expressed as in (18).

Therefore, in the case of IOA, the effect of measurements is considered through the selection of the observer gain. Thus, if
the observer gain Lio is selected as proposed in (13) according to the standard IOA, the value of the observer gain will depend
on the relative values of the measurement noise and input disturbances as in the SMA. It means, the gain in the IOA and � in
SMA play the same role for state estimation.
On the other hand, by designing the gain of the IOA as proposed by37, the formulation of the observer gain and the optimal

parameter �∗ proposed by10 for the SMA, are identical because these parameters are independent with respect to the information
of the output measurements. Thus, for the temporal synchronization of both approaches, instead of using the standard structure
of the IOA, the CIOA is used. Later on, CIOA is proposed based on using the zonotopic definition of the set for modeling
the bounded uncertainties. Consequently, the optimal gain of CIOA is obtained based on minimizing the size of the obtained
zonotope in (17). Therefore, the similarity of the SMA and the IOA is proved by introducing the CIOA.

3 FAULT DETECTION

Model-based FD is based on comparing the measured outputs from the system with their estimation using the model of the
healthy system. If an inconsistency is detected, the existence of a fault will be proved. So far, in this paper, IOA and SMA are
both described and compared in the state estimation context. In this section, the comparison of both methods will be performed
when applied to FD framework. In addition, the considered faults can be classified into different categories depending on its
location as
∙ actuator faults, which affects the system inputs,
∙ sensor faults that affect the measurements of the inputs and outputs of the system.
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Algorithm 2 Fault detection using the SMA
Fault ←← false
k←← 0
e
k ←← 0

while Fault = false do
Obtain and store input-output data

{

uk, yk
}

Compute the approximate set of estimated states e
k using (6)

Compute the strip from the measured output yk
k using (8)

if e
k ∩ yk

k = ∅ then
Fault ← true

end if
k←← k + 1

end while

Furthermore, the model in (1) for the dynamical system including faults can be rewritten as

xk+1 = Axk + Buk + E!!k + F af ak , (21a)
yk = Cxk + E��k + F yf yk , (21b)

where f y and f a represent output sensor and actuator faults, respectively, with their associated fault distribution matrices F y ∈
ℝny×ny and F a ∈ ℝnx×ny . Furthermore, the relationship between the measured input u∗k and the real system input uk including
the effect of faults at input sensors can be expressed as

u∗k = uk + F
uf uk , (22)

where f u indicates the input sensor fault with its associated matrix F u ∈ ℝnu×nu . In the case of an input sensor fault, the input
of the resulting interval observer is assumed to be affected by the fault.
The sensitivity of the residual to a fault characterizes how the different considered actuator and sensor faults affect the residual.

Mathematically speaking, it can be obtained as the difference between the residuals that are obtained from healthy and faulty
operations of the system presented in (1) and (21), respectively, normalized by the fault size2.

Remark 3. In the minimum detectable fault analysis presented later in the paper, only one fault is considered at the same time.
Therefore, those elements of F and f that are related to the considered fault should be considered while the other terms are
neglected, e.g., in the case of actuator fault, F a and f a are considered and F y, f y, F u and f u are removed.

3.1 FD algorithm using SMA
In general, the FD test using SMA is based on checking the intersection between the obtained zonotope in Step I and the strip
in Step II of Algorithm 1. In the case that the intersection is empty, the existence of the fault will be proved, i.e., if

e
k ∩ yk

k = ∅, (23)

the fault will be detected. Otherwise, the system is considered working in an healthy operation. Following the FD test based on
the SMA, Algorithm 2 can be used.
Furthermore, the graphical interpretation of the proposed FD test in healthy and faulty cases is shown in Figure 2 .
As it can be seen from Figure 2 , e

k and 
yk
k are affected by the fault. Then, their intersection is empty and then the fault can

be detected using Algorithm 2.
As shown in Section 2.2, e

k in Step I of Algorithm 1 can be computed as in (7). Then, given the zonotope e
k in (7) and

considering the vector Ci from each measurement (where index i indicates the itℎ row), the zonotope support strip Qz
k can be

introduced at time instant k as
Qz
k = xk ∶ q

zmin
k,i ≤ Cixk ≤ qzmaxk,i , (24)
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(a) Healthy operation of the system.
(b) Faulty operation of the system.

FIGURE 2 Graphical interpretation of FD test using the SMA.

where qzmin and qzmax are the minimum and the maximum values of the zonotope support strip, respectively, which can be
computed as

qzmink,i = Cix̂
ce
k − ‖Hxe⊤

k C⊤
i ‖1, (25a)

qzmaxk,i = Cix̂
ce
k + ‖Hxe⊤

k C⊤
i ‖1. (25b)

As can be seen in (25), the effect of state disturbance is embedded in matrixHxe that can be computed using (6b). Similarly,
in order to consider the effect of measurement noise from the Step II of Algorithm 1, the strip Qs can be derived as

Qs
k =

{

xk ∈ ℝnx ∶ |yk,i − Cixk| ≤ E�,i
}

, (26)

where yk,i indicates each output measurement. The normalized form of the strip Qs can be derived as

Qs
k =

{

xk ∈ ℝnx ∶ −1 ≤
yk,i
E�,i

−
Ci
E�,i

xk ≤ +1
}

. (27)

In general, each measurement y allows to determine a set of consistent states as it is defined in (26), where Qs is the region
between two hyperplanes that is normalized in (27). Then, based on39, the computation of measurement strip can be done using
(27) that is considered component-wise.
Thus, qsmax and qsmin values of the strip can be calculated at each time instant k by using the measurement data in (8) as

qsmink,i =
yk,i
E�,i

− 1, (28a)

qsmaxk,i =
yk,i
E�,i

+ 1. (28b)

Then, the intersection between the zonotope support strip in (25) and the measurement strip in (28) is empty if

qzmink,i > qsmaxk,i , (29a)
qzmaxk,i < qsmink,i . (29b)

Consequently, the fault will be detected if one of the conditions in (29) is satisfied. Based on conditions (29), the minimum
detectable abrupt fault will be characterized for the considered type of faults assuming that they are introduced as in (21).

Case I: Minimum detectable output sensor fault

Considering the dynamical model (21) and Remark 3 in the case of output sensor fault, the minimummagnitude of output sensor
fault that can be detected is obtained by using (29) and following Theorem 4.

Theorem 4. (Minimum detectable output sensor fault) Considering the faulty dynamical model (21) and the conditions (29),
the minimum detectable abrupt output sensor fault can be characterized as

 y
i f

y
k,i > 2‖H

xe⊤
k C⊤

i ‖1 + 2, (30)
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where the term 	 y = F y

E�
represents the sensitivity with respect to the considered output sensor fault while the obtained expres-

sion for the output sensor fault is normalized using E� . Moreover, the value 2 refers to the consideration of the worst-case
scenario, i.e., the prediction is considered with the extreme value (it is located at either the lower or the upper bound of the
considered threshold).

Proof. Following Algorithm 2, it can be written that

Cix̂
ce
k + ‖Hxe⊤

k C⊤
i ‖1 <

yk,i
E�,i

− 1. (31)

Then, considering the dynamical model (21), (31) becomes

Cix̂
ce
k + ‖Hxe⊤

k C⊤
i ‖1 < Cixk +

�ki
E�i

+  y
i f

y
k,i − 1. (32)

Moreover, by considering the worst-case scenario, where the disturbances have a maximal influence in the opposite direction
compared to that of the occurring fault, (32) can be written in faultless scenario, i.e., f yk = 0, as

Cix̂
ce
k + ‖Hxe⊤

k C⊤
i ‖1 = Cixk +

�ki
E�i

− 1. (33)

Then, considering the worst-case scenario, (31) can be written as Cix̂
ce
k + ‖Hxe⊤

k C⊤
i ‖1 = 2‖H

xe⊤
k C⊤

i ‖1. It means, xk is placed
in the border of the zonotope support strip (the measurement strip is placed in the farthest possible location). Also, minimizing
Cixk +

�ki
E�i

, the minimum detectable abrupt output sensor fault can be expressed as in (30) using (33).

Case II: Minimum detectable input sensor fault

The minimum detectable input sensor fault can be computed based on the dynamical model (21) and the faulty input (22) that
is injected to the model. Therefore, (21) can be rewritten as in (1). But, in this case, the model/observer is affected by the faulty
input (22). In this regard, (6) is expressed as

x̂cek =Ax̂
c
k−1 + B(uk−1 + F

uf uk−1), (34a)
Hxe
k =

[

AĤx
k−1 E!

]

. (34b)

Now, the FD test is based on checking the intersection between the zonotope support strip and the measurement strip.
Moreover, the minimum magnitude of the abrupt input sensor fault that can be detected can be determined by means of
Theorem 5.

Theorem 5. (Minimum detectable input sensor fault) Considering (34) and the conditions (29), the minimum detectable abrupt
input sensor fault can be expressed as

 u
i f

u
k,i > 2‖H

xe⊤
k C⊤

i ‖1 + 2, (35)
where the term 	 u = −CBF u is the sensitivity with respect to the considered input sensor fault.

Proof. Considering that Algorithm 2 can be used for detecting the fault based on SMA, the FD test is performed by checking
the intersection between the zonotope support strip and the measurement strip that can be computed in the same way as in (25)
and (28), respectively. Thus, in the case of input sensor fault, the conditions (29) can be rewritten as

Cix̂
ce
k +  

u
i f

u
k,i + ‖Hxe⊤

k C⊤
i ‖1 <

yk,i
E�,i

− 1. (36)

Hence, by assuming the worst-case scenario, the expression (35) can be obtained by the suitable manipulation of (36).

It is worth to mention that the detection of the input sensor fault depends on the direction of vector Ci and the input of the
system. Thus, the input should be designed to guarantee that the input sensor fault is not in the orthogonal direction of vector
Ci. Otherwise, the fault can not be detected.
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Case III: Minimum detectable actuator fault

Considering the dynamical model (21) and Remark 3 in the case of actuator fault, the minimum magnitude of abrupt actuator
fault that can be detected is obtained by using (29) and following Theorem 6.

Theorem 6. (Minimum detectable actuator fault) Considering the dynamical model (21) and the conditions (29), the minimum
detectable abrupt actuator fault can be computed as

 a
i f

a
k,i > 2‖H

xe⊤
k C⊤

i ‖1 + 2, (37)

where 	 a = CF a is the sensitivity with respect to the given actuator fault.

Proof. Considering the faulty dynamical model (21) and conditions (29) to guarantee the detection of the fault, it can be written
that

Cix̂
ce
k + ‖Hxe⊤

k C⊤
i ‖1 < Cixk +

�k,i
E�,i

+  a
i f

a
k,i − 1. (38)

Therefore, the expression of the minimum detectable actuator fault can be obtained as it is written in (37) by considering the
worst-case scenario and adequate manipulation of (38).

Similarly to the case of input sensor fault, the minimum magnitude of the actuator fault that can be detected is related to
the direction of the vector Ci and the input. Therefore, the proper input should be designed to avoid the problem of having the
actuator fault and vector Ci in the same orthogonal direction.

Remark 4. It can be noted that the interpretation of the term 2‖Hxe⊤
k ‖1 in the case of SMA stands for the width of the zonotopes

e in (7), where the effect of state disturbance is taken into account. On the other hand, the effect of measurement noise is
considered through Qs in (27). Then, based on the consideration of the two mentioned uncertainties, it can be guaranteed that
a fault with higher effect than the effect of uncertainties is detectable. Therefore, the characterized minimum detectable fault is
known as the smallest magnitude of the considered fault whose effect is higher than the effect of the uncertainties.

3.2 FD algorithm using the IOA
Now, the IOA is applied to FD in order to characterize the minimum detectable fault for the same type of considered faults than in
the case of SMA. The standard procedure of the FD test based on IOA relies on checking the inconsistency of the measurements
with their provided estimations by the observer model. In other words, any inconsistency between the measured outputs using
sensors and the estimated behavior that is computed by using the system model, called residual, is known as a fault occurrence4.
However, considering the standard method of residual generation in order to characterize the minimum detectable fault, it is not
possible to determine a clear relationship of IOA and SMA in FD framework since a common FD test that allows relating both
approaches is required. A possible solution in order to homogenize the approaches is to use the zonotope support strip in the case
of IOA for formulating the FD conditions. In this context, the generated residual is formulated in terms of strip mathematical
expression that can be compared with the SMA. Moreover, the strip yk

k can be obtained using (27), where the effect of the
measurement noise is taken into account (same as the Step II in the case of SMA). On the other hand, considering the vector Ci,
the zonotopic support strip Qx can be defined based on using the state estimation of the IOA in (12) at each time instant k as

Qx
k =

{

xk ∶ q
xmin
k,i ≤ Cixk ≤ qxmaxk,i

}

, (39)

where qxmink and qxmaxk are the minimum and the maximum values of the zonotope support strip, respectively. Furthermore, qxmin
and qxmax are determined at each time instant k as

qxmink,i = Cix̂
cio
k − ‖Hxio⊤

k C⊤
i ‖1, (40a)

qxmaxk,i = Cix̂
cio
k + ‖Hxio⊤

k C⊤
i ‖1, (40b)

where the effect of the state disturbance is embedded into matrixHxio , which can be computed using (12b).
Therefore, the existence of the fault will be proved by checking

̂ io
k ∩ yk

k = ∅, (41)

4See 2 for further details.



12 Pourasghar ET AL

Algorithm 3 Strip-based FD test using IOA
Fault ←← false
k←← 0
̂ io
k ←← 0

while Fault = false do
Obtain and store input-output data

{

uk, yk
}

Compute the state estimation ̂ io
k using (12)

Compute the strip from the measured output yk
k using (8)

if ̂ io
k ∩ yk

k = ∅ then
Fault ← true

end if
k←← k + 1

end while

(a) Healthy operation of the system.
(b) Faulty operation of the system.

FIGURE 3 Graphical interpretation of the strip-based FD test using IOA.

such that in the case of empty intersection, the fault will be detected. Otherwise, FD cannot be guaranteed. Thus, one of the
following conditions should be satisfied in the case of faulty operation of the system:

qxmink,i > qsmaxk,i , (42a)
qxmaxk,i < qsmink,i . (42b)

Algorithm 3 summarizes the strip-based FD test using IOA. Moreover, the graphical interpretation of Algorithm 3 is shown
in Figure 3 .
Next, the FD performance for different type of abrupt faults will be characterized when the FD test in (41) is considered.

Remark 5. Note that the interpretation of the term 2‖Hxio⊤
k C⊤

i ‖1 stands for the width of the zonotopes  io in (11), where the
effect of state disturbance is taken into account. On the other hand, the effect of measurement noise is considered throughQs in
(27). Then, based on the consideration of two mentioned uncertainties, it can be guaranteed that the fault with higher effect in
comparison with the effect of uncertainties can be detected.

Case I: Minimum detectable output sensor fault

The system to be monitored in the case of output sensor fault can be described as (21). Considering the zonotope support strip
in (40) and the normalized form of the measurements strip in (28), the minimum detectable abrupt output sensor fault based on
the IOA can be computed by using Theorem 7.

Theorem 7. (Minimum detectable output sensor fault) Considering the faulty dynamical model (21) and the conditions (42),
the minimum magnitude of the abrupt output sensor fault that is detectable in one step can be computed as

 y
i f

y
k,i > 2‖H

xio⊤
k C⊤

i ‖1 + 2. (43)
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Proof. Considering the dynamical model (21), by substituting the zonotope support strip in (40) and the normalized form of
the measurements strip in (28) into one of the faulty conditions (42) yields

Cix̂
cio
k − ‖Hxio⊤

k C⊤
i ‖1 < Cixk +

�k,i
E�i

+  y
i f

y
k,i − 1. (44)

Moreover, considering the worst-case value of xk and minimizing Cixk +
�k,i
E�,i

, the minimum detectable output sensor fault
can be characterized as in (43) after the algebraic manipulation of (44).

Case II: Minimum detectable input sensor fault

Considering the dynamical model (21) and substituting faulty input (22) in (12) for the input u gives

x̂ciok = (Ax̂ciok−1 + B(uk−1 + F
uf uk−1) + L

io
k (yk−1 − C(Ax̂

cio
k−1 + B(uk−1 + F

uf uk−1)), (45a)

Ĥxio
k =

[

(I − Liok C)Ĥ
p̂io
k −Liok E�

]

. (45b)

Now, by considering (45), the minimum detectable abrupt input sensor fault can be calculated by the following Theorem 8.

Theorem 8. (Minimum detectable input sensor fault) Considering the faulty model (45) and the conditions (42), the minimum
detectable abrupt input sensor fault can be characterized as

 u
i f

u
k > 2‖H

xio⊤
k C⊤

i ‖1 + 2, (46)

Proof. Considering the faulty model (45), the faulty conditions (42) can be rewritten by using (40) and (28) as

Cix̂
cio
k +  y

i f
u
k,i + ‖Hxio⊤

k C⊤
i ‖1 <

yk,i
E�,i

− 1. (47)

Then, the minimum detectable input sensor fault can be characterized as (46) by assuming the worst-case scenario and the
corresponding manipulation of (47).

Note from (46) that the magnitude of the minimum detectable input sensor fault depends on the input and the direction of the
vector Ci. Therefore, the input u should be designed in the way that the orthogonal direction of the vector Ci and the direction
of the given fault will be different. Otherwise, the input sensor fault will never be detected.

Case III: Minimum detectable actuator fault

Considering the faulty dynamical model (21), the minimum detectable abrupt actuator fault can be computed following the
Theorem 9.

Theorem 9. (Minimum detectable actuator fault) Considering the faulty dynamical model (21) and the conditions (42), the
minimum detectable abrupt actuator fault can be calculated as

 a
i f

a
k,i > 2‖H

xio⊤
k C⊤

i ‖1 + 2. (48)

Proof. Considering the dynamical model (21) and inserting the strips (40) and (28) into one of the faulty conditions (42) yields

Cix̂
cio
k − ‖Hxio⊤

k C⊤
i ‖1 < Cixk +

�k,i
E�,i

+  a
i f

a
k,i − 1. (49)

Consequently, the minimum magnitude of the actuator fault that can be detected is derived based on (49) by assuming the
worst-case value of xk and �k as it is expressed in (48).

Additionally, the detection of the actuator fault is related to the orthogonal direction of the vector Ci. Thus, in order to
guarantee the fault detection, the input u should be designed in such a way that the orthogonal direction of the vector Ci and the
direction of the given fault will be different.
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3.3 Comparative assessment
Algorithm 3 leads to obtain the comparable structure of the IOA and the SMA in FD framework. Consequently, the minimum

detectable abrupt fault that is derived by the presented approaches can be compared with each other under this circumstance.
Therefore, the key point of FD test is to check the intersection between the measurement strip and the state estimation support
strip comparing Algorithm 2 with Algorithm 3.
Actually, the formulation of the minimum detectable fault is characterized based on the conditions (29) and (42) considering

Algorithms 2 and 3 for both the SMA and IOA, respectively. As it can be observed from Algorithms 2 and 3, the effect of the
measurement noise is considered when determining the measurement strip (26) in both approaches. Furthermore, in the case of
SMA, the effect of state disturbance is considered through the computation of zonotope support strip in (24), where the state
disturbance effect is embedded in the matrixHxe that can be obtained using (6b). Moreover, in the case of IOA, the effect of the
state disturbance is taken into account similarly as the IOA through the zonotope support strip (39), where the state disturbance
effect is embedded in the matrixHxio that can be obtained using (12b). In both IOA and SMA, the strip from the measurement
data can be obtained considering the unknown but bounded uncertainties as in (27), where the normalized form of the maximum
and the minimum values of the output prediction can be defined as upper and lower bounds of the strip that is formulated in (28).
On the other hand, the supporting hyperplanes are characterized using the obtained sets from state estimation. Then, according
to Algorithm 2, the approximated set of the estimated states e

k can be used for computing the zonotope support strip in (25).
Meanwhile, according to Algorithm 3, the zonotope support strip that is computed in (40) is generated using the state-bounding
zonotope ̂ io

k .
Furthermore, the minimum detectable sensor and actuator faults are characterized based on the SMA in (30), (35) and (37),

respectively. Besides, the minimum magnitude of same kind of faults that can be detected are derived in (43), (46) and (48)
based on IOA.
From the mathematical comparison of both approaches, it can be noted that in the SMA, the minimum detectable fault

magnitude depends on the width of the zonotope e
k, which is obtained from the first step of its state estimation algorithm. On

the other hand, the characterization of the minimum detectable fault based in the IOA depends on the width of the zonotope ̂ io
k ,

which is obtained from its state estimation. Indeed, the magnitude of the minimum detectable fault in SMA is related to theHxe
k

that is obtained based on (7) as Hxe
k =

[

AĤx
k−1 E!

]

. Besides, the minimum magnitude of the fault that can be detected based
on IOA depends on Ĥxio

k that, according to (12), it can be written as Ĥxio
k =

[

(I − Liok C)AĤ
xio
k−1 (I − L

io
k C)E! −L

io
k E�

]

.
Furthermore, the influence of the observer gain should be considered in computing the minimum detectable fault. It means,

in the IOA, the observer gain Lio is not only designed to guarantee the convergence of the observer, but also it can be used
to guarantee the desired FD performance. From the mathematical point of view, when the observer gain is considered null
(Lio = 0), the same formulation of the minimum detectable fault is obtained in both approaches since Ĥxio = Hxe . But, it should
be considered that in the case that Lio = 0, the observer becomes a simulator and it can only be used in ideal conditions and
with perfect knowledge of the initial states. Thus, in the case of Lio = 0, the minimum detectable fault determined by the SMA
and IOA are identical. Otherwise, the FD test using IOA is more conservative in general than the SMA one.
Moreover, as it was explained before, the difference between the IOA and SMA in the state-estimation framework is related to

the use of different temporal information from the given measurement y. Therefore, by considering the same initial conditions,
the same values of �∗ and Lio,∗ can be obtained in steady state when using (9) and (13), respectively. Furthermore, if �∗ = Lio,∗
and when k tends to infinity, it will be obtained that Ĥxio

∞ = Hxe
∞ . Then, the only difference is related to the center of the state-

bounding zonotope. Therefore, the identical minimum detectable fault can be computed based on both IOA and SMA since
the mathematical expression of the minimum magnitude of the fault that can be detected is independent of the center of the
state-bounding zonotope.
Furthermore, the advantage of IOA is related to the observer gain that can be tuned to obtain better FD performance.Moreover,

another advantage of IOA in comparison with SMA is related to fact that after the fault occurrence, it is not possible to monitor
the system behaviour with the SMA. But, IOA can monitor the system even after the fault has appeared. This issue is a major
limitation in the use of SMA in FD applications.
In Section 2.4, the approaches are synchronized by modifying IOA to the form of CIOA from state estimation point of view.

Using the information of the measurements at current time instant based on the CIOA leads to obtain the same state estimation
using IOA and SMA 5. So far, according to Algorithm 3, the strip can be obtained using (8) and the state estimation is obtained
using (17). When the current information of the output for state estimation is used, both (8) and (17) are influenced by the fault,

5see the formulation of the state estimation in (17)
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FIGURE 4 Schematic diagram of the two-tanks system.

simultaneously. Therefore, the empty intersection cannot be obtained since (8) and (17) are moved together by the influence of
the fault. Therefore, the intersection will never be empty. Consequently, the fault will never be detected. Hence, the CIOA can
not be used for FD.

4 CASE STUDY

4.1 Plant Description
The illustration of comparative analysis of IOA and SMAwill be performed by using the two-tanks system, which is based on40.
The scheme of the considered case study is shown in Figure 4 .
The input of the two-tanks system is the pump flow rate that is determined by the voltage of the pump v and the state of the

system is the water level of the tanks. Additionally, Tank 1 is being affected by the outflow of Tank 2. Furthermore, the inflow
of Tank 1 is also affected by an additional disturbance ! that is generated by the uncertain position of the valve 
 , where that
position can vary between 0 and 1 , i.e., 0 ≤ 
 ≤ 1. Moreover, both upper and lower tanks are made of Plexiglas tubes with the
height of 20 cm and the connection of the tanks and the pump is done using a pipe with a diameter 6 mm.
The mathematical model of the system is derived using mass-balance relations and the Bernoulli’s law as follows:

dℎ◦1,t
dt

= −
a1
A1

√

2gℎ◦1,t +
a2
A1

√

2gℎ◦2,t +

Kp

A1
!t, (50a)

dℎ◦2,t
dt

= −
a2
A2

√

2gℎ◦2,t +
(1 − 
)Kp

A2
v◦t , (50b)

where
∙ Kpv◦t is the flow through the pump.
∙ (1 − 
)Kpv◦t is the flow towards Tank 1 according to the valve position 
 .
∙ 
Kp!t is the flow towards Tank 2 according to the valve position 
 .
∙ Kp is the pump constant.
∙ v◦t is the velocity of the water flow through the pump.
∙ Ai is the cross section of Tank i, with i = 1, 2.
∙ ai is the cross sectional area of the outlet pipes, with i = 1, 2.
∙ g is acceleration due to gravity.
∙ ℎ◦i is the level of the water in Tank i, with i = 1, 2.
Furthermore, the non-linear model (50) is linearized around the following working point:



16 Pourasghar ET AL

• ℎ∗1 = 12.4 cm, • ℎ∗2 = 1.8 cm, • v∗ = 3.00 V,

with the following parameter values:

• Kp = 3.35 cm3/Vs, • 
 = 0.60.

Hence, the linearized model of (50) around the working point that is presented using the superscript ∗ can be obtained by
introducing the variables ℎi = ℎ◦i − ℎ

∗
i and vi = v

◦
i − v

∗
i as

ℎ̇t =

⎡

⎢

⎢

⎢

⎣

− 1
T1

A2
A1T2

0 − 1
T2

⎤

⎥

⎥

⎥

⎦

ℎt +

⎡

⎢

⎢

⎢

⎣


Kp

A1
0

0
(1 − 
)Kp

A2

⎤

⎥

⎥

⎥

⎦

ut, (51a)

yt =
[

Kc 0
]

ℎt, (51b)

where ut =
[

!
v

]

and Kc is a experimental estimated parameter. Moreover, Ti =
Ai
ai

√

2ℎ∗i
g

with i = 1, 2. According to40, the

parameters of the model in (51) are given as A1 = A2 = 28 cm2, a1 = a2 = 0.071 cm2, Kc = 0.50 V/cm, g = 981 cm/s2, and
hence T1 = 62.7034 s and T2 = 23.8900 s. Using the Euler discretization with a sampling time of 1s, the linearized model of
this system can be written in the state-space form as

ℎk+1 = Aℎk + Bvk + E!!k, (52a)
yk = Cℎk + E��k, (52b)

where

A =
[

0.9842 0.0407
0 0.9590

]

, B =
[

0.0007
0.0352

]

, C =
[

0.5 0
]

. (53)

Moreover, bounded disturbances influencing all the state-space directions and themeasurement noise aremodeled respectively
with E! and E� as

E! =
[

0.08 0
0 0.08

]

, E� =
[

0.01
]

. (54)

In (52), the output y is the voltage obtained from the level sensor. Hence, considering the physical features of the two-
tank system, the range of the measured output is [0, 10] V since the height of the each tank is from 0 cm up to 20 cm and
Kc = 0.5 V/cm. Moreover, based on the experiment, the incremental value of the measured output around the working point of
the lower tank is from 4 V up to 8 V (or 8 cm to 16 cm).

4.2 State estimation
In this section, the state estimation using IOA, CIOA and SMA is compared in order to validate the obtained mathematical
analyses presented in Section 2.
As it is derived in Section 2, the state estimation using SMA in (4) at time instant k can be obtained by using Algorithm 1.

On the other hand, the state estimation based on IOA at time instant k can be computed using the following information of the
output measurement:

• the information of the measured output at the previous time instant yk−1 using (11) and (12),

• the information of the measured output at the current time instant yk using (16) and (17).

The state estimation using IOA, CIOA and SMA approaches at time instant k = 100 are shown in Figure 5 . As can be
observed from Figure 5 , the state estimation using the IOA and CIOA are different because of the different temporal information
of the measured output. But, when the CIOA is used instead of IOA, the identical state estimation as SMA will be obtained.
Notice that the same initial conditions are considered for obtaining the results in Figure 5 . During the simulation, the optimal
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FIGURE 5 State estimation in the state space.

TABLE 1 The constants Lio,∗, Lcio,∗ and �∗ in steady state.

SMA Standard IOA CIOA

�∗∞ =
[

0.6980
0.6221

]

Lio,∗∞ =
[

0.6980
0.6221

]

Lcio,∗∞ =
[

0.6980
0.6221

]

value of the parameter � is determined by (9) when using the SMA. In addition, the observer gain in the case of IOA and the
observer gain in the case of CIOA are computed using (13) and (18), respectively.
Further analysis is done during steady-state operation of the system in order to compare the distinct gains using observer-

based approaches (i.e., IOA and CIOA) and parameter � in the SMA since the computed Lio,∗, Lcio,∗ and �∗ are constant when k
tends to infinity. Looking at (9), (13) and (18), it can be noted that the values of �∗, Lio,∗ and Lcio,∗ are independent parameters
with respect to the information of the measured output, i.e., these parameters are designed to minimize the size of the state-
bounding zonotope. Therefore, by using the same initial conditions, the same values of �∗, Lio,∗ and Lcio,∗ can be obtained in
steady state when using (9), (13) and (18). In this regard, Table 1 shows the obtained results during steady-state operation of
the system from the simulation of the approaches.
Moreover, the time evaluation of the state estimation can be computed at each time instant. The interval hull of the state

estimation is projected into the output space by using the system matrix C . Figure 6 is obtained from the simulation as a result
of the projection of the state estimation into the output space. Note from Figure 6 a that the maximum and the minimum bounds
of the obtained zonotopic state estimations using both CIOA and SMA are the same. But, there is one-time-instant delay between
the results obtained using the standard IOA and the other approaches since the information of the output measurement at k − 1
given k is used in IOA.
In order to emphasize the difference between the IOA and the other approaches, the center of the zonotopic state estimations

are projected into the output space and shown in Figure 6 b. It can be observed from Figure 6 b, the center of the zonotopic
state estimations are determined using CIOA and SMA approaches are the same.

4.3 Application to FD
In this section, the extension of the comparison of both IOA and SMA approaches is performed when applied to FD. Although,
as shown in the previous section, both CIOA and SMA approaches are equivalent when applied to state estimation. But, CIOA
cannot be used for FD tasks as discussed in Section 3. Thus, instead of using CIOA this section considers IOA for comparison
purposes. The comparison is based on the minimum fault magnitude that can detect the considered approaches. In this regard,
the same actuator and sensor fault scenarios as Section 3 are considered in this case study.
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(a) Projection of the state estimation into the output space.

(b) The centers of the projection of the state estimation into the output space.

FIGURE 6 State estimation into the output space.

TABLE 2 Minimum detectable fault during steady state.

Actuator fault Input sensor fault Output sensor fault
f a1 f a2 f u1 f u2 f y1

SMA ±0.285 ±0.66 ±0.2 V ±0.04 V ±0.7 V
IOA ±0.285 ±0.66 ±0.2 V ±0.04 V ±0.7 V

The minimum detectable output sensor, input sensor and actuator faults can be computed using Theorems 4, 5 and 6 for the
IOA and Theorems 4, 5 and 6 for SMA, respectively. The obtained results are reported in Table 2 , all of them evaluated in
steady-state regime.
According to Table 2 , the minimum magnitude of the sensor and actuator faults able to be detected through the use of

both SMA and IOA are identical since the zonotope-shape matrices of the state estimations are also identical when using both
approaches in steady state, i.e., Ĥxio

∞ = Hxe
∞ . Therefore, as discussed in Section 3, the use of both SMA and IOA results in the

same minimum detectable fault magnitudes in steady state.
For the purpose of further analysis, a sensor fault scenario, affecting the output sensor, is considered in whole time range

(no only in steady state). Figure 7 shows the minimum magnitude of the output sensor fault that can be detected using both
SMA and IOA. Based on the results shown in Figure 7 , IOA conservativeness is slightly greater with respect to SMA during
the transient regime. However, as already presented in Table 2 and shown in Figure 7 , the same minimum detectable fault
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FIGURE 7 Minimum detectable output sensor fault.

FIGURE 8 Scenario 1: FD results using SMA and IOA in the case f y = 0.8V.

magnitude is obtained during steady state since Ĥxio
∞ = Hxe

∞ . Moreover, Table 2 shows that if the magnitude of the considered
fault satisfies f y > 0.7 V, it will be detectable for both SMA and IOA. Otherwise, it will be not detectable by any of both
approaches. In the following, this result will be verified in simulation considering two scenarios where the fault appears at time
instant k = 200 and its magnitude changes as follows:

• Scenario 1: Output sensor fault f y = 0.8, i.e., slightly bigger than 0.7,

• Scenario 2: Output sensor fault f y = 0.6, i.e., slightly smaller than 0.7.

Figure 8 shows the FD results using both SMA and IOA for Scenario 1 (i.e., when f y = 0.8 V). From this figure, it can
be observed that both SMA and IOA can detect the fault as it was anticipated in the minimun fault detectability analysis. By
comparing Algorithm 2, which introduces the FD test based on SMA, and Algorithm 3, which introduces the FD using the
strip-based IOA, it can be seen that both approaches use the same information of the measured output for generating the strip.
Therefore, the same strips are computed when applied to FD by both approaches as shown in Figure 8 . The only difference
between IOA and SMA is the use of different state-bounding zonotopes for checking the intersection with the strip obtained by
using the measurement. More precisely, in the case of SMA, the state-bounding zonotope is computed using (6) and, in the case
of IOA, the state-bounding zonotope is computed using (12) for consistency test.
Figure 8 is obtained at time instant k = 201 (one time instant after the fault occurrence). That figure shows that the existence

of the fault is detected by both SMA and IOA since the empty intersection is obtained between the measurement strip and the
zonotopes computed by (6) and (12) for SMA and IOA, respectively. In addition, the state estimation determined by CIOA
is also shown in Figure 8 . It can be noted that the state estimation using CIOA is affected by the fault based on using the
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(a) Before occurrence of the fault. (b) After occurrence of the fault.

FIGURE 9 The FD test using SMA and strip-based IOA in the case f y = 0.8 V before and after occurrence of the fault.

FIGURE 10 Scenario 2: FD results using SMA and IOA in the case f y = 0.6 V.

measurement information from the same time instant of the fault occurrence. Thus, the state estimation set is moved together
with the measurement strip. Consequently, the empty intersection that indicates the existence of a fault will never occur using
CIOA. For this reason, this approach is not used for FD purposes.
Figure 9 shows the FD results using SMA and IOA before and after the fault occurrence. The existence of the intersec-

tion between the strip yk and the zonotopes e and ̂ io can be seen in Figure 9 a. Then, after detecting the fault with both
approaches, monitoring the system with SMA should be stopped but the system could still be monitored using IOA as shown
in Figure 9 b. Thus, the ability of monitoring the system after the fault occurrence can be considered as an advantage of IOA
with respect to using SMA.
Now, the fault detection test results will be presented in the case of Scenario 2, which considers the fault magnitude as f y = 0.6

V, i.e., satisfying f y < 0.7 V. As shown in Figure 10 , the fault cannot be detected by any of the approaches. This figure shows
the strip yk and the zonotopes e and  io at time instant k = 201. Note that yk ∩ ̂ io ≠ ∅ in this case. Then, when using
Algorithm 3, the fault cannot be detected by using IOA. Similarly, using Algorithm 2, since yk ∩ xe ≠ ∅, SMA will neither
be able to detect the fault. Finally, Figure 11 shows the FD test before and after the occurrence of the fault. This figure shows
that both IOA and SMA are not able to determine the existence of the fault in accordance with the results presented in Table 2 .
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(a) Before occurrence of the fault. (b) After occurrence of the fault.

FIGURE 11 FD test using SMA and strip-based IOA in the case f y = 0.6 V before and after occurrence of the fault.

5 CONCLUSIONS

In this paper, both interval-observer-based (IOA) and set membership approaches (SMA) are considered for both state estimation
and fault detection (FD) tasks in uncertain linear systems. Both approaches are analyzed and compared from the mathemat-
ical point of view using a zonotopic representation of the involved sets. Mathematical and algorithmic formulations of both
approaches are introduced to facilitate a fair comparison. As a result, it has been proved that, in the case that the observer
gain in IOA is designed based on a current IOA, the state estimation bounding zonotopes are the same as those obtained using
SMA. Furthermore, the application of both IOA and SMA is analyzed when applied to FD tasks for different type of faults. The
performance of both approaches are characterized in terms of a minimum detectable fault, allowing also the quantitative com-
parison. The obtained results show that the use of the strip-based FD test for IOA leads to demonstrate that both IOA and SMA
presents comparable performance in state-steady regime. Finally, a two-tanks system is considered as a case study for illus-
trating the effectiveness of both approaches in state estimation and FD purposes. As a future research, the comparison will be
extended to the case of nonlinear systems represented with Takagi-Sugeno or linear parameter-varying (LPV) models to assess
the performance of both approaches regarding both fault detection and isolation.

APPENDIX: USEFUL DEFINITIONS

In the following, some fundamental definitions and properties regarding zonotopes are recalled.
Definition A1: (Minkowski Sum) The Minkowski sum of two sets is defined by  ⊕  = {x + y ∶ x ∈  , y ∈ }. □
Definition A2: (m-order Zonotope) A zonotope is a convex symmetric polytope. Given a vector p ∈ ℝn and a matrix H ∈
ℝn×m(n ≤ m), the zonotope is represented as  = p ⊕ HBmz =

{

p +Hz ∶ z ∈ Bmz
}

, where p is the center, H contains
the segments of the zonotope and Bmz is an mz-dimensional unitary box. Also, the order mz is a measure for the geometrical
complexity of the zonotopes. □
Definition A3: (Strip) A strip is described by S =

{

x ∶ |
|

cTx − d|
|

≤ �
}

, where c ∈ ℝny×nx is a vector and d, � ∈ ℝny are
scalars. □
Definition A4: (Interval Hull) Interval hull of a given zonotope  = p ⊕HBmz is the smallest interval box that contain  and
it is denoted by□. □
Definition A5: (Covariation of a Zonotope) Given a zonotope  = p ⊕ HBmz , the covariation of this zonotope is defined as
cov() = HHT . □
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Definition A6: (Matrix Trace) The trace of a square matrix An×n is defined to be the sum of the elements of its main diagonal.
It is obtained as tr(A) =

∑n
i=1 aii. Furthermore, for a matrix X = [Xij] and, square matrices A and B,

tr(A) = tr(AT ),
tr(A + B) = tr(A) + tr(B),
tr(�A) = �tr(A),

)xtr(AX⊤B) = A⊤B⊤,
)Xtr(AXBX⊤C) = BX⊤CA + B⊤X⊤A⊤C⊤,

hold, where )Xtr(⋅) is a short notation for
)tr(⋅)
)X

. □
Definition A7: (Frobenius Norm) The Frobenius Norm or Euclidean norm of a matrix Am×n is defined as

‖A‖F =
√

∑m
i=1

∑n
j=1 |aii|2 =

√

tr(AAH ),

where AH is the conjugate transpose of matrix A. □
Definition A9: (F-radius) The F-radius of a given zonotope  = p ⊕HBmz ∈ ℝn is the Frobenius norm of that zonotope, i.e.,
‖‖F = ‖H‖F . □
Property A1: Given two zonotopes 1 = p1 ⊕ HBmz1 ∈ ℝn and 2 = p1 ⊕ HBmz2 ∈ ℝn, the Minkowski sum of these
zonotopes is defined as  = 1 ⊕2 = (p1 + p2 ⊕

[

H1 H2
]

Bmz1+mz2 , that is still a zonotope. □
Property A2: Given the zonotope  = p ⊕HBmz ⊂ ℝn, the strip S =

{

x ∈ ℝn ∶ |
|

cTx − d|
|

≤ �
}

and the vector � ∈ ℝn, the
intersection between the zonotope and the strip is defined as  ∩ S = p̂ (�)⊕ Ĥ (�)Bmz+1, where p̂ (�) = p + � (d − cp) and
Ĥ (�) =

[

(I − �c)H ��
]

. □
Property A3: (Reduction operator) A reduction operator denoted ↓q permits to reduce the number of generators of a zonotope
 = p ⊕ HBmz ⊂ ℝn to a fixed number q while preserving the inclusion property  = p⊕ ↓q {H}Bmz ⊂ ℝn. A simple yet
efficient solution to compute ↓q {H} is given in21,37. It consists in sorting the columns ofH on decreasing Euclidean norm and
enclosing the influence of the smaller columns only into an easily computable interval hull, so that the resulting matrix ↓q {H}
has no more than q columns. □
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