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Abstract—This paper presents an alternative adaptive 

parameter estimation framework for nonlinear systems with 

time-varying parameters. Unlike existing techniques that rely on 

the polynomial approximation of time-varying parameters, the 

proposed method can directly estimate the unknown time-varying 

parameters. Moreover, this paper proposes several new adaptive 

laws driven by the derived information of parameter estimation 

errors, which achieve faster convergence rate than conventional 

gradient descent algorithms. In particular, the exponential error 

convergence can be rigorously proved under the well-recognized 

persistent excitation (PE) condition. The robustness of the 

developed adaptive estimation schemes against bounded 

disturbances is also studied. Comparative simulation results 

reveal that the proposed approaches can achieve better 

performance than several conventional estimation algorithms. 

Finally, the proposed parameter estimation methods are verified 

by conducting experiments based on a roto-magnet plant. 

Index Terms— Adaptive parameter estimation, time-varying 

parameters, nonlinear systems. 

I. INTRODUCTION 

In most control designs, it is presumed that precise model of 

the system to be controlled should be known, which stimulated 

the study of system identification and parameter estimation. 

During the past decades, extensive researches have been carried 

out on system identification and adaptive parameter estimation 

[1]–[3]. It is known that early work on adaptive parameter 

estimation has been developed based on the gradient descent 

algorithms [3], least-squares (LS) or recursive least-squares 

(RLS) methods [1]. In this framework, the unknown parameters 

are online estimated by minimizing the predictor/observer 

output error. Although the convergence of estimation error can 

be verified under the condition that the regressor vector or 

matrix satisfies the persistent excitation (PE) condition [1], the 

 
This work was supported by the National Natural Science 

Foundation of China (NSFC) under grant 61573174, the Spanish 

Ministerio de Educación project DPI2015-69286-C3-2-R (MINECO/ 

FEDER), the Spanish State Research Agency through the María de 

Maeztu Seal of Excellence to IRI (MDM-2016-0656), the AGAUR of 

Generalitat de Catalunya through the Advanced Control Systems 

(SAC) group grant (2017 SGR 482), and the Chinese Scholarship 

Council (CSC) under rant 201808390007. 

J. Na is with the Faculty of Mechanical & Electrical Engineering, 

Kunming University of Science & Technology, Kunming, 650500, 

P.R. China (Email: najing25@163.com).  

Y. Xing is with the Faculty of Mechanical and Electrical 

Engineering, Kunming University of Science and Technology, 

Kunming 650500, China, and also the Institut de Robòtica i 

Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 

Barcelona, Spain (e-mail: yashan.xing@upc.edu). 

R. Costa-Castelló is with the Institut de Robòtica i Informàtica 

Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain 

(e-mail: ramon.costa@upc.edu). 

robustness of these algorithms against noise and disturbances 

has been criticized in the literature [4]. In the subsequent 

developments, the robustness of these algorithms was 

improved by introducing several modifications in the adaptive 

laws, i.e., e-modification, σ-modification, and dead-zone 

modification [5]. However, with these modifications, the 

parameter estimation error can converge to a residual set rather 

than zero, i.e., the convergence of the estimated parameters to 

their true values cannot be retained. Moreover, it is also 

well-recognized that the adaptive estimation methods based on 

the gradient algorithms are mainly feasible for the cases where 

the parameters to be estimated are constant. Hence, these 

estimation methods may fail to retain satisfactory performance 

for time-varying parameters [6], [7]. However, in practical 

systems, time-varying parameters may be unavoidable [7], [8], 

which cannot be ignored in the system modeling.  

In fact, the online estimation of time-varying parameters has 

remained as a theoretically challenging, yet practically useful, 

open problem. On the other hand, the limitations of classical 

adaptive estimation algorithms have also stimulated several 

studies on investigating advanced adaptive estimation 

algorithms for time-varying parameters. On this topic, there 

have been two major ideas: 1) transform the systems with 

time-varying parameters to alternative systems with constant 

parameters and then use the gradient based algorithms [9]–[11]; 

2) exploit the ability of gradient based algorithms and further 

tailor them for time-varying parameters [12]–[15]. 

In order to use existing estimation schemes developed for 

constant parameters, several polynomials have been used to 

locally approximate time-varying parameters in the system. In 

particular, the time-varying parameters can be approximated by 

time-related polynomials with unknown constant coefficients 

[9], which have been obtained based on a local Taylor’s series 

expansion. Hence, the unknown constant coefficients in the 

Taylor series can be estimated by the LS methods in [9]. In [10], 

the time-varying parameters were approximated by a novel 

polynomial, and then the LS method was further adopted to 

estimate the associated unknown coefficients. In [11], the 

unknown constant coefficients of the used polynomials were 

estimated by using a novel adaptive law driven by the 

parameter estimation error (the difference between the 

unknown parameters and their estimates). However, the 

disturbances and the residual approximation errors may make 

the convergence of the estimated parameter sluggish. 

Nevertheless, the use of polynomials leads to an indirect, 

two-step estimation procedure, and the required resetting 

schemes also result in the increased complexity and heavy 

computational costs in the practical implementation.  

To avoid using polynomial approximation, some works have 
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also been carried out to explore the ability of conventional 

adaptive estimation schemes. In [12], the gradient algorithm 

with a project operation was used to estimate time-varying 

parameters assuming the knowledge of the upper bounds of 

unknown parameters is known. In [13], a stochastic gradient 

method was adopted to estimate time-varying parameters for 

dual-rate systems. In [14], the gradient methods, the recursive 

and non-recursive LS approaches with/without a forgetting 

factor were compared in details. As it is stated in [14], the 

non-recursive LS algorithms can retain robustness against 

bounded disturbances. Lozeno et al. [15] proposed a modified 

LS algorithm with  -modification to address linear 

time-varying systems with bounded disturbances. These 

methods all require the upper bounds of the time-varying 

parameters and their derivatives, so that they can be used for 

slowly varying parameters only with a priori known knowledge. 

Recently, a new set-based estimation method was investigated 

for systems with time-varying parameters [7], where a novel 

adaptive law and an uncertainty set updating scheme were all 

introduced. Ding et al. [16] proposed a modified project 

identification method and proved its convergence based on the 

stochastic theory. In [17], an almost invariant manifold 

approach was used to design an adaptive law to estimate the 

unknown time-varying parameters. Yang et al. [18] and Guo et 

al. [19] applied the expectation maximization algorithm to 

estimate the unknown parameters for process systems with 

missing data. These above-mentioned methods can prove the 

convergence of the estimation error, while the invertibility of 

the regressor has to be validated online. Moreover, an extra 

observer/predictor should be constructed to derive the adaptive 

laws, which also leads to the increased computational costs.  

To the best of our knowledge, online adaptive estimation of 

time-varying parameters has not been fully solved in the 

literature. Motivated by this fact, a novel adaptive estimation 

approach is introduced for time-varying parameters. The basic 

idea is to further tailor our recent work [20]–[22], which 

reported a new parameter estimation framework for constant 

parameters. Different to above-mentioned gradient or LS based 

algorithms, the proposed adaptive laws are designed by using 

the extracted parameter estimation errors. Hence, a set of 

intermediate variables are first derived by applying simple 

low-pass filters on the available system dynamics. Then the 

difference between the unknown parameters and their estimates 

can be calculated and then adopted to design adaptive laws for 

parameter estimation, which can guarantee the exponential 

estimation error convergence. Moreover, the design and use of 

time-varying learning gains are also investigated to eliminate 

the effects of the regressor dynamics on the convergence speed. 

Comparisons to several available algorithms are provided. This 

new adaptive estimation does not need to measure the 

derivatives of system states and design any observer/predictor. 

Especially, the online validation of the invertibility of the 

regressor matrix and the computation of matrix inverses (if 

feasible) can be avoided. Comparative simulations between the 

proposed methods and the gradient and LS methods illustrate 

that this new estimation approach can accomplish better 

performance. Finally, the algorithms are also practically 

verified using an educational roto-magnet plant built in our lab.  

The paper is structured as follows: Section II describes the 

problem formulation. The adaptive laws with exponential 

convergence are proposed in Section III. Section IV presents 

the comparisons to other estimation approaches. Simulations 

are provided in Section V, and experimental results are shown 

in Section VI. Conclusions are outlined in Section VII. 

II. PROBLEM FORMULATION 

This paper studies the following nonlinear system with 

time-varying parameters  

 ( ) ( ) ( ) ( ), ,x F x u R x u t d t= + +  (1) 

where 
nx   is the system states vector; 

mu   is the system 

input; 1 2( ) [ ( ), ( ), , ( )]T p

pt t t t   =   defines the unknown 

time-varying parameters to be estimated; ( ), nF x u   is a 

known nonlinear function, and ( ), n pR x u   is a known 

regressor matrix; ( ) nd t   denotes the effects of external 

disturbances and noise.  

The problem to be addressed is to estimate the time-varying 

parameter vector ( )t  by using available system input u and 

states x. It is noted that the time-varying property of the 

parameters makes the parameter estimation more difficult than 

the cases with constant parameters since the well-known 

parameter estimation methods (e.g., gradient [1], [5] or RLS [1]) 

are valid for system (1) only if the unknown parameters in 

( )t
 
are constant or slowly varying. Moreover, an observer or 

predictor must be designed in these schemes, and thus the 

convergence speed of the estimation error is also difficult to 

evaluate. Hence, these methods have limited ability to estimate 

fast time-varying parameters [14]. On the other hand, the 

indirect estimation schemes with polynomial approximation, 

e.g., [9]–[11], require heavy computational costs due to the use 

of time-dependent polynomials and the resetting mechanisms. 

These facts motivate us to develop a simple, efficient adaptive 

estimation framework to estimate time-varying parameters in 

( )t  without using any observer and polynomial 

approximation, whilst the convergence can be guaranteed.  

The following well-recognized assumptions to be used in the 

analysis are summarized as follow: 

Assumption 1: The states x  and input u  of system (1) are all 

measurable and bounded. The unknown disturbance d  is 

bounded. Moreover, ( ),R x u  and ( ),F x u  are continuous 

functions of x  and u , which are also bounded.  

Assumption 2: The time derivative of the unknown parameter 

vector ( )t  is bounded, i.e.,    is true for a positive 

constant 0  . 

Remark 1: Assumption 1 and Assumption 2 have been widely 

used in the parameter estimation literatures [10], [14], [15], and 

they can be fulfilled in most practical applications. Specifically, 

the assumptions are less stringent than those used in [10], [15], 

where a priori knowledge on the upper bounds of the unknown 

time-varying parameters are required. In this paper, the upper 
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bound parameter   in Assumption 2 is used for analysis only, 

and thus its true value is not necessarily known.  

III. TIME-VARYING PARAMETER ESTIMATION 

This section will introduce a novel adaptive law to estimate 
( )t  in system (1) to achieve exponential convergence. 

Inspired by our previous work [20], [21], which has been 
initially proposed for constant parameters, the filtered variables 

,f fx F  and 
fR  of ,x F  and R  are defined as 

 

( )

( )

( )

,       0 =0

,      0 =0

,     0 =0

f f f

f f f

f f f

kx x x x

kF F F F

kR R R R

 + =


+ =


+ =

 (2) 

where 0k  is the filter coefficient, which can be set as a small 

constant. According to Assumption 1, 
fR  is bounded by 

fR   for a positive scalar 0   since 
fR  is the filtered 

version of R . 

By filtering both sides of system (1) with the low-pass filter 

given in (2), we can obtain that 

        
1 1 1

1 1 1 1

s
x F R d

ks ks ks ks
= + +

+ + + +
 (3) 

Considered the equations (2) - (3) and Swapping Lemma [5] 

regarding the term ( )
1

1
R t

ks
  +

, it can be verified that 

 1

f

f f f f f

f f

x x k
x F R R d

k ks

F R

 

 

−
 = = + − + +

= + +

 (4) 

where fd  given by , (0) 0f f fkd d d d+ = = is the filtered 

disturbance, which is bounded. Since 
fR  is bounded, then 

according to Assumption 2, the term  ( )= / 1 f fk ks R d  + −   

is also bounded for any constant 0k  , i.e., there exists a 

constant 0  , such that the fact    holds. Hence, the 

term   could be taken as a bounded disturbance in system (4). 

Then, the following lemma can be obtained:  

Lemma 1: By applying the filter operation (2) on system (1), 

then the intermediate variable 

 =
f

f f

x x
F R

k
 

−
− −  (5) 

is ultimately bounded and decreases exponentially to a set 

around zero. Specifically, for 0d = we have 

 ( ) 
0

lim lim / 0f f f
k t

x x k F R 
→ →

 − − − =
    (6) 

Thus, for any low-pass filter coefficient 0k  and 0d = , the 

surface ( ) / 0f f fx x k F R − − − = is an invariant manifold [23]. 

Proof: We can calculate the differential of   with respect to 

time from (2) and (5) as  

 ( )
1f

f f f f

x x
F R R kR

k k
    

−
= − − − = − +   (7) 

We first prove that   is bounded. By choosing Lyapunov 

function / 2TV  = , we can obtain V  along (7) as 

 

22 2

2 2

1 1 1

2 2

1

2

T T

f f

k
V R R

k k k

k
V

k





      

 

= − −  − + +

 − +

  (8) 

The above inequality indicates that ( )/ 2 2 20 / 2t kV e V k   − + . 

Thus,   is bounded and decreases based on Lyapunov theory. 

Specifically, we can verify that ( )t
 
will converge to a set 

defined by ( ) ( ) ( )2 / 2 2 22 0 t kt V t e k   −=  + , of which 

the ultimate size is affected by the filter coefficient k , the 

upper bound   of 
fR  and the upper bound   of  . Hence, 

we can verify that ( )lim
t

t k 
→

=  holds, such that ( )t  is 

vanishing for an adequately small k  or when the parameters 

are constant (i.e., 0 = ), i.e., ( )
0

limlim 0
k t

t
→ →

=  as 0k →  for 

any bounded initial condition ( )0 . Hence, the surface 0 =  

is an invariant manifold [23] with a positive constant 0k  . 

This completes the proof.      ◇ 

Remark 2: As shown in (4) and the proof of Lemma 1, the filter 

constant k  in (2) determines the ultimate residual error bounds 

of   (i.e.,   ) and  . This stems from the use of 

Swapping Lemma on the time-varying parameters, which leads 

to the residual term  . Thus, this filter constant k  should be 

set as a small constant in general to obtain accurate parameter 

estimation. On the other hand, the constant k  defines the 

bandwidth of the low-pass filter ( )1/ 1ks + , which is related to 

robustness against noise and disturbance. Hence, the filter 

constant k  should be set to make a tradeoff between the 

convergence speed and robustness. 

It is shown that the manifold variable (5) does not depend on 

the derivative of state vector x . Additionally, it provides an 

implicit relationship between the unknown parameters   and 

the available variables ( , , , )f f fx x F R . Hence, we can design an 

adaptive law based on the merit of this invariant manifold. For 

this purpose, an intermediate regressor matrix G  and an 

intermediate vector S  are defined as 

 
( )

( ) ( )

0 =0

, 0 =0

T

f f

T

f f f

G G R R G

S S R x x k F S





 = − +


 = − + − −  

，
 (9) 

where 0   is a constant, which serves as a forgetting factor to 

guarantee the boundedness of matrix G  and vector S .  

To design an adaptive law by using regressor G
 
in (9), the 

positive definiteness of this matrix needs to be analyzed. 

Denote ( ) ( )max min,    as the maximum and minimum matrix 

eigenvalues, we can obtain: 

Lemma 2 [20], [21]: If the original regressor matrix R  is PE 

(e.g., there exist 0, 0T    such that ( ) ( ) , 0
t T

T

t
R R d I t   

+

   ), 

then the matrix G  defined in (9) is positive definite, that is

( )min 1 0G   for positive constant 1 . 

Proof: A similar proof of the above lemma can be found in [20], 

[21], and thus will not be presented here. 

Based on the derived ( ) ( ),G t S t  given in (9), other auxiliary 
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vectors ( )1P t  and ( )2P t  used to design the adaptive laws can be 

calculated as 

 ( ) ( ) ( ) ( )1
ˆP t G t t S t= −  (10) 

 ( ) ( ) ( )2
ˆT T

f f f f fP t R R t R x x k F  = − − −
   (11) 

where ( )ˆ t  is the estimate of the unknown parameters ( )t , 

which is online calculated based on the adaptive laws to be 

proposed in the following (15) and (20). 

Now, we have the following fact: 

Lemma 3: For the variable given in (10) and (11), we can 

verify that 

 ( ) ( ) ( )1P t G t t = − +  (12) 

 ( )2 ( )+T T

f f fP t R R t R = −  (13) 

where ˆ=  − is the estimation error, ( ) ( ) ( )
0

=
t t T

fe R d
 

    
− −

  

is a residual variable stemming from the variation of unknown 

parameters ( )t  , which is bounded by / /fR     = . 

Proof: To prove equation (12), the solution of (9) can be 

derived as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

0

0
/

t t T

f f

t t T

f f f

G t e R R d

S t e R x x k F d

 

 

  

    

− −

− −

 =



  = − −
 




  (14) 

Then we can verify from (4) that ( ) ( ) ( )S t G t t = − , which 

together with (10) can lead to (12). The proof of (13) can be 

carried out by substituting (4) into (11).    ◇ 

Remark 3: It is shown in Lemma 3 that the estimation error   

is involved in the obtained variables 1P , 2P . In particular, 1P  is 

a filtered version of 2P  in terms of a low pass filter ( )1/ s + , 

which introduces an ‘averaging’ effect on the regressor T

f fR R , 

and thus helps improving the robustness against noise. 

However, this averaging operation could decrease the ability to 

track fast varying parameters. Hence, the use of 2P  with the 

instant information of estimation error   is essential for 

tracking unknown time-varying parameters in comparison to 

the case with constant parameters with 1P
 
only [20],[21].  

With the help of the derived variables 1P , 2P , two novel 

adaptive laws will be introduced in the following subsections, 

which are different to the gradient algorithms [12], [14], [15] 

and the methods using the polynomial approximation [9]–[11]. 

A. Parameter Estimation with Constant Learning Gain 

The first adaptive estimation algorithm for updating ̂  can 

be given as 

 ( ) ( )1 2
ˆ =t P P −  +   (15) 

where 0   is a constant learning gain, which can be designed 

as a diagonal matrix, 0   is a constant to balance the ability 

for estimating fast varying parameters and the robustness. 

The convergence of adaptive law (15) is summarized as: 

Theorem 1: Considering system (1) with unknown time- 

varying parameter ( )t , the adaptive law (15) with derivations 

(2), (9), (10) and (11) is used. For the regressor R  being PE, 

then the estimation error   converges to a small compact 

set given by 

( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 1

min max

1

1 min

1/ /

2 3 / 2

m m

m

      


 

−

−

 + +  
 

− 
. 

Proof: We select a Lyapunov function as 
1= / 2TV  − , and 

then calculate the derivative of V  along (12), (13) and (15) as  

 

1 1

1

ˆ= = ( )

+

T T

T T T T T T T

f f f

V

G R R R

    

         

− −

−

  −

= − + − + 
 (16) 

Then by using the Young’s inequality / 2 / 2T T Ta b a a m mb b +  

with a constant 0m  , we can further obtain that 

 
( )

( )

2 2 2 2 2 2
2

1 2 2

min

3 / 2
2 2 2

m m m
V m

V

     
 

 

 

 − − + + +


 − +
  

 (17) 

where ( ) ( )1

1 min2 3 / 2 /m   −= −  , ( )2 2 2 21/ / 2m    = +  

( )2 2

min/ 2m +  are all positive constants for 13 / 2m  . We 

can further derive the solution of (17) as ( ) ( )0 /tV t e V  − + . 

Based on the definition of 
1= / 2TV  − , one can also verify 

( ) ( ) ( ) ( ) ( )( ) ( )
21 1 1

min max min
2 / 0 2 / /

t
t V t e


      

− − − −
    + 

. Therefore, the estimation error ( )t  will converge to a 

compact set as defined in Theorem 1.   ◇ 

Remark 4: As proved in Theorem 1, the size of the estimation 

error   is affected by the excitation level (e.g., 1 ), the bound 

  of the residual error from the parameter variation   and 

disturbance d, and the learning gain  . In general, the 

convergence speed   can be increased by using a higher 

excitation 1  and a larger gain  . Moreover, it is also noted 

that in the specific case with constant parameters (i.e., 0 = ), 

we can verify that 0 = , and thus the estimation error of the 

proposed adaptive algorithm (15) could converge to zero 

exponentially.  

Remark 5: Lemma 2 indicates that the PE condition of 

regressor R is sufficient to prove the error convergence of the 

proposed adaptive law (15). This condition is the same as those 

used in the parameter estimation literature, e.g., [9]–[12], [14], 

[15]. However, it is generally difficult to validate the standard 

PE condition online, which remains as an open problem. In the 

proposed new parameter estimation framework, we provide a 

feasible method to online test this condition as shown in 

Lemma 2, that is to calculate the minimum eigenvalue of G  

and validate the condition ( )min 1 0G   . 

Remark 6: For the filter constant   in (9), a large   can 

eliminate the residual error  as shown in Lemma 3. However, 

a very large   may produce a large DC gain 1/  in (9), and 

then reduce the amplitude of G , which in turn could decrease 

the convergence rate of adaptive law (15). Hence, the constant 

  should be set as a small constant in practice. 
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B. Parameter Estimation with Online Varying Learning Gain 

As shown in (12) and (13), the amplitudes of the residual 

error   and the perturbing disturbance 
T

fR   in 1P  and 2P  are 

related to the amplitude of the filtered regressor 
fR . In this 

case, a constant learning gain   may not be able to achieve 

satisfactory estimation performance for generic regressor R  

with different amplitudes. Thus, a time-varying learning gain 

( )Q t  will be further developed to compensate for the effects of 

( )G t  and 
T

f fR R  in the adaptive law. In order to achieve this, 

another matrix Q  is defined as 

 
T

f fQ Q QR R Q= −  (18) 

with non-zero initial condition ( )-1

00 = 0Q Q  . According to 

the matrix equation 1 1 1 0
d d

QQ QQ Q Q
dt dt

− − −= + = , we can 

derive its solution as 

 
( ) ( ) ( ) ( )

1

0
0

1

0

=
t tt T

f f

t

Q t e Q e R R d

e Q G

 



  
−

− −−

−
−

 +
  

 = + 


 (19) 

As shown in (19), we know that Q  exponentially converges 

to 1G− , such that ( ) ( )G t Q t I→  as t →  . Thus, it can be 

included in the adaptive law to eliminate the effect of G .  

Hence, a further modified adaptive law with time-varying 

gain Q
 
can be designed as 

 ( ) ( )1 2
ˆ =t Q P P −  +  (20) 

where 0   is a constant scalar, Q
 
is the matrix obtained 

from (18), which is used to compensate the effects of G  on the 

convergence of the adaptive law. 

Before proving the convergence property of adaptive law 

(20), we have the following lemma: 

Lemma 4: If the original regressor R  is PE, then the matrix Q  

given in (18) is bounded by 

 ( )1 2I Q t I    (21) 

where ( )( )2

1 min 01/ Q  = + and 2 = /Te  are positive 

constants. 

Proof: From (19), we can rewrite its solution as 

( ) ( ) ( ) ( ) ( )1 1

0
0 .

t tt T

f fQ t e Q e R R d
    

− −− − −= +   Considering the 

PE condition of R , it can be verified that the inequality 

( ) ( ) ( ) ( ) ( ) ( )1

0

t tt tT T T

f f f f
t T

Q e R R d e R R d e I
          

− − − −− −

−
   

 holds for 0t T  . Moreover, since the filtered regressor is 

bounded ,fR  we can validate that the fact 

( ) ( ) ( )1 1 2 2

0
0

0
t t

Q t Q e d Q I
 

  
− −− − +  +

 
holds. Thus, the 

boundedness of Q
 
as given in (21) is proved.  ◇  

The convergence of adaptive law (20) is described as: 

Theorem 2: For system (1) with unknown time-varying 

parameters
 

( )t , the adaptive law (20) with time-varying gain 

Q  given in (18) is used. For the regressor R  being PE, then the 

estimation error   converges to a compact set defined by 

( )
( )

2 2 2 2 2 2 2

2 1

2

1 1 2

1/ /

2 / / 3 /

m m

m

      


    

 + + 
 

+  −  −
. 

Proof: We select a Lyapunov function as 1= / 2TV Q −  , and 

then V  can be calculated as 

 ( )

( )

1 1

1

1

2 2
22

1 2 2

2 2 2 2

2 2

1

1 1
=

2

1
ˆ+

1

2

/ 2 / 2 3 / 2
2

2 2

T T

T T T T T T T

f f f

T T

f f

V Q Q

Q G R R R

Q R R

m
m

m m

   

         

  

 
    



   



− −

−

−

+
 

= − + −


+ − +


 − +  −  − +

+ +


 (22) 

where m  is a positive constant induced by Young’s inequality. 

Hence, following a similar analysis given in the proof of 

Theorem 1, the upper bound of   (i.e., ( ) 22t V   ) can 

be obtained from (22), which in turn gives the error bound 

given in Theorem 2. Compared to (17), it is clear shown that   

can be assigned large and m  is set small to improve the error 

convergence. This completes the proof.   ◇ 

Remark 7: It is emphasized that the adaptive laws (15) and (20) 

can be also adopted to estimate constant parameters (i.e., 

0 =  ) without any modification. In this case, one can verify 

that 0 = = , and thus the adaptive law (15) can guarantee 

exponential convergence of estimation error to zero as shown in 

[20], [21]. 

Remark 8: The current study focuses on system (1) where the 

unknown parameters to be estimated are in a linearly 

parameterized form (i.e., ( ) ( ),R x u t ). However, it is potential 

to extend the proposed adaptive laws (15) and (20) to the cases 

where the unknown parameters are embedded in the nonlinear 

functions ( )F  and ( )R  possibly by applying Taylor series 

or min–max optimization algorithm [24], which will be studied 

in our future work.  

Remark 9: It is shown in Theorem 1 and Theorem 2 that the 

estimation accuracy of the proposed algorithms depends on the 

varying speed of unknown parameters, i.e.,   , because 

the constant   is involved in the numerator of the upper bound 

of estimation error  . Hence, the estimation error for fast 

varying parameters is larger than slowly varying parameters. 

IV. COMPARISON TO OTHER ESTIMATION METHODS 

In this section, we will compare the developed adaptive law 

(15) with the gradient algorithm and the LS algorithm with a 

variable forgetting factor [3] concerning the boundedness, 

convergence, robustness and the required PE condition. 

Therefore, the error dynamics of these adaptive laws will be 

summarized. 
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A. Proposed Adaptive Law 

As it is shown in the above section, the adaptive law (15) is 

designed by the derived parameter estimation error. Hence, we 

can get its estimation error as 

 ˆ +T T

f f fG R R R         = − = −  +  −    (23) 

which indicates that   is bounded since the residual errors  , 

  and   are all bounded and the error dynamics given in (23) 

are bounded-input-bounded-output (BIBO) stable. Moreover, 

as proved in Theorem 1, the estimation error approaches to a 

small compact set even for time-varying parameters. The bound 

of the estimation error is determined by the size of the residual 

errors   and  , which depends on the variation rate of the 

unknown parameters apart from disturbance, and thus can be 

small for slowly varying parameters and small disturbances. 

B. Gradient based Adaptive Law 

In this method, a predictor or observer has to be constructed. 

The observer/predictor for system (1) is given by 

 ( ) ( ) ( )ˆˆ ˆ, ,x F x u R x u L x x= + + −  (24) 

where 0L   is the observer gain, ̂ denotes the estimated 

parameters, which can be updated based on the following 

adaptive law. Define the observer error between the system 

state x  and the observer state as ˆe x x= − , then we can verify 

from (1) and (24) that 

 ( ),e Le R x u d= − + +  (25) 

The gradient based adaptive law is designed to minimize the 

power of the estimation error e  by 
2 / 0e   = , which leads to 

an adaptive law by using the observer error e as 

 
2

ˆ T e
R

n
 =   (26) 

where 2n  is a normalizing factor given by T1n R R= +  as 

explained in [14], and 0   is the learning gain. 

Then the estimator error of the adaptive law (26) is given as 

 
2

ˆ T e
R

n
   = − = −   (27) 

As it is shown in (25) and (27), although the observer error e 

contains the information of estimation error  , it is not a 

trivial task to calculate the bound of   in this case. In fact, the 

gradient based algorithm (26) ̂  can potentially result in the 

bursting phenomenon and thus has poor robustness against 

uncertainties and disturbances. Even if the observer error e is 

bounded and small, the bound of   may be large as shown in 

(27). Specifically, the convergence of   could not be claimed 

without the PE condition even though e converges to zero. In 

fact, compared with the LS algorithm, the gradient based 

algorithm can achieve faster convergence as shown in [2] and 

[14], whilst it is more sensitive to noise.  

C. LS Algorithm with Variable Forgetting Factor [14] 

The general idea of LS algorithm resembles that of gradient 

algorithm, that is, an observer error e  given in (24)-(25) is used 

to drive the adaptive law 

 
2

ˆ T e
HR

n
 =  (28) 

However, the learning gain H  in the LS algorithm (28) is a 

time-varying matrix rather than a constant gain   as used in 

the gradient algorithm, which can be online updated by 

 ( )
2

THR RH
H I H H

n
 = − + −  (29) 

where ( ) 0 00 / 0 /TI H H H I   = =   is a manually set 

bounded initial condition [14], and 0   is the forgetting 

factor to penalty the initial condition. Hence, the estimation 

error dynamics of LS algorithm can be given by 

 
2

ˆ T e
HR

n
   = − = −  (30) 

For the LS algorithm, the estimated parameters ̂  may also 

drift, and the bursting phenomena may also be encountered [5]. 

However, as analyzed in [2], the LS method introduces an 

averaging effect on the error convergence, and thus can 

increase the robustness against noise and disturbance, while the 

transient convergence rate for estimating fast varying 

parameters may be reduced.  

From above analysis, we can conclude that the proposed 

adaptive law (15) can guarantee that the estimation error   is 

bounded and converges to a small set around zero even for 

time-varying parameters. Moreover, the proposed estimation in 

this paper does not use any observer or predictor in comparison 

to the gradient and LS methods. Nevertheless, the robustness of 

the proposed adaptive law is guaranteed. Finally, with the 

proposed adaptive algorithm, the PE condition for guaranteeing 

the convergence of the estimation error can be online validated 

by testing the equivalent condition
 min 1( ) 0G   .  

V. SIMULATIONS 

In this section, the proposed estimation methods are 

validated by conducting simulations based on a benchmark 

servo motor system. The gradient algorithm and the LS 

algorithm with variable forgetting factor given in the above 

section are also simulated for comparison. 

The following servo motor system [7], [10] is used in this 

section as the simulation plant 

 
( )

( )
( )

( )

( )
( )

1 2

1

2 2 2

, 2
,

10 10arctan 900
F x u

R x u

t

x x

t
x u x x d

t







=


 
= + − − +    

  



 (31) 

where ( ) ( )
1

=2+sint t  and ( ) ( )
2

=3+cos 0.5t t   are the 

unknown time-varying parameters to be estimated; 

( ) ( )=1000sin 20u t t  is the control input. To validate the 

robustness of the proposed algorithms, a zero-mean random 

signal ( ) ( )1 rand 1 0.5d t =  −
 
is added into the system, which 

can be taken as the measurement noise of the velocity sensor. 

The adaptive parameter estimation methods presented in 

Section III are tested in order to investigate the efficacy of the 

intermediate variables Q , 1P  and 2P . The parameters used in 
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(2) and (9) are set as 0.001k = , 70 = . We first simulate the 

adaptive law (15) with the constant learning gain
 

 ( )= 5 400diag
 
and the zero initial condition

 
( )ˆ 0 0 = . 

 
Fig. 1 Estimated parameters of adaptive law (15): (a) 0 = ; (b) 

0.03 = . 

 
Fig. 2 Estimation errors of adaptive law (15): (a) 0 = ; (b) 

0.03 = . 

Simulation results of the estimated parameter profiles and 

the corresponding estimation errors are depicted in Fig. 1 and 

Fig. 2. It is shown that adaptive law (15) with both 0 =  and 

0.03 =  can achieve accurate estimation of the unknown 

time-varying parameters in the steady-state. However, the 

estimator with 2P  of instant estimation error 
T

f fR R   (i.e., 

0.03 = ) can obtain slightly faster transient convergence 

performance than that without 2P
 
(i.e., 0 = ). In the case 

0.03 = , the instant error information  in 2P
 
is used together 

with
 1P , which can help tracking time-varying parameters. 

However, the use of instant information 
T

f fR R   in the adaptive 

law makes it sensitivity to noise, which can result in more 

high-frequency oscillations as shown in Fig. 1 and Fig. 2. 

Hence, in practice we cannot set   as a large constant.  

 

Fig. 3 Estimated parameters of adaptive law (20): (a) 0 = ; 

(b) 0.03 = . 

We further test adaptive law (20), where a time-varying gain 

Q  given in (18) is used. The parameters of k  and   are the 

same as in the previous case. However, as analyzed in Section 

III, the effects of regressor R on the convergence rate can be 

eliminated by using time-varying gain
 
Q and thus the learning 

gain of the adaptive law (20) is retuned as  ( )70 55diag =  

for both 0 = and 0.03 = . As shown in Fig. 3 and Fig. 4 , the 

estimator (20) with a time-varying learning gain Q  can retain 

better performance than that with a constant learning gain (e.g., 

(15)), that is adaptive law (20) achieves smaller, smoother 

transient estimation errors than adaptive law (15), in particular 

the overshoot during the first few seconds can be significantly 

eliminated, since the adopted Q  can compensate for the 

influence of matrix G in the transient stage. Moreover, both the 

adaptive laws  (15) and (20) with 0.03 =  as shown in Fig. 1(b) 

and Fig. 3 (b) indicates that the use of 2P  can achieve fast 

transient convergence response. 

To evaluate the estimation performance of the proposed 

estimation methods quantitatively, the estimation errors of the 

unknown parameter ( ) ( )
2

=3+cos 0.5t t   are utilized in the 

following statistical evaluation. 

1) Integrated Squared Error (ISE) 

 2ISE e dt=    (32) 

2) Maximum Absolute Error (MAE) 

 ( )MAE max e=   (33) 

3) Standard Deviation (SD) 

  
21

SD ee dt
T

= −   (34) 

with e  being the average estimation error. The ISE describes 
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the overall estimation error response. The MAE evaluates the 

temporal difference between the true value and the estimates. 

The SD can quantify the estimation error variation.  

 

Fig. 4 Estimation errors of adaptive law (20) with: (c) 0 = ; (d) 

0.03 = . 

These three performance indices of the above four different 

adaptive laws are calculated based on the collected data 

between 4s to 15s, and shown in Table I. It is observed that the 

adaptive law (20) using time-varying gains has improved 

response than adaptive law (15) using constant learning gains. 

Specifically, the ISE and SD of (20) with 0.03 =  are smaller 

than the other cases. Moreover, it can be found that the MAE of 

(15) is slightly larger than that of (20). From the 

aforementioned results, we know that the proposed algorithm 

(20) with a time-varying gain Q and instant error information 

2P  performs superior over other tested algorithms. 

TABLE I. ESTIMATION PERFORMANCE FOR 
 2  

Indices Constant Gain 
Time-varying 

Gain 

   0 0.03 0 0.03 

ISE 0.0365 0.0398 0.0266 0.0247 

MAE 0.1425 0.1793 0.1282 0.1540 

SD 0.0937 0.0989 0.0814 0.0805 

To further reveal the merit of adaptive approaches using the 

estimation error, the proposed method (20) with a time-varying 

gain Q and 2P
 
is compared with the gradient algorithm (26) and 

the LS algorithm (28) with a forgetting factor (29) elaborated in 

Section IV. For fair comparison, the initial condition is set as 

the same for all three methods, that is ( )ˆ 0 0 = . The random 

signal ( ) ( )1 rand 1 0.5d t =  −  is also used to test the robustness. 

The parameters used in the gradient algorithm (25) and (26) are 
210L = ,  ( )410 2 10diag =  . The parameters in the LS 

method (25), (28) and (29) are chosen as 
210L = , 510 = , 

1 = and 
710 −= . Fig. 5 illustrates the parameter estimation 

results of the gradient method (26) and LS method (28), 

respectively. As it can be seen from Fig. 5, the time-varying 

parameters cannot be estimated accurately by using the 

gradient method (26) and LS method (28). The estimation 

errors of these two algorithms shown in Fig. 5 are clearly larger 

than that shown in Fig.2 and 4 with the proposed algorithms (15) 

and (20). This has been explained in the above analysis, i.e., the 

proposed adaptive laws (15) and (20) are derived based on the 

extracted estimation error rather than the observer error as 

shown in Fig. 6. Moreover, we can find from Fig. 5 that the LS 

approach performs slightly better than the gradient algorithm in 

terms of steady-state estimation error and smoothness of the 

estimated parameters, which is attributed to the induced filter 

effect as analyzed in Section IV, though this leads to a small 

phase lag in the estimated parameters indicated in Fig. 5. On the 

other hand, the gradient method is more sensitive to noise, 

which can be viewed in both Fig. 5 and Fig. 6. 

 
Fig. 5 Parameter estimation: (a) gradient  adaptive law (26); (b) 

LS adaptive law (28). 

 
Fig. 6 Observer errors for 2x  and estimation errors for 2 : (a) 

gradient adaptive law (26); (b) LS adaptive law (28). 

Finally, to test the ability of the proposed adaptive laws for 

tracking complex, fast varying parameters, we set the unknown 

parameters of system (31) as multi-frequency sinusoidal signals:

( ) ( ) ( )1
=2+sin cos 3t t t +  and ( ) ( ) ( )2

=3+cos 0.5 sint t t  + . 

The proposed adaptive law (20) and the LS algorithm (28) with 
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a forgetting factor (29) are all implemented. Simulation results 

of the estimated parameter profiles and the corresponding 

estimation errors are depicted in Fig. 7 and Fig. 8. It is shown 

that the proposed adaptive law (20) can retain better estimation 

performance than the LS method (28) even for multi-frequency 

parameters, i.e., the estimation errors of the proposed method 

are smaller than that of LS algorithm. 

 
Fig. 7 Estimation results for unknown multi-frequency 

parameters: (a) adaptive law (20); (b) LS adaptive law (28). 

 
Fig. 8 Estimation errors for unknown multi-frequency 

parameters: (a) adaptive law (20); (b) LS adaptive law (28). 

VI. PRACTICAL EXPERIMENTS 

This section will validate the proposed estimation 

approaches by conducting experiments based on a laboratory 

roto-magnet plant.  

A. Description of Roto-Magnet Plant 

The roto-magnet plant built in our laboratory is used as a 

control plant for educational purpose [25]. This plant is a 

mechatronic device, composed of a DC motor, a rotational bar, 

a permanent magnet and two fixed electromagnets. More 

specifically, the permanent magnet with two opposite magnetic 

poles is supported by a rotational bar. Two electromagnets with 

different magnetic poles are fixed near the bar, as shown in Fig. 

9. A small DC motor under the experimental table is attached to 

another side of the bar.  

 
Fig. 9 Structure of the roto-magnet plant 

 
Fig. 10 Schematic of the interation between fixed 

eletromagnets and a moving permanent magnet [25]. 

During the operation of DC motor, the interaction between 

the fixed electromagnets and a moving magnet creates a 

magnetic field that causes a pulsating load torque p  on the 

movement of the bar. The pulsating load torque p  is 

considered as a disturbance in this system, since it affects 

dynamic behaviors of the control output response. 

Since the magnetic field depends on the relative position 

between different magnets, the period of the torque acting over 

the bar is 2 (as seen in Fig. 10). The relative position 

between different magnets is determined by the rotational angle 

 . The pulsating load torque p  also depends on the 

rotational angle  . Hence, under a constant angular speed (i.e.,

0 = = ), the pulsating load torque p  becomes a periodic 

signal, where its fundamental period mainly depends on this 

constant rotational speed. Nevertheless, it is very hard to 

measure this pulsating load torque in the system. In order to 

eliminate the effect of this disturbance and control the plant 

properly, some parameters associated to this torque generator 

need to be estimated.  

The model of this plant can be described as 

 
( )1 2

=

= ( ) + + ( )pt t u

 

    




− 
 (35) 

where 1( )t  is the time-varying friction coefficient, 2 ( )t is the 

input gain, and u  is the control action, and the pulsating load 

torque can be defined as ( ) ( ) ( )
1 1

1

1 1

1

= sin cos
N

p k k

k

k k    
=

  +  . 

Hence, to obtain a precise model of this plant, the unknown, 

possibly time-varying parameters (e.g., 1 , 2 , 1k  and 1k ) 

should be estimated by using the measured input and output 

variables (e.g., u ,   and  ). 
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B. Experiment Configuration 

To facilitate the estimation with measured input u , angular 

velocity   and angle  , the experimental platform consists of 

the roto-magnet plant, an actuator, a speed sensor, a PC 

controller and some signal converters. The DC motor (Johnson 

Electric HC615L) is the main component in the actuator. The 

DC motor produces a rotation speed   and its corresponding 

motor torque acting on the roto-magnet plant. The speed sensor 

measures the angular speed on the moving magnet. The 

collected input/output variables used for parameter estimation 

are shown in Fig. 11. 

 
Fig. 11 The measured variables of the test plant. 

C. Practical Results 

A higher order N  of the load torque generation model in (35) 

could help to describe more accurate physical torque generation 

dynamics. However, a large model order N  will increase the 

computational costs of the estimation since the dimension of 

regressor will be increased. In order to seek a tradeoff between 

the model accuracy and the computational costs, we set the 

order parameter as
 

1N = , such that the load torque can be given 

as ( ) ( ) ( )1 1 1= sin cos +p d     + , where 1d  denotes the effects 

of the residual modeling error, which can be estimated together 

with
 1 , 2 , 1  and

 1 . In the experiments, the parameters 

used in the adaptive law (15) are: 0.01k = , 1 = , 0.01 =  

and
 

( )1 [34 40 25 3 3]diag =  . Fig. 12 depicts the results 

of the parameter estimation. It can be found from Fig. 12 that 

the estimated parameters are fast varying corresponding to the 

rotation velocity   and angle  . In particular, the friction 

coefficient 1
 
varies along with rotation velocity  , and the 

input gain 2
 
is almost a constant around 1.67 though there are 

minor oscillations.  

In order to verify the estimation results, we use the estimated 

parameters and the control input u  to reconstruct the plant 

model (35), and then compare the rotation angle output of the 

derived model with the measured output data  . The 

comparative results are shown in Fig. 13. From Fig. 13, we can 

find that the model output   fits the c measured system output 

  very well, which implies that the estimated parameters 

given in Fig. 12 can capture the system dynamics effectively. 

Finally, the LS algorithm (28) with a forgetting factor (29) is 

used to estimate the parameters by using the same plant model 

(35). Estimation results and the corresponding outputs between 

the model and the measured system output are depicted in Fig. 

14 and Fig. 15, respectively. Comparing Fig. 12 with Fig. 14, it 

is found that the estimated parameters based on the LS 

algorithm (28) tend to be constants, which illustrate the limited 

ability of LS algorithm to track fast varying parameters in the 

system. This will influence the accuracy of the derived model 

with these estimated parameters. Hence, as shown in Fig.15, the 

model output   cannot match the collected system output   

well. This comparative result again shows that the proposed 

adaptive law (20) can retain better estimation performance than 

the LS method (28). 

 
Fig. 12 Estimated parameters for roto-magnet plant with 

adaptive law (20).  

 
Fig. 13 Comparison between the model output with adaptive 

law (20) and the measured plant output. 
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Fig. 14 Estimated parameters for roto-magnet plant with LS 

adaptive law (28). 

 

Fig. 15 Comparison between the model output with LS adaptive 

law (28) and the measure plant output. 

VII. CONCLUSION 

In this paper, we introduce a new adaptive parameter 

estimation approach for nonlinear systems with time-varying 

parameters. The developed adaptive laws are designed based on 

the extracted parameter estimation errors, and thus do not 

require any observer/predictor design and the measurements of 

the derivative of system states. Moreover, this new estimation 

framework provides a feasible method to online test the 

required PE condition to guarantee the error convergence. A 

time-varying gain is further introduced to eliminate the effect of 

the regressor to achieve better convergence and robustness. The 

convergence of the estimation error has been proved in terms of 

Lyapunov method. Comparative simulation results illustrate 

that the suggested approaches can achieve better performance 

than the gradient based algorithm and LS algorithm. Practical 

experiments based on a roto-magnet plant are also conducted to 

show the applicability of these methods. Future works will 

focus on extending the proposed estimation approaches to 

systems where the unknown parameters are involved in the 

nonlinear functions. 
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