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Abstract: This paper presents a method for the detection of faults in electrical pumps. The
method relies on the computation of two features, the pump efficiency and the hydraulic balance,
that present reference values during healthy pump operation and change when the pump is
affected by a fault. In this paper, the CUSUM Change Detection Test and the Mann-Whitney
Change Point Method are proposed as change detection algorithms to process both features.
The method has been applied to a real installation with several pumps and the results are

reported in the paper.
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1. INTRODUCTION

Maintenance is an important process in the management
of technical systems since it has a great impact in systems
operational costs. Good maintenance policies help to ex-
ploit technical systems in the most profitable way. Three
basic types of maintenance strategies can be distinguished
(Manzini et al., 2009): corrective maintenance, when repair
or replacement of a system component is performed after
a fault or failure has occurred; time-based maintenance,
when time intervals between maintenance operations are
predefined and preventive maintenance according to a
priori expected degradation and lifetime of components
is planned; and condition-based maintenance, when com-
ponents are repaired or replaced according to their current
estimated condition state.

Condition-based maintenance is supported by the imple-
mentation of fault diagnosis systems. The goal of these
systems is to determine the occurrence, location, type and
magnitude of faults. In particular, the following tasks are
distinguished (Isermann, 2006): fault detection - deter-
mination of the presence of a fault and the time of its
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appearance; fault isolation - determination of the location
and/or the type of fault; fault identification determination
of the magnitude (fault estimation) and time evolution of
the fault. Fault magnitude estimation is directly related to
condition assessment and it is required for condition-based
maintenance.

Water Distribution Networks (WDN) are critical infras-
tructure systems that provide drinking water to final con-
sumers. WDNs are subject to severe availability and effi-
ciency requirements (water and energy) that can be faced
in different ways (see for instance (Gama et al., 2015)),
in particular by implementing proper fault diagnosis and
condition-based maintenance policies. For instance, the
management and diagnosis of leaks has received remark-
able attention in recent years (Puust et al., 2010; Pudar
and Ligget, 1992; Pérez et al., 2011; Blesa et al., 2016;
Soldevila et al., 2016, 2017). On the other hand, other
works recognize the importance and focus their attention
on the management and diagnosis of pumping systems
(Gama et al., 2015; Beebe, 2004).

This paper proposes a method to assess the condition of
electrical pumps. The method relies on the computation
of two features, the pump efficiency and the hydraulic
balance, that achieve reference values during healthy pump
operation and are degraded when the pump is affected by
a fault. These two features can be processed by different
standard change detection algorithms to detect the pres-
ence of a fault and estimate its magnitude. The method
has been applied to a real installation with several pumps
and the results are reported in the paper.



The rest of the paper is organized as follows. Section 2
presents the problem to be solved. Section 3 details the
proposed solution method. Section 4 describes the case of
study and reports the obtained results. Finally, Section 5
draws some conclusions.

2. PROBLEM DESCRIPTION

Given a set of available sensors, the problem is to relate
their measurements to the main faults which are relevant
to pump anomalies and assess the condition of the pumps
at hand by processing the signals obtained by the sensors.

2.1 Faults

The typical faults affecting performance of pumps that
are considered in the literature are the following (Beebe,
2004):

Damaged impeller
Damaged external seals
Eroded casing

Worn sealing rings
Eccentric impeller
Bearing damage
Bearing wear
Mounting fault
Unbalance
Misalignment

Overload

Inlet total or partially closed

The table in Figure 1 presents how these faults could
be detected by means of the sensors available nowadays
(Beebe, 2004), described in the following section.

2.2 Sensors

Revising the literature about health monitoring of pumps,
the following measurements are usually considered as key
variables to detect the abovementioned faults (Beebe,
2004):

e Vibration: Measurements are carried out by means of
so-called impact sound sensors. The sensor, perform-
ing as an acceleration sensor, measures the vibration
in terms of the pump in g (Earth acceleration: 9.81
[m/s?]). The sensor is either screwed on tightly at the
spiral casing of the pump, or fastened with a magnet
foot, for the mobile measuring or monitoring.

e Temperature: Temperatures can either be measured
by means of thermocouples or by means of PT 100
sensors. Test points are critical pump- or plant-
components like mechanical seals, ball bearings, mo-
tors, pipes as well as the delivery medium on the pres-
sure or suction end. A noticeable increase or change
of the temperature indicates an error or a wear out
initiating itself. A temperature monitoring is already
integrated in many electric motors, to the protection
from overload (PTC thermistor).

e Pressure: The monitoring of the upstream pressure
guarantees that the flow of the fluid remains constant
and does not stall. Pressure fluctuations, pulsations,
pressure surges and also negative pressure can be
controlled and recorded by corresponding systems.

Measurements
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Fig. 1. Relation between faults and sensors.

The pressure measuring is carried out on both sides,
downstream and upstream, to get meaningful values
regarding the pressure change. A differential pres-
sure transmitter registers the difference in pressure
between inlet and outlet.

e Power (Current/Voltage): It can be measured with a
wattmeter or through the measure of current/voltage.
Electrical power can be compared against the hy-
draulic power to assess the pump efficiency.

e Flow sensors: They measure the flow through the
pump that allows to establish a balance with the
pressure difference.

3. PROPOSED METHOD

According to the framework and nomenclature proposed
in the literature (Isermann, 2006), fault detection can be
achieved after feature extraction and change detection. The
goal of the feature extraction (or feature generation) stage
is to obtain relevant signals for fault detection purposes,
from available measurements; the change detection stage
detects changes in the features that can be associated to
systems faults.

3.1 Feature extraction

Basic signals that are typically measured by pump su-
pervision systems allow to compute two features that are
suitable for the detection of faults in pumps: the pump
efficiency and the hydraulic balance.

Pump efficiency. A key indicator to predict the pump
degradation is the pump efficiency, which can be computed
according to (Beebe, 2004) as

_ pa(H} — HY)
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where p is the water density, ¢, = gﬁ—‘% is the hourly mean

flow in [m?/s| obtained from the hourly pumped volume
Vol; in [m?3], H} is the downstream head in meters water
column [mwc] that can be obtained from the pressure
as p;y = pqHE, H® is the upstream head that can be
computed analogously, and E; is the hourly consumed
energy in [kWh].



Hydraulic balance.  Another key indicator that can be
used for the health monitoring of pumps is obtained from
a hydraulic balance (Beebe, 2004) as

Kt = 7Qt (2)

being K; a parameter whose reference value can be ob-
tained from the characteristic curves of the pump.

3.2 Change detection

Given a sequence of time-ordered observations of a feature
S, denoted as s1, ..., St, on-line change detection algorithms
aim at detecting and estimating possible changes in these
variables. In this paper, two different algorithms will be
used to detect changes in the pump efficiency n and the
hydraulic balance K features defined in Section 3.1.

CUSUM-CDT. The CUmulative SUM Change Detec-
tion Test (CUSUM-CDT) (Page, 1954) is a good indicator
to detect variations on monitored signals (Basseville et al.,
1993), but it has a better performance for steady (constant
indicators, or indicators with a fixed drift) streams of
data. As proposed in (Misiunas et al., 2006), to apply this
method, feature s; can be first filtered using an adaptive
Recursive Least Squares (RLS) filter

gt = )\97571 + (]. - )\)St (3)

where 6; is the estimated value of the indicator without
noise, s; is the current measurement (or processed indi-
cator) and A € [0,1) is the forgetting factor. Then, the
increment respect to the previous value is computed as

€t = Ht - 0,5_1 (4)

The increment e; is used to feed the CUSUM-CDT and
detect positive changes as follows

Go=0
G = max(Gy_1) + e —v,0) (5)
if Gi>ht =t} =t

where G is the output of the CUSUM-CDT, v is a drift
compensator parameter and AT is the threshold to decide
if a positive change has happened. Negative changes can
be detected changing max by min in (5) and defining the
negative threshold h~.

Mann-Whitney CPM. The Mann-Whitney Change Point
Method (MW-CPM) (Hawkins and Deng, 2010) is a non-
parametric test that detects changes in the median be-
tween two data sets by ranking their values. This proce-
dure makes this test robust against outliers that can lead
to false positives or increase the Detection Delay (DD) in
other tests. This can be exploited in the field of detection
by partitioning the data stream where is suspected that
might be a change for every point and perform the test
between these two subsets to assess whether a change is
produced at any of these points. This test also provides
the position where the change is produced. So, the general

formulation of the Mann-Whitney CPM for the change
detection in feature monitoring is the following: splitting
a time-ordered observations of feature S: si,...,s; in two
data sets sq, ..., Sg—1 and Sy, ..., S¢ and then, computing the
variable Uy, ; as

Up,e = min{U,,, U} (6)
being
_ +1
Uk,t =ning + % - Ry (7)
1
Uz:t:anlQ—F%—Rg (8)

where n; and ny are the number of elements of first an
second splitted data sets and Ry and Ry are the sum of all
ranking positions of the two data sets. If the value Uy + is
bigger than a dynamic threshold h; indicates that there is
a change in the data stream at instant £ < ¢. According
to (Ross et al., 2011), the dynamic threshold h; in order
to guarantee a given False Alarm Probability (FAP) «

P(Umax,t) =« (9)
being

Umax7t = mkax Uk,t

and

~

T* = argmax Uy ¢ (11)
k
is the estimated change instant that guarantee an average

time between false alarms, also known as Average Run
Length (ARLg), with value

1
ARLg = —

«

(12)

In (Ross et al., 2011), the following polynomial approxima-
tion of computing h; given a particular ARLg is proposed

hi = co(ARLg) + c1(ARLg)t ™! + co(ARLg)t ™

13
+ c3(ARL)t ™ 4+ c4(ARL)t ™" + c5(ARL)t ™ (13)

4. CASE STUDY
4.1 Description

The case study is based in a real pumping station of a
water distribution network. This pumping station is com-
posed by two impulsion systems of equal characteristics.
In turn, each impulsion systems is composed by several
pumps grouped in two groups. A long period of data
from one of the impulsion systems is available and it can
be used to asses the degradation of pumps performance.
These data include the response to a real fault, consisting
in a flow inversion in the first group of pumps due to
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Fig. 2. Measurements at the impulsion level.

an anomaly in the upstream valve (corresponding to a
damaged external seals fault in the table of Figure 1).

Measurements are available with a sampling time of one
hour at the two different levels, i.e. impulsion and station.

At the impulsion level, the following processed measure-
ments are on-line available:

e The mean flow pumped at every hour in [I/s].

e The mean pressure at the inlet of the impulsion at
every hour in [mwc].

e The mean pressure at the outlet of the impulsion at
every hour in [mwc].

e The accumulated volume of water pumped each hour
in [m3].

On the other hand, at the pump level, the following
measurements are collected:

e The accumulated electrical energy consumed each
hour in [kWh].

o The mean intensity consumed each hour in [A].

e Minutes of operation in each hour in [min].

e Number of operations (i.e., the number of times that
the pump station has started) in each hour.

The period of data that covers the presented real case
starts the 1% of January of 2014 and lasts until the 13"
of October of 2016 (two years and nine months). The time
series of all the measurements available at the impulsion
level are shown in the Figure 2. At the pump level, the

measurements for the two groups of pumps are presented
in Figures 3 and 4.

As it can be observed in Figures 3 and 4, the use of the
pump groups is toggled approximately every two weeks.
The pumps are usually used at a regular hours (at night
when the electricity is cheaper) and this pattern only
changes when the water tanks fall from a certain level

and it is necessary to fill them in order to maintain the
required flow and pressure.
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Fig. 3. Measurements at the first pump group.
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Fig. 4. Measurements at the second pump group.

4.2 Feature extraction

In practice, the computation of the two features presented
in Section 3 (pump efficiency n and hydraulic balance K)
cannot be applied directly to the raw measured signals
and some preprocessing is needed. Using the “minutes
of operation” measurement, the features are extrapolated
from the impulsion level to the pump level by taking
the hours where only one of the two groups of pumps
(each group of pumps is treated separately) is working and
removing the rest. The obtained signals are quite noisy due
to the fact that the efficiency depends on the time instant
where the conditions are evaluated and compared with the
past ones and whether the pumps work in a steady state.
Hence, the data with working minutes below a threshold
are discarded in order to have a more smooth and reliable
information. In this case, a threshold of 58 minutes of
operation per hour is set. Finally, a median filter is used
to remove the outliers and place a proper value instead of
them. The final signals to monitor are depicted in Figure 5
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Fig. 5. Extracted, processed and filtered efficiency feature
7 at the pump level for the two pump groups.
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Fig. 6. Extracted, processed and filtered K parameter
feature at the pump level for the two pump groups.

in the case of the efficiency ) and in Figure 6 in the case of
the K parameter. As it can be seen, finally only 2508 and
2729 effective data samples of each group of pumps have
been used from the 24384 available raw data samples after
removing the data samples of pumps which can lead to
different amount of data for each group, and removing the
non-steady data. This value can be increased or decreased
using the minutes of operation per hour measurement
threshold.

4.3 Change detection

The two proposed change detection techniques are applied
to the signals depicted in Figures 5 and 6.

The CUSUM-CDT has been tuned with A\ = 0.25 in
the RLS filter (3). This value has been chosen to believe
more the past values to avoid the remaining noise due to
sensor resolution and the fact that not all the signals are
processed exactly equal. The threshold h~ of the CUSUM-
CDT algorithm has been chosen as -5 times the standard
deviation of the first quarter of the feature signals which
is fault-free. Note that the method is set to only detect
negative drift in the feature, since the positive changes,
such as the ones due to maintenance or reparations, do
not generate alarms.

The MW-CPM is non-parametric, except for the ARLg
parameter that is needed to set the dynamic thresholds.
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Fig. 8. CUSUM-CDT G indicator values for the efficiency
monitoring.

In this application, the largest ARLg used in (Ross et al.,
2011) has been chosen, which is 50,000, to avoid as many
false positives as possible. Note that when the MW-CPM
is performed and a detection is raised, the technique starts
again searching for a change at the next sample after the
detection.

The result of the application of both techniques over the
efficiency features is depicted in Figure 7, where it is also
plotted the time “Detection time” indicating when the
fault was detected by the company, during an operational
inspection.

As it can be seen in Figure 7 the CUSUM-CDT performs
well avoiding false positives and detecting the fault while
the MW-CPM fails in avoiding false positives. This tech-
nique is too sensitive to the natural fluctuations or noise
of the monitored features. It should be noted that the
fault is clearly detectable from the efficiency feature in the
proposed filtering process. Also the technique is able to
avoid false alarms due to maintenance positive changes in
samples 550 and 1550 approximately. The CUSUM-CDT
value G that is compared with the threshold is depicted in
detail in Figure 8.

The results of the application of both techniques over the
K parameter feature for both pump groups are depicted
in Figure 9.
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The K parameter feature combined with the proposed
filter also presents a good detectability since the fault can
be detected without difficult. Both methods perform in the
same way that in the case of the efficiency feature. The
CUSUM-CDT performs very well detecting the fault and
avoiding false positives while the MW-CPM is not able to
manage the variability and the number of false positives
is large. The CUSUM-CDT value G to be compared with
the threshold for the case of the K parameter is depicted
in Figure 10.

It should also be noted that in both Figures 8 and 10,
the CUSUM-CDT technique is able to capture trends, in
this particular case, of decreasing performance that can
be exploited for the application of predictive maintenance
through prognosis.

5. CONCLUSION

A method to assess the condition of pumps in water dis-
tribution networks has been proposed. Given the signals
measured by the sensors of a typical pump supervision sys-
tem, a feature extraction process is performed to compute
two key indicators: the pump efficiency and the hydraulic
balance. Changes in these two features from their reference
(healthy) values are detected by means of the CUSUM-
CDT and Mann-Whitney CPM techniques thus indicating
the existence of a fault affecting the pump operation.

The two extracted features from the measurements, ef-
ficiency and hydraulic balance, have shown a consistent
trend in normal operation and a different one when the
fault was present in the system. The method using the
CUSUM-CDT has been successfully applied to a real
pumping installation through a real case study while the
MW-CPM failed to handle the false positives.
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