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Abstract: The performance and success of model-based leak localization methods applied to
water distribution networks (WDN) highly depends on the uncertainty of the system considered.
This work proposes an original method of modeling the effect of uncertainties in these networks.
The proposed method is based on the collection of real data in the water network in the absence
of leaks. The discrepancy (residual) between the measured data and the one provided by a
simulator of the network in normal operation is used to extrapolate the possible residuals in
the different leak scenarios. In addition, indicators for assessing the effect of uncertainty in the
performance of leak localization methods based on residual correlation analysis are provided.
The error in terms of correlation intervals and leak localzation assessment between the proposed
approximation and the real one is studied by means a simplified model of the WDN of Hanoi
(Vietnam).
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1. INTRODUCTION

One of the main issues that motivates the use of water dis-
tribution models and on-line measurements is the leakage
detection and localization. There are methods based on
data analysis (van Thienen et al. (2013)) but most of the
methods that use on-line measurements rely on models,
either transient (Colombo et al. (2009)) or static (Wu and
Sage (2006),Goulet et al. (2013),Sanz and Pérez (2015)).
The Centre for Supervision, Safety and automatic Control
(cs2ac) at the UPC in Terrassa has developed a method-
ology for leak localization using pressure measurements
and hydraulic models. It is based on the fault detection
and isolation theory (Gertler (1998)) and it evolved from a
first version where binary residuals where generated (Pérez
et al. (2011)) to a correlation based method (Quevedo
et al. (2011)) . It was successfully applied in real networks
(Perez et al. (2014)). The improvement of leak localiza-
tion includes contributions from other disciplines such as
sensor placement demand calibration and the accuracy
assessment. The accuracy in the leak localization is deter-
mined by the uncertainties present both in measurements
and models. These uncertainties have to be modelled
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(Pérez et al. (2015)) so that the accuracy can be assessed.
In (Cugueró-Escofet et al. (2015)) the methodology was
adapted to provide the results in the leak localization tak-
ing into account the uncertainty. It was demonstrated for
a three-node network. The application to a bigger network
is not possible without an approximation. Uncertainty in
non-leaky scenarios can be computed as the difference
between actual pressure measurements and estimations
provided by hydraulic water distribution models when no
leak is present in the system. When a leak is present in the
system, leak detection methods provide an estimation of
the range of the leak magnitude by the study of the change
of the night flow. Then, the most challenging problem is to
determine where the leak is. Model-based methods com-
pare the behaviour of the observed residuals with the ones
generated by the model considering all the possible leak
locations. The most similar behaviour between the actual
residuals and the theoretical ones determines the most
probable leak location. As uncertainties are present in the
system, they have to be taken into account to perform
the leak localization. In this paper, it is proposed that
the uncertainty observed in a non-leaky scenario can be
extrapolated to leaky scenarios. In particular, the effect of
the uncertainty in leaky scenarios can be approximated by
the sum of the effect of nominal leak magnitude (provided
by the leak detection) in residuals and the uncertainty
computed in non-leaky scenarios.

The rest of the paper is organized as follows. Section 2
reviews the leak localization methodology for water distri-



bution networks that is going to be assessed. In Section
3 it is presented the methodology to approximate leaky
residual sets considering uncertainty and a correlation
error is proposed to measure the effect of residual approx-
imated. Confusion coefficients and an isolability indicator
are proposed to assess leak localization methods in Section
3. The proposed methodology is applied to the simplified
water distribution network of Hanoi that has been studied
in several previous works of the group (Ferrandez-Gamot
et al. (2015),Soldevila et al. (2016),Soldevila et al. (2017))
and the error of the approximation is assessed.

2. BACKGROUND

Given the network boundary conditions hS ∈ <nS in the
form of heads in nS nodes and the demands d ∈ <nn

in the nn nodes of the network. Pressure in demand nodes
ŷ ∈ <ny , where ny is the number measured node pressures,
can be computed as

ŷ = gh(hS ,d) (1)

where gh : <nS × <nd → <ny is a non-linear hydraulic
function. We consider in this work that leaks can appear
in demand nodes and the effect of a leak in a node can
be modeled as a change of the demand pattern. In a
non-faulty scenario (i.e. non-leakage scenario) pressure in
demand nodes ŷnf ∈ <ny can be computed using (1)
considering normal pattern demand

d = αqin (2)

where α ∈ <nn is a vector that contains the weights of
demand nodes α1, . . . αnn

with
∑nn

i=1 αi = 1 and qin ∈ <
is the total inflow.

The difference between actual pressure measurements y
and the predicted ones ŷnf

r = y − ŷnf (3)

that quantifies the consistency of the measurement with
the model prediction is called a residual. We will also call
it observed residual to distinguish it from predicted residual
as it will bee seen later. If there is no uncertainty in model
(1), the absence of leakage implies r = 0. In presence of
leak in node i the residual is:

rfi = yfi − ŷnf (4)

In a leakage scenario, only the possibility of one leak of
nominal value f0 in an unknown node of the network is
considered. The nn predictions ŷfi ∈ <ny , where subscript
fi indicates a faulty scenario corresponding to a leak of
nominal value f0 in node i, can be computed using (1)
considering a leak pattern demand

d = α(qin − f0) + fi (5)

with fi ∈ <nn a vector whose components are zero except
component i which is f0. The differences

r̂fi = ŷfi − ŷnf (6)

are the predicted residuals for the nominal leak f0 in node
i. If there is no uncertainty in model (1) and the value of
the unknown leak to be located is small enough, then the

dependency of the observed residual r can be supposed to
be approximately linear in f

rfi = r̂fi ·
f

f0
i = 1 . . . nn (7)

Because of linearity of rfi in f , if vectors r̂fi are linearly
independent, then each r̂fi characterizes a different leak.
Therefore a correlation measure to test linear dependency
between r and r̂fi can be used to select the most consistent
leak with r. Thus the selected leak is the one maximizing
the correlation measure

ρ(r, r̂fi) =
rT · r̂fi
‖ r ‖ ‖ r̂fi ‖

(8)

where ‖ . ‖ denotes the norm associated to the vector
dot product. In this work the 2 norm is used. Note that
if (7) has additive uncertainty, then the selection of r̂fi
by maximizing the correlation measure ρ gives the least
squares solution of (7).

In Cugueró-Escofet et al. (2015) uncertainty in pattern
demand components αi i = 1, ..., nn was considered as

αimin ≤ αi ≤ αimax for 1 ≤ i ≤ nn (9)

subject to
nn∑
i=1

αi = 1 (10)

considering nominal demand

d0 = α0qin (11)

where α0 is a vector that contains nominal weights of de-
mand nodes α0

1, . . . α
0
nn

. The predicted residual calculated

in (6) for the nominal weigths α0 is

r̂0fi = ŷ0
fi
− ŷ0

nf (12)

Furthermore observed residual (4) considering uncertainty
(9) can be bounded by a set

rfi ∈ Rfi i = 1 . . . nn (13)

where Rfi ⊂ <ny and r̂0fi ∈ Rfi .

The evaluation of the correlation measures in (8) for all the
observed residuals rfi in a set Rfi and nominal hypothesis
r̂0fj ∀i, j = 1, . . . , nn gives a matrix of intervals [ρ](Rfi , r̂0fj).
Rows and columns correspond to the bounding leaky
residual sets and to the nominal theoretical leaky residual
vectors, respectively.

[ρ](Rfi , r̂0fj) =

 rT · r̂0fj
‖ r ‖

∥∥∥r̂0fj∥∥∥ : r ∈ Rfi

 (14)

A leak localization method based on a falsification process
that considers uncertainty bounds in residuals was pro-
posed in Pérez et al. (2016). This method is summarized
in Algorithm 1. This algorithm provides the possible leak
locations consistent with the considered residual uncer-
tainty given the actual residual r, the nn nominal leak
hypothesis r̂0fi and correlation boundaries ρ

i,i
, ρi,i between

the uncertain setRfi and nominal hypothesis r̂0fi computed
as



[ρ](Rfi , r̂0fi) = [ρ
i,i
, ρi,i] (15)

that considering r̂0fi ∈ Rfi implies ρi,i = 1 ∀i = 1, ..., nn.

Algorithm 1 Leak localization algorithm

Require: r, r̂0fi , ρi,i i = 1, ..., nn
leak=ones

for i = 1...nn
compute ρ(r, r̂fi)
if ρ(r, r̂fi) < ρ

i,i

leak(i)=0
end

end
return leak

As a result of Algorithm 1, Vector leak contains 1 for those
leak hypothesis assigned with leak.

As was proposed in Cugueró-Escofet et al. (2015) a
straightforward way to transmit the uncertainty from de-
mands to the residuals through the pressures is to generate
a set of possible demand realizations d(l) l = 1 . . . N by
means of N realizations of α(l) considering (9) and (10)
and applying (5) for every different leak i = 1 . . . nn. Once
the set of possible demand realizations have been gener-
ated, N realizations of pressure residuals r̂fi(l) l = 1 . . . N
can be computed following residual equation (6) as

r̂fi(l) = ŷfi(l)− ŷ0
nf l = 1 . . . N (16)

where ŷfi(l) is computed by means (1) considering demand
d(l) with leak in node i (Eq. (5)).

Then, residual set Rfi can be approximated by the sam-
pled set

R̂fi = {r̂fi(1), . . . , r̂fi(N)} (17)

As the cardinal N of this set increases, the coverage of
the set Rfi improves. Once sampled sets R̂fi i = 1, ..., nn
are computed, compact zonotopic approximations of Rfi
Blesa et al. (2012) can be computed as was proposed in
Cugueró-Escofet et al. (2015).

Once the sampled sets of possible residuals for each leak
are generated, the correlation interval bounds ρ̂

i,i
defined

in (15) can be approximated using (14) and R̂fi as

ρ̂
i,i

= min
r

ρ̂(r, r̂0fi)

subject to r ∈ R̂fi
(18)

If we assume that the actual leak is fi the correlation of
the residual r with r̂0fi must be inside this interval.

3. RESIDUAL UNCERTAINTY GENERATION

In this Section a way to compute a sample set R̃fi ⊂ <ny

that approximates the set of residuals Rfi for every leak
i = 1, ..., nn is presented. This set considers only uncer-
tainty in user demand weights and additive noise for sim-
plicity and understanding, but it could be extended also to
uncertainty in boundary conditions and leak magnitude.

Given a set of measured data in a fault free scenario:

ynf (l) l = 1, ..., Nnf (19)

that can be computed as

ynf (l) = gh(hS ,d(l)) + e(l) l = 1, ..., Nnf (20)

where e(l) is additive noise and d(l) are actual demand
nodes computed as

d(l) = α(l)qin (21)

with α(l) actual user demand weights around α0. Then,
the following fault free residuals can be computed as:

rnf (l) = ynf (l)− ŷ0
nf (22)

The set that contains all computed residuals

R̃nf = {rnf (l)} l = 1, ..., Nnf (23)

belong to a set Rnf that bounds the actual residual
uncertainty in fault free scenario. Another way to compute
an approximation of R̃nf would be by means of first order
Taylor approximation:

ynf (l) ≈ gh(hS ,d
0) +

∂gh
∂d

∂d

∂α
|hS ,d=d0(α(l)−α0) + e(l)

(24)

Then, considering (22) and gh(hS ,d
0) = ŷ0

nf

rnf (l) ≈
∂gh
∂d

∂d

∂α
|hS ,d=d0(α(l)−α0) + e(l) (25)

and with Nf realizations of α(l) and e(l) in (25) approx-
imation (23) can be computed. On the other hand, in a
faulty scenario

d = dfi
0 = α0(qin − f0) + fi (26)

yfi(l) ≈ gh(hS ,dfi
0) +

∂gh
∂d

∂d

∂α
|hS ,d=dfi

0(α(l)−α0)+

+ e(l)
(27)

considering (4) with ŷnf = ŷ0
nf and gh(hS ,dfi

0) = ŷ0
fi

rfi(l) ≈ r̂0fi +
∂gh
∂d

∂d

∂α
|hS ,d=d0

fi

(α(l)−α0) + e(l) (28)

as
∂gh
∂d

∂d

∂α
|hS ,d=dfi

0 =
∂gh
∂d
|hS ,d=dfi

0(qin − f0) and

∂gh
∂d

∂d

∂α
|hS ,d=d0 =

∂gh
∂d
|hS ,d=d0qin

(29)

considering small leak magnitudes f0 << qin that implies
qin − f0 ≈ qin and d0

fi
≈ d0. Therefore

∂gh
∂d
|hS ,d=dfi

0(qin − f0) ≈ ∂gh
∂d
|hS ,d=d0qin (30)

Then, rfi(l) can be approximated ∀l = 1, ..., Nnf by

rfi(l) ≈ r̂0fi + rnf (l) (31)

Finally, for every leak i = 1, ..., nn a sample set R̃fi that
approximates the set of residuals Rfi can be computed by

R̃fi ≈ r̂0fi + R̃nf (32)

The main advantage of obtaining the approximation of
leaky residual sets Rfi by means of Eq. (32) is that only



data in non leak scenario is necessary to determine the
uncertainty of the model. The error of this approximation
in a complex WDN is rather difficult to evaluate analyti-
cally. In this paper a case study for the the analysis of the
effect of the approximation error in the leak localization
performance will be used.

3.1 Correlation approximation error

In order to measure the effects of the error of approx-
imating residual sets Rfi by R̃fi for i = 1, ..., nn, an
error ei,j that measures the difference between correlations

obtained by real sets [ρ](Rfi , r̂0fj) = [ρ
i,j
, ρi,j ] , [ρi,j ] and

by approximated sets [ρ](R̃fi , r̂0fj) = [ρ̃
i,j
, ρ̃i,j ] , [ρ̃i,j ] is

defined ∀i, j = 1, ..., nn as

ei,j =
ρi,j − ρi,j + ρ̃i,j − ρ̃i,j − 2lgth([ρi,j ] ∩ [ρ̃i,j ])

ρi,j − ρi,j
(33)

where where lgth([a, b]) = b − a. This error term satisfies
ei,j ≥ 0. If ei,j = 0 the possible errors between approx-

imation set R̃fi and real set Rfi does not affect to the
correlation interval between set of leak i and hypothesis j.
From the different n2n error terms ei,j an average error e
is defined as

e =
1

(nn)2

nn∑
i=1

nn∑
j=1

ei,j (34)

4. LEAK LOCALIZATION ASSESSMENT

From leak localization Algorithm 1, it can be deduced that
if residual sets Rfi∀i are calibrated properly, i.e. condition
(13) is guaranteed for all possible leak residuals, the actual
leak will never be rejected as hypothesis. However, the
main problem of Algorithm 1 is that it can provide more
than one leak location candidate i.e. residuals produced
by a leak i can also be classified as another leak. Given
[ρ](Rfi , r̂0fj) ∀i, j = 1, ..., nn, for any pair of leaks i, j a

confusion coefficient ci,j can be defined as

ci,j =
lgth([ρi,j ] ∩ [ρj,j ])

lgth([ρi,j ])
(35)

Confusion coefficient satisfies 0 ≥ ci,j ≤ 1. If ci,j = 0 leak
i is never classified as leak j and if ci,j = 1 leak i is always
classified as leak j (for example ci,i = 1 ∀i). Finally, if
0 < ci,j < 1 the value gives an idea about the probability
of leak i be classified by algorithm 1 as leak j in one time
step. Therefore, condition

[ρi,j ] ∩ [ρj,j ] = ∅ ∀j 6= i (36)

must be satisfied in order to guarantee that Algorithm 1
perfectly locates (without confusion) a leak i in one time
step (ci,j = 0 ∀j 6= i). In order to have a general idea
about the degree of isolability an indicator δ can be defined
as

δ =

(∑nn

i=1

∑nn

j=i+1(1− ci,j) +
∑nn

j=1

∑nn

i=j+1(1− ci,j)
)

(nn − 1)2

(37)

Indicator δ satisfies 0 ≤ δ ≤ 1. The two terms of the
numerator in (37) appear because elements ci,j and cj,i
can be different.
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Fig. 1. Hanoi topological network.

4.1 Assessment error

Considering approximation sets R̃fi an approximation of
confusion coefficient (35) can be computed as

c̃i,j =
lgth([ρ̃i,j ] ∩ [ρ̃j,j ])

lgth([ρ̃i,j ])
(38)

On the other hand, an approximation δ̃ of isolability index
δ can be obtained considering c̃i,j instead of ci,j in (37).

In order to measure the effect of the error in the leak
localization assessment an error of the isolability indicator
δ can be defined as

eδ =

∑nn

i=1

∑nn

j=i+1 |ci,j − c̃i,j |+
∑nn

j=1

∑nn

i=j+1 |ci,j − c̃i,j |
(nn − 1)2

(39)

5. CASE STUDY

In this section the proposed methodology is applied to the
simplified model of the Hanoi DMA network. This simpli-
fied model, depicted in Fig. 1, consists of one reservoir,
34 pipes and 31 nodes. Two inner pressure sensors placed
in nodes 14 and 30 have been considered enough for leak
localization as it is detailed in Casillas et al. (2013), i.e. the
dimension of the pressure measurement, estimation and
residual vectors is ny = 2.

The demand pattern in all demand nodes has been
considered known but with an uncertainty of 1% (i.e,(
αimax − α0

i

)
/α0

i =
(
α0
i − αimin

)
/α0

i = 0.01), with a to-
tal water consumption qin = 5764l/s and a bounded sensor
pressure additive noise |e(l)| ≤ 1cm has been considered
in both pressure sensors. Single-leak scenarios in the 31
nodes of the network have been considered in the leak
localization performance.

First, measure residual set R̃nf = {rnf (l)} l = 1, ..., Nnf
is computed by means of (22) with ynf (l) generated by
(20) considering Nnf = 1000 different realization of user
demand weights α(l) and additive errors e(l) and ŷ0

nf

obtained considering nominal demand weights α0(l). The

obtained measure residual set R̃nf is depicted in Fig. 2.

Once R̃nf has been computed, approximated residuals

R̃fi ≈ R̃nf + r̂0fi i = 1, ..., 31 have been computed for leak
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Fig. 2. Approximate non-faulty residual set R̃nf =
{rnf (l)} l = 1, ..., Nnf .
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Fig. 4. Residuals considering leak magnitude 50[l/s].

magnitudes f0 from 10l/s to 50l/s. Approximated residual

leak sets R̃fi i = 1, ..., 31 are depicted for f0 = 10l/s (Fig.
3) and for f0 = 50l/s (Fig. 4).

In order to assess the approximation error, residual
sets Rfi have been computed by a set of residuals
{rfi(1), . . . , rfi(N)} generated by means of (4) considering
N=1000 realizations of user demands (5) and additive
noise e(l) as proposed in Cugueró-Escofet et al. (2015).
Then, the average correlation error e defined in (34) and
the isolability indicator error eδ defined in (39) have been
computed for the different leak magnitudes. The evolution
of these two errors is depicted in Fig. 5. As it can be
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Fig. 5. Error approximations.
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seen the average correlation error e increases with the
leak magnitude. However the effect of this error in the
isolability indicator error eδ decreases with the leak mag-
nitude. This fact is due to despite the approximation error
increases with the leak magnitude, the residual sets are
more separated and the effect of errors in correlation is
smaller. The evolution of the isolability index δ defined in
(37) and its approximated value δ̃ is depicted in Fig. 6, as
it can be seen the index and its approximation increase
with the leak magnitude and their difference is almost
imperceptible.

6. CONCLUSIONS

This work proposes one method of modeling the effect
of uncertainties in water distribution networks for model-
based leak localization purposes. Model-based leak local-
ization are based in the evaluation of residual between
actual measurements and values provided by a model. The
main problem of these methods is that residuals can be
different from zero even in the absence of leaks due to
differences between the operation of the WDN and the
mathematical model. In this work we consider that the
causes of these differences are the unknown distribution of
demand and sensor noises. The proposed method is based
on the computation of a set of residuals when the WDN
is operating in the absence of leaks. Then, by means a



linear Taylor approximation the possible sets of residu-
als considering the different leak scenarios are computed
by adding the nominal residual generated with nominal
demand distribution to the set of residuals of the non-
leak scenario. Therefore, the extrapolation of uncertainty
measurements in non-leak scenario to the different leaky
scenarios spares a great amount of simulation scenarios.

On the other hand, confusion coefficients and isolability
index are defined to assess the effect of uncertainty in the
performance of leak localization methods based on residual
correlation analysis. Confusion coefficients ci,j give an idea
about the probability of classifying leak i as leak j and
isolability index δ gives an idea about the probability of
providing an exact leak localization in one time step.

The proposed approximation is applied to a simplified
model of the WDN of Hanoi (Vietnam). By means of
simulation, the results obtained with the proposed approx-
imated sets are compared with the ones obtained with
the real sets obtained by means of simulation. Different
leak sizes are considered and despite the error in terms of
correlation increases with the leak size the effect of this
error in the isolability indicator error decreases with the
leak magnitude and it is always small enough to consider
the approximation a suitable approximation.

Finally, as a future work we plan to apply the proposed
methodology to a real WDN considering other causes of
uncertainty in boundary conditions and in leak magnitude.
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