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Abstract— This paper proposes a novel formulation of eco-
nomic model predictive control (MPC) for linear systems
with periodic operations. In this economic MPC design, the
optimal periodic trajectory from an economic point of view is
unknown, hence it is not possible to follow a standard control
strategy in which the MPC uses this trajectory to define a
terminal constraint to guarantee closed-loop convergence. The
economic cost function is optimized with a periodicity constraint
at each time step considering all periodic trajectories in a
period including the current state. The recursive feasibility and
closed-loop convergence to the optimal periodic trajectory are
analyzed using the Karush-Kuhn-Tucker conditions. Finally,
two simulations are provided to demonstrate the main results.

I. INTRODUCTION

During the past decade, economic model predictive con-
trol (MPC) has attracted an increasing attention [1], [2].
Instead of regulating the system to a given reference mini-
mizing a cost function based on the state and input deviation
from the reference, economic MPC aims to optimize an
economic performance index. In this case, economic cost
functions are not necessarily quadratic or positive definite
with respect to the given trajectories or references. From the
application point of view, economic MPC is a suitable and
useful control strategy that has been applied to a variety of in-
dustrial applications, such as water distribution networks [3],
[4], wastewater treatment processes [5], smart grids [6], [7],
and chemical processes [8], [9].

Among these applications, periodic system behavior arises
in some specific cases, such as water distribution net-
works [10] and electrical networks [6]. As shown in [11],
[12], [13], the operational management of a water distribu-
tion network can be realized to obtain a periodic optimal
trajectory of storage tanks taking into account the daily
water demands and time-varying electricity price. Hence, the
periodic behavior can be integrated into the controller design.

In terms of economic MPC, the closed-loop stability
is an open challenge that has currently being researched.
An comprehensive review on economic MPC is presented
in [14] and the closed-loop stability and performance are
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also addressed. In [15], [16], [17], stability analysis of
economic MPC is established under the strong duality or
the dissipativity assumptions. Within these strategies, the
optimal steady trajectories are first given and set in the MPC
loop by terminal cost or constraint. In [18], economic MPC
with extended prediction horizon is designed based on an
auxiliary controller. An additional term with the auxiliary
control law is included in the cost function in order to
guarantee closed-loop convergence. Besides, economic MPC
without terminal constraints is studied in [19], [20], where
closed-loop convergence is guaranteed based on the turnpike
and controllability properties. For periodic operation, some
research works of economic MPC are taken into account,
see, e.g. [21], [22].

The main contribution of this paper is economic MPC for
linear systems and convex cost functions with periodic opera-
tions in which the optimal periodic trajectory that minimizes
the economic cost function is unknown. In hierarchical MPC
schemes, this trajectory is computed off-line. In the proposed
economic MPC design, instead of enforcing terminal state
constraint over the prediction horizon, the economic cost
function is optimized with a periodicity constraint at each
time step considering all periodic trajectories in a period
including the current state.

The proposed controller guarantees stability of the closed-
loop system, and under certain assumptions, convergence
to the optimal periodic trajectory for the economic cost
considered. To test convergence to the optimal trajectory an
on-line test is provided based on the Karush-Khun-Tucker
(KKT) conditions. Based on this analysis, we have proved
that the closed-loop system may be trapped into a periodic
trajectory different from the optimal steady one if the number
of degrees of freedom is low and constraints are too tight. In
this case, the closed-loop operational cost is decreasing until
a constant value but more expensive than the planner cost.

Finally, we apply the proposed control strategy to a smart
micro-grid to show its effectiveness. With the proposed
economic MPC controller, the closed-loop trajectory can
reach the planner one and the closed-loop operational cost
converges to the planner cost. Besides, we also show a
counter example that when the number of degrees of freedom
is low, the closed-loop system state trajectory could be
different from its planner trajectory.

The paper organization starts with problem statement in
Section II. The economic MPC with periodic operations is
formulated in Section III. The closed-loop properties are
discussed in Section IV. Two case studies are shown in
Section V.



II. PROBLEM STATEMENT

Let us consider the following discrete-time linear system

xk+1 = f (xk, uk) , (1)

where x ∈ Rnx and u ∈ Rnu denote the system state and the
control input vectors, and f(·) is a linear function describing
the system dynamics. We assume that the states xk and the
control inputs uk of the system (1), ∀k ∈ N+ are constrained
by the convex sets xk ∈ Xk and uk ∈ Uk, ∀k ∈ N with
Xk = Xk+T , Uk = Uk+T where T is a period.

The system (1) is expected to be governed to achieve
an economic benefit. The economic performance of the
system (1) is measured by a time-varying economic stage
cost function

`k (xk, uk, pk) , (2)

where pk is a time-varying exogenous signal (for example,
the unit price of electricity) exhibiting a periodic behav-
ior, that is pk = pk+T corresponding to a period T .
The main control objective is to minimize the closed-loop
economic cost measured by `k (xk, uk, pk). We consider
that `k (xk, uk, pk) is a strictly convex function, ∀k ∈ N+

and the periodicity of this economic stage cost function is
given by `k(xk, uk, pk) = `k+T (xk+T , uk+T , pk+T ).

III. ECONOMIC MODEL PREDICTIVE CONTROL WITH
PERIODIC OPERATIONS

We now present the economic MPC design with periodic
operations. As introduced above, we first propose an eco-
nomic MPC planner to obtain the optimal periodic steady
trajectory for the closed-loop analysis.

A. Economic MPC Planner

According to [10], [23], considering the periodicity, the
infinite-horizon performance of the optimization problem (4)
is equivalent to the following finite-horizon optimization
problem:

minimize
x0,...,xT ,u0,...,uT−1

JT (x, u) =

T−1∑
i=0

`i (xi, ui, pi) , (3a)

subject to

xi+1 = f (xi, ui) , (3b)
xi ∈ Xi, (3c)
ui ∈ Ui, (3d)
x0 = xT . (3e)

Note that in the above formulation, we have chosen the
time step 0 as the first step of one period. If a different step
is chosen the functions would be different but would lead
to an equivalent problem. Hence, we solve the optimization
problem (3) once to obtain the optimal periodic steady
planner trajectory.

B. Economic MPC Formulation

The economic cost function along a period T is op-
timized based on a periodicity constraint. The economic
MPC strategy can be implemented by solving the following
optimization problem:

minimize
x0,...,xT ,u0,...,uT−1

JT (x, u), (4a)

subject to

xi+1 = f (xi, ui) , (4b)
xi ∈ Xi, (4c)
ui ∈ Ui, (4d)
x0 = xT , (4e)
xj = xk, j = mod (k, T ) . (4f)

Considering the periodic behavior, the optimization prob-
lem (4) is always initialized from the time instant 0. At
each sampling time k, this optimization problem is solved
considering a fixed temporal window. Note that the current
state xk is not always set as the first prediction state. Denote
the optimal solution of the optimization problem (4) as u∗.
Based on the receding horizon strategy, the optimal control
action uk at time instant k is

uk = u∗j , j = mod (k, T ) . (5)

IV. THE CLOSED-LOOP PROPERTIES

Considering that all the defined functions and constraints
in the above optimization problems are convex, we reformu-
late the optimization problems (4) and (3) into a standard
convex formulation.

Define

z =
[
x0

T · · · xT
T u0

T · · · uT−1
T
]T
, (6)

and denote JT (x, u) as JT (z). We rewrite the optimization
problem (3) in a standard convex form as follows

minimize
z

JT (z) , (7a)

subject to

hr (z) ≤ 0, r = 1, . . . ,m, (7b)
gi (z) = 0, i = 1, . . . , n. (7c)

where hr for r = 1, . . . ,m are convex functions and gi for
i = 1, . . . , n are affine/linear functions of system constraints
X and U . According to (6), we denote the optimal solution
of the optimization problem (7) as zp.

By convexity, it follows that there exist dual variables

λp =

λ
p
1
...
λpm

 , µp =

µ
p
1
...
µp
n

 ,



such that we have the KKT necessary conditions of (7) as
follows:

∇JT (zp) +

m∑
r=1

λpr∇hr (zp) +
n∑

i=1

µp
i∇gi (z

p) = 0, (8a)

hr (z
p) ≤ 0, r = 1, . . . ,m, (8b)

gi (z
p) = 0, i = 1, . . . , n, (8c)

λpr ≥ 0, r = 1, . . . ,m, (8d)
λprhr (z

p) = 0, r = 1, . . . ,m. (8e)

Similarly, with z in (6), the optimization problem (4) can
be reformulated to a standard convex form as

minimize
z

JT (z) , (9a)

subject to

hr (z) ≤ 0, r = 1, . . . ,m, (9b)
gi (z) = 0, i = 1, . . . , n, (9c)
Qjz = xk, j = mod (k, T ) , (9d)

where the matrix Qj is chosen such that xj = xk with
j = mod (k, T ). We denote the optimal solution of the
optimization problem (9) at time k as zk.

Therefore, there exist dual variables

λk =

λ1,k...
λm,k

 , µk =

µ1,k

...
µn,k

 , νk =

 ν1,k...
νnx,k

 ,
such that we have the KKT necessary conditions of (9) as
follows:

∇JT (zk) +

m∑
r=1

λr,k∇hr (zk)

+

n∑
i=1

µi,k∇gi (zk) +
nx∑
l=1

νl,kQ
l
mod(k,T ) = 0, (10a)

hr (zk) ≤ 0, r = 1, . . . ,m, (10b)
gi (zk) = 0, i = 1, . . . , n, (10c)
Qmod(k,T )zk = xmod(k,T ), (10d)
λr ≥ 0, r = 1, . . . ,m, (10e)
λrhr (zk) = 0, r = 1, . . . ,m, (10f)

where Ql
mod(k,T ) denotes the transpose of the l-th row

of Qmod(k,T ).
We study the properties of the proposed controller in the

following theorem.
Theorem 1: The closed-loop control system of (1)

with (4) is stable. If the dual variables νk, ∀k ≥ M
corresponding to the equality constraint (10d) are zero after
the time step M , then the closed-loop control system (1)
with (4) has reached the planner trajectories zp.

Proof: If the optimization problem (4) is feasible at
time instant k, then it is also feasible at time instant k + 1.
To this end, we prove that zk, the optimal solution at time in-
stant k, is a feasible solution for the optimization problem (4)
at time step k+1. Taking into account that the optimization

variable defines a periodic trajectory, constraints (4b)-(4e) are
satisfied by definition. Constraint (4f) is defined as follows:

xj = xk+1, j = mod (k + 1, T ) ,

which is equivalent to

xj+1 = xk+1, j = mod (k, T ) . (11)

Taking into account that

xj+1 = f (xj , uj) ,

xj = xk, j = mod (k, T ) ,

uj = uk, j = mod (k, T ) ,

hold, the equality (11) follows.
Then, we prove that under certain assumptions, the closed-

loop system converges to the planner. By optimality [24], for
the optimization problem (9), we have JT (zk+1) ≤ JT (zk),
which implies the cost of the optimization problem (4) is
a non-increasing sequence. Taking into account that by as-
sumption JT (·) is a strictly convex function, it is not possible
that there exist two consecutive time instants k and k + 1
such that the costs JT (zk) = JT (zk+1) with zk 6= zk+1.
Hence, if JT (zk+1) = JT (zk), ∀k ≥ M , the system (1) in
closed-loop reaches a periodic steady trajectory, that is zM =
zM+1 = · · · .

Without loss of generality, we assume that mod (M,T ) =
0. Then, a suboptimal solution zs can be taken from this
periodic trajectory to be

zs =
[
xM

T · · · xM+T
T uM

T · · · uM+T−1
T
]T
.

(12)

The solution zs is also feasible for the optimization
problem (3). On one hand, the closed-loop solution zk should
be equal to the optimal solution zs, that is zs = zk,
∀k ≥ M . On the other hand, zs is an optimal solution of
the optimization problem (4) such that zs, ∀k ≥M satisfies
the KKT necessary conditions in (10). If the dual variables
in νk are zero, then (10d) can be disabled. Therefore, zs,
∀k ≥M also satisfies the KKT necessary conditions in (8).
Hence, we have

zs = zp,

that is the closed-loop trajectory zk converges to the planner
trajectory zp, ∀k ≥M .

V. CASE STUDIES

A. Economic Optimization of a Smart Micro-Grid

We consider the control of a smart micro-grid that in-
cludes a battery bank, a DC bus, several energy sources
(photovoltaic, wind, hydroelectric and diesel generators),
and three electricity demands. In this system, the prices to
supply electricity are different from different sources and the
supplying availability of photovoltaic and wind generators
is periodically time-varying depending on the environmental
factors.



Based on a flow model [25], the control-oriented model
of this smart micro-grid is expressed in discrete-time as

xk+1 = Axk +Buk +Bpdk, (13a)
0 = Euuk + Eddk, (13b)

where x denotes the state of charge of the battery as the
state variable, u denotes the power flow through active links
as input variable, and d denotes the power demand as an
exogenous input variable with dk = dk+T , ∀k ∈ N. Based
on a daily pattern, the period is considered as T = 24 with
the sampling time of one hour. System matrices in (13) are

A = 1, B =
[
0.95 −1 0 0 0 0

]
,

Eu =
[
−1 1 1 1 1 1 −1 −1 −1

]
,

Ed =
[
−1 −1 −1

]
,

and considering that there is no direct connection between
the battery and power demands, Bp is a zero matrix of
appropriate dimension.

The economic stage cost function (2) for controlling this
grid is defined as [6]

`k (xk, uk, p) = α1p
Tuk + α2 ‖ξk‖22 + α3 ‖xk‖21 , (14)

where α1, α2 and α3 are prioritization weights, ‖·‖1 and ‖·‖2
denote the 1-norm and the 2-norm of a vector, p denotes a
vector of prices for active links and the term pTuk directly
measures the economic operational costs associated with
power transmissions. Since the signal p is constant, it also
satisfies pk = pk+T . The slack variable ξk is used to consider
a soft constraint on the minimum state of charge

xk ≥ xs − ξk,

where xs denotes the safety level to keep a certain amount of
energy in the battery bank to deal with the underlying power
demands guaranteeing the energy supply. Additionally, the
term ‖xk‖21 penalizes the level of the battery bank to keep
the minimal required energy forcing the convergence to the
periodic steady state behaviour.

The constraint on the state xk (state of charge), ∀k ∈ N
is set as

xk ∈ X , ∀k ∈ N, X = {x ∈ R | 0 ≤ x ≤ 100} ,

and the constraint on the input uk, ∀k ∈ N is set to be a
time-varying set uk ∈ Uk with Uk = Uk+T considering that
the daily periodicity of photovoltaic and wind generators.

The proposed EMPC approach has been tested using a
simulation that has been carried out for 5 days (120 hours).
α1, α2 and α3 are chosen as 10, 0.1 and 0.01, respectively,
to obtain the desired trade-off among the different objectives.
The safety level is set as xs = 35%. Note that all the
variables in this model are expressed using international
units. The considered power demands dk = dk+T with
T = 24 is given as shown in Fig. 1. This demand is assumed
available to the MPC in the prediction horizon. We solve the
optimization problem (4) and (3) by means of the YALMIP
toolbox [26] and MOSEK solver [27].
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Fig. 1. The power demand data of the smart micro-grid.
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Fig. 2. The closed-loop system state trajectory of the smart micro-grid.

The closed-loop system state and control input trajectories
are shown in Fig. 2 and 3. From both figures, the closed-
loop trajectories converge to the planner ones after 14 time
steps. In Fig. 3, the optimal inputs are obtained within limits
and the periodically time-varying constraint is also satisfied
as shown in Fig. 3(b). Since the solar energy has a lower
cost, this optimal input reaches its maximum to achieve the
optimum performance from the economic point of view.

The closed-loop operational cost is computed using the
defined economic cost function (14) and the optimal closed-
loop solutions. The cost result is shown in Fig. 4. As the
closed-loop trajectory is approaching the planner, the cost is
also converging to the planner cost which is optimal. Besides,
with the economic MPC controller in (4), we also extract
dual variables from the solver in order to check Theorem 1
to certify that the steady state solution has been reached. As
shown in Fig. 5, the dual variables νk corresponding to the
equality constraint (10d) are zero after time step M = 14
and the closed-loop trajectory reaches the planner.
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(b) Photovaltaic generator u3.
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Fig. 3. The closed-loop control input trajectories of the smart micro-grid.

k

20 40 60 80 100 120

C
lo
se
d
-l
o
o
p
C
o
st

6294

6294.2

6294.4

6294.6

6294.8
EMPC

PLANNER

Fig. 4. The closed-loop operational cost of the smart micro-grid.
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Fig. 5. The measure of dual variables νk of the smart micro-grid.

B. A Counter Example

As second example is presented where the closed-loop sys-
tem reaches a periodic trajectory different from the planner
because the constraints are very stringent. Given the discrete-
time system in the form of (13a) with

A =

[
0.5 0.5
1 0.25

]
, B =

[
1
1

]
, Bp =

[
1
0

]
,

where d is a periodic known input signal. This system is
controlled by the proposed economic MPC in (4) with the
period of T = 3. The corresponding optimization problem is
given by the formulation in (9) with m = n = 1, JT (z) =
1
2z

THz + fT z, and

H = diag
([
1 1 10 1 1 20 1 1 10

])
,

f =
[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]
,

where diag(·) denotes a diagonal matrix with diagonal
elements. We also solve the planner (7) with the same initial
conditions using linear programming in MATLAB.

The closed-loop system state trajectories in 120 steps are
shown in Fig. 6. In Fig. 6, considering that the period of this
counter example is T = 3, the closed-loop trajectories of x1
and x2 arrive at periodic trajectories but are different from the
planner trajectories. From Fig. 7, the closed-loop operational
cost is always decreasing to arrive at a constant when the
closed-loop trajectories reach periodic trajectories. But since
the periodic trajectories are different than the planner ones,
the closed-loop operational cost is more expensive than the
planner cost as shown in Fig. 7.

Besides, the 2-norm of the dual variable νk is plotted in
Fig. 8, where we can see that the elements of this dual
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Fig. 6. The closed-loop system state trajectories of the counter example.
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Fig. 7. The closed-loop operational cost of the counter example.

variables are not zero at any time since the closed-loop
trajectories cannot reach the planner.
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economic model predictive control with self-tuning terminal cost,”
Journal of Process Control, vol. 24, no. 8, pp. 1179–1186, 2014.

[18] S. Liu and J. Liu, “Economic model predictive control with extended
horizon,” Automatica, vol. 73, pp. 180–192, 2016.
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