
Robust fault estimation based on zonotopic Kalman filter
for discrete-time descriptor systems

Ye Wang1 Vicenç Puig1 Gabriela Cembrano1,2

1Automatic Control Department, Institut
de Robòtica i Informàtica Industrial,
CSIC-UPC, Universitat Politècnica de
Catalunya-BarcelonaTech, Barcelona,
Spain
2Cetaqua, Water Technology Centre,
Barcelona, Spain

Correspondence
Ye Wang, Automatic Control Department,
Institut de Robòtica i Informàtica
Industrial, CSIC-UPC, Universitat
Politècnica de Catalunya-BarcelonaTech,
08028 Barcelona, Spain.
Email: ywang@iri.upc.edu

Funding information
Spanish State Research Agency (AEI) and
European Regional Development Fund
(ERDF) through the projects DEOCS and
SCAV, Grant/Award Number:
DPI2016-76493-C3-3-R and
DPI2017-88403-R; Formación de Personal
Investigador (FPI) , Grant/Award Number:
BES-2014-068319; AGAUR of Generalitat
de Catalunya through Advanced Control
Systems (ACS) , Grant/Award Number:
2017-SGR-482

Summary

This paper proposes a set-based approach for robust fault estimation of
discrete-time descriptor systems. The considered descriptor systems are subject
to unknown-but-bounded uncertainties (state disturbances and measurement
noise) in predefined zonotopes and additive actuator faults. The zonotopic
fault estimation filter for descriptor systems is built based on fault detectability
indices and matrix to estimate fault magnitude in a deterministic set. The zono-
topic fault estimation filter gain is designed in a parameterized form. Within
a set-based framework, following the zonotopic Kalman filter, the optimal fil-
ter gain is computed by minimizing the size of the corresponding zonotopes to
achieve robustness against uncertainties and the identification of occurred actu-
ator faults. Besides, boundedness of the proposed zonotopic fault estimation is
analyzed, which proves that the size of obtained fault estimation bounds is not
growing in time. Finally, the simulation results with two application examples
are provided to show the effectiveness of the proposed approach.
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1 INTRODUCTION

Fault estimation, as a significant stage of fault diagnosis, aims to estimate the magnitude of occurred faults in a system.
The problem of fault estimation has been studied using a large amount of approaches during the past decades, see, eg, the
works of Blanke et al,1 Ding,2 and Varga.3 A suitable fault estimation with robust performance against system uncertainties
is very useful for implementing an active fault-tolerant control system.4-6 Based on the robust control techniques, robust
fault estimations are implemented in a variety of systems as, eg, the works of Zhang et al,7 Wang et al,8 and Rotondo et al9

where the effects of uncertainties are bounded, and as a result, fault estimation results are obtained with the minimum
estimation error.

The model-based fault diagnosis for physical systems relies on making use of the mathematical model to describe the
system dynamics by means of differential or difference equations. In terms of large-scale complex systems, such as cyber-
physical systems and critical infrastructures, additionally to system dynamics, system variables are also constrained by
static relations, for instance, mass and energy balances. Therefore, these static relations are modeled using algebraic
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equations. In this case, the systems, including not only differential/difference equations but also algebraic equations, are
called descriptor systems (also known as singular, differential-algebraic systems).10 The descriptor system model can be
used in a large amount of applications, such as drinking-water distribution networks,11,12 chemical processes,13 electrical
systems,14,15 and aircraft.16 For a critical system, when some components are malfunctioning, in order to maintain the
system functioning, a fault-tolerant control strategy with system reconfiguration is required. To limit the performance
degradation, a robust fault estimation plays an important role in system design.

In literature, several fault estimation approaches for different types of descriptor systems have been investigated. In the
work of Gao et al,4 a Lyapunov-based robust fault estimation approach is developed for Lipschitz nonlinear descriptor
systems. Robust fault estimation approaches for linear descriptor systems can be found in other works.8,17,18 Besides, the
fault estimation approaches have also studied for linear parameter-varying systems19-22 and switched descriptor systems.23

Among these approaches, the estimated fault results are obtained as punctual values. Alternatively, set-based approaches
have been established for state estimation24,25 and for fault diagnosis and fault-tolerant control.26 Considering system
uncertainties bounded in a predefined set, the uncertain variables are propagated by operating these sets. Regarding the
application to robust fault estimation, under the set-based framework, fault estimation results are characterized in a deter-
ministic set. The robustness against uncertainties can be achieved by shrinking the size of these sets. A preliminary result
of the zonotopic fault estimation filter for descriptor systems was reported in the work of Wang et al.27 The filter design
is based on the combination of the filter design and the zonotopic set-membership approach. However, the structure of
a zonotopic fault estimation filter is not explicitly formulated within a set-based framework in the work of Wang et al.27

In this paper, we systematically propose a structure of zonotopic fault estimation filter for discrete-time descriptor sys-
tems. In the faulty-free case, the guaranteed zonotope can be used for overbounding uncertain states. Therefore, this state
bounding zonotope is used in the construction of the fault estimation zonotope. Besides, we analyze the boundedness of
the generated zonotopic bounds of fault estimation.

The main contribution of this paper is to propose a robust fault estimation based on zonotopic Kalman filter for
discrete-time descriptor systems subject to unknown-but-bounded uncertainties and additive actuator faults. The fault
estimation results provide not only a punctual value but also a deterministic set bounding the propagated uncertainties.
Following the set-based framework for descriptor systems proposed in the earlier work,25 we first define the structure
of the zonotopic fault estimation filter based on fault detectability indices and matrix proposed in the work of Keller.28

The zonotopic fault estimation filter gain is formulated in a parameterized form. Within a set-based framework, the opti-
mal filter gain is designed to obtain a zonotopic fault estimation with the smallest size compatible with the uncertainty
bounds. Furthermore, we discuss the boundedness of the propagated zonotopic fault estimation. Finally, we apply the
proposed robust fault estimation approach to a numerical example and a power system of a machine infinite bus to show
its effectiveness.

The remainder of this paper is structured as follows. The problem statement is formulated in Section 2. Some prelimi-
nary results including definitions and properties that will be used in this paper are addressed in Section 3. The main results
including the structure of zonotopic fault estimation filter, the design of optimal filter gain, the analysis of boundedness
of zonotopic fault estimation are presented in Section 4. Simulation results obtained with two application examples are
provided to show the effectiveness of the proposed approach in Section 5. Finally, some conclusions are drawn in Section 6.

Notation. We use Ir to denote an identity matrix with dimension r. Note that the dimension of I may be dropped when
it can be implied in the context. For a matrix X, we use tr(X), rank(X), and X⊤ to denote the trace, the rank, and the
transpose of X and we also use X† to denote the Moore-Penrose pseudo-inverse matrix of X. If X is positive definite,
we denote it as X ≻ 0. Given a weighting matrix W = W⊤ ≻ 0, the weighted Frobenius norm of X is denoted by‖X‖F,W =

√
tr(X⊤WX), and ‖X‖F , obtained with W = I, denotes the nonweighted Frobenius norm. For a vector z,‖z‖2 denotes the two-norm of z. Besides, we denote the Minkowski sum and the linear image as ⊕ and ⊙.

2 PROBLEM STATEMENT

Consider the discrete-time descriptor linear time-invariant system with additive actuator faults as follows:

Ex(k + 1) = Ax(k) + Bu(k) + Dww(k) + F𝑓 (k), (1a)

𝑦(k) = Cx(k) + Dvv(k), (1b)



where x ∈ ℝn and u ∈ ℝm denote the system state and the known input vectors, w ∈ ℝmw and v ∈ ℝmv denote the
state disturbance vector and the measurement noise vector, 𝑦 ∈ ℝp denotes the measurement output vector, and 𝑓 ∈ ℝq

denotes the actuator fault vector. A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n, Dw ∈ ℝn×mw , and Dv ∈ ℝp×mv are the system matrices.
Besides, F ∈ ℝn×q denotes the fault distribution matrix describing the directions of the fault vector. For the descriptor
system (1), the matrix E ∈ ℝn×n might be singular, that is, rank(E) ≤ n.

Assume that the disturbance vector w and the noise vector v are unknown but bounded by the centered zonotopes
w(k) ∈ ⟨0, Imw⟩ and v(k) ∈ ⟨0, Imv⟩, ∀k ∈ ℕ, and the initial state x(0) is constrained in the zonotope x(0) ∈ ⟨c(0),H(0)⟩.
Based on the work of Keller,28 we assume rank(C) = p and rank(F) = q with q ≤ p. Besides, we assume that the
descriptor system (1) is R-observable, and matrices E and C satisfy10

rank
[

E
C

]
= n. (2)

Since that the rank condition (2) holds, there always exist two nonempty matrices T ∈ ℝn×n and N ∈ ℝn×p such that8

TE + NC = In. (3)

Then, the general solution of T and N satisfying (3) is given by

T = 𝛩𝜏1, N = 𝛩𝜏2, (4)
with

𝛩 =
[

E
C

]†
+ S

(
I −

[
E
C

] [
E
C

]†)
, 𝜏1 =

[
In
0

]
, 𝜏2 =

[
0
Ip

]
,

where S ∈ ℝn×(n+p) is an arbitrary matrix such that the matrix T is nonsingular.
In this paper, we design a set-based robust fault estimation filter for the discrete-time descriptor system (1) to

estimate the actuator fault magnitude f. The fault estimation filter is built in a zonotopic framework considering
unknown-but-bounded disturbances and measurement noise. Using this framework, the robustness against uncertain-
ties can be achieved by minimizing the size of the zonotope bounding estimation errors, disturbances, and noise. The
fault estimation results are bounded using a zonotopic set.

3 PRELIMINARY RESULTS

In this section, we introduce some preliminary results including some set definitions and properties that will be used in
this paper.

3.1 Matrix calculus
Let X, A, B, and C be matrices of appropriate dimensions. The following well-known results will be used in this paper24:

𝜕

𝜕X
tr(AX⊤B) = A⊤B⊤, (5a)

𝜕

𝜕X
tr(AXBX⊤C) = BX⊤CA + B⊤X⊤A⊤C⊤. (5b)

3.2 Zonotopes
Zonotopes, as a special class of polytopes, are symmetric and its definition and properties are introduced as follows.24,29

Definition 1. (Zonotope29)
A r-order zonotope  ⊂ ℝn in n-dimensional space is defined with its center c ∈ ℝn and the segment matrix H ∈
ℝn×r as

 = ⟨c,H⟩ = {
c + Hz, z ∈ Br} ,

where Br = [−1,+1]r ⊂ ℝr is an r-order hypercube. With the Minskowski sum, the zonotope can be also defined as

 = c ⊕ HBr.



Besides, the following properties related to zonotopes hold:⟨c1,H1⟩⊕ ⟨c2,H2⟩ = ⟨c1 + c2, [H1, H2]⟩, (6a)

L ⊙ ⟨c,H⟩ = ⟨Lc,LH⟩, (6b)

where L is an arbitrary matrix of appropriate dimension.

Definition 2. (Interval hull29)
Given a zonotope  = ⟨c,H⟩ ⊂ ℝn, the interval hull rs(H) ∈ ℝn×n is defined as an aligned minimum box such
that the inclusion property holds: ⟨c,H⟩ ⊂ ⟨c, rs(H)⟩, where rs(H) is a diagonal matrix with diagonal elements of
rs(H)i,i =

∑r
𝑗=1

||Hi,𝑗||, i = 1, 2, … ,n.

Definition 3. (FW-radius24)
Given a zonotope  = ⟨c,H⟩ ⊂ ℝn and a symmetric and positive definite matrix W ∈ ℝn×n, the FW-radius of  is
defined using the weighted Frobenius norm of H as ‖H‖F,W .

Definition 4. (Covariation24)
Given a zonotope  = ⟨c,H⟩ ⊂ ℝn, the covariation of  is defined by P = HH⊤.

For a zonotope  = ⟨c,H⟩ ⊂ ℝn, the weighted reduction operator proposed in the work of Combastel24 is denoted as
↓𝓁,W(H), where 𝓁 specifies the maximum number of columns of H and W ∈ ℝn×n, W = W⊤ ≻ 0 is a weighting matrix.
The inclusion property also holds: ⟨c,H⟩ ⊂ ⟨c, ↓𝓁,W (H)⟩.

The operator ↓𝓁,W (H) can be obtained by the following procedure.

• Sort the columns of segment matrix H on decreasing order: ↓W (H) =
[
h1, h2, … , hr

]
, ||h𝑗||2

W ≥ ||h𝑗+1||2
W , where ‖‖h𝑗

‖‖W
is the weighted two-norm of hj.

• Take the first 𝓁-columns of ↓W (H) and enclose a set H< generated by rest columns into a smallest box (interval hull)
as follows:

If r ≤ 𝓁, then ↓𝓁,W (H) = ↓W (H),
Else ↓𝓁,W (H) = [H>, rs(H<)] ∈ ℝn×𝓁 ,

H> =
[
h1, … , h𝓁

]
, H< =

[
h𝓁+1, … , hr

]
.

3.3 Fault detectability indices and matrix
Denote the fault distribution matrix F =

[
F1, … ,Fq

]
and the fault vector 𝑓 (k) =

[
𝑓1(k), … , 𝑓q(k)

]⊤, ∀k ∈ ℕ, where Fi is
the ith column of F and fi(k) is the ith element of f (k) for i = 1, … , q, ∀k ∈ ℕ. We recall definitions of fault detectability
indices and matrix first introduced in the works of Keller28 and Liu and Si30 and extended for descriptor systems with a
nonsingular matrix T in the work of Wang et al8 as follows.

Definition 5. (Fault detectability indices8)
The discrete-time descriptor system (1) is said to have fault detectability indices 𝜌 =

{
𝜌1, 𝜌2, … , 𝜌q

}
if

𝜌i = min
{
𝜎|C(TA)𝜎−1TFi ≠ 0, i = 1, 2, …

}
. (7)

and s = max
{
𝜌1, 𝜌2, … , 𝜌q

}
denotes the maximum of fault detectability indices.

Definition 6. (Fault detectability matrix8)
With the fault detectability indices of the descriptor system (1) defined as 𝜌 =

{
𝜌1, 𝜌2, … , 𝜌q

}
, the fault detectability

matrix is given by
Υ = CΨ, (8)

with
Ψ =

[
(TA)𝜌1−1TF1, (TA)𝜌2−1TF2, … , (TA)𝜌q−1TFq

]
. (9)

Remark 1. According to the work of Wang et al,8 because the chosen matrix T is nonsingular, the condition rank
(Υ) = q holds.



4 MAIN RESULTS

In this section, we propose a zonotopic fault estimation filter for the descriptor system (1). By means of fault detectability
indices and matrix, we analyze and construct the fault estimation zonotope to estimate occurred actuator faults. Therefore,
the optimal fault estimation filter gain is computed. Besides, we discuss boundedness of zonotopic fault estimation.

4.1 Zonotopic fault estimation filter
When the condition (2) is fulfilled, there exist matrices T and N satisfying (3). We consider a state estimation filter for the
discrete-time descriptor system (1) as{

z(k + 1) = TAx̂(k) + T Bu(k) + G(k) (𝑦(k) − Cx̂(k))
x̂(k) = z(k) + N𝑦(k),

(10)

where x̂ ∈ ℝn denotes the estimated state vector and z ∈ ℝn denotes the filter state vector.
Let us define the state estimation error e(k) = x(k) − x̂(k) and the output estimation error 𝜀(k) = 𝑦(k) −Cx̂(k). Then, the

error dynamics of e and 𝜀 can be written as follows:⎧⎪⎨⎪⎩
e(k + 1) = (TA − G(k)C)e(k) + TF𝑓 (k) + TDww(k)

−G(k)Dvv(k) − NDvv(k + 1),
𝜀(k) = Ce(k) + Dvv(k).

In order to analyze the effects of uncertainties and faults, we split e and 𝜀 into two parts: e = ef + ew and 𝜀 = 𝜀f + 𝜀w,
where ef and 𝜀f are the errors only affected by actuator faults (w(k) = 0 and v(k) = 0, ∀k ∈ ℕ), and ew and 𝜀w are the
errors only affected by disturbances and noise ( f (k) = 0, ∀k ∈ ℕ){

e𝑓 (k + 1) = (TA − G(k)C)e𝑓 (k) + TF𝑓 (k),
𝜀𝑓 (k) = Ce𝑓 (k),

(11)

and ⎧⎪⎨⎪⎩
ew(k + 1) = (TA − G(k)C)ew(k) + TDww(k)

−G(k)Dvv(k) − NDvv(k + 1),
𝜀w(k) = Cew(k) + Dvv(k),

(12)

with the following initial conditions ef (k) = 0 and ew(0) = e(0). Therefore, we know 𝜀f (k) = 0, ∀k ∈ ℕ.
We now analyze the effects of occurred actuator faults and uncertainties in the estimation errors using the fault

detectability indices and matrix in Definitions 5 and 6 in the following theorem.

Theorem 1. (Fault estimation condition)
Consider the descriptor system (1). If there exists the filter gain G(k) ∈ ℝn×p such that

(TA − G(k)C)Ψ = 0, (13)

then the effect of the faults on 𝜀(k) can be expressed as

𝜀(k) = CΨ
[
𝑓1(k − 𝜌1), … , 𝑓q(k − 𝜌q)

]⊤ + 𝜀w(k). (14)

Proof. By merging (11), we can derive from the time instant k = 0 to k that

𝜀𝑓 (k) = CΦke𝑓 (0) + CΦk−1TF𝑓 (0) + · · · + CΦ1TF𝑓 (k − 1), (15)

where Φk =
k∏

𝑗=1
(TA − G𝑗C). According to theorem 1 in the work of Wang et al,8 we obtain

CΦ𝑗TFi =

{
C(TA)𝜌i−1TFi, 𝑗 = 𝜌i,

0, 𝑗 ≠ 𝜌i.
(16)



Substituting (16) into (15)yields

𝜀𝑓 (k) = CΦke𝑓 (0) + C(TA)𝜌1−1TF1𝑓1(k − 𝜌1) + · · · + C(TA)𝜌q−1TFq𝑓q(k − 𝜌q) (17)
= CΦke𝑓 (0) + CΨ[𝑓1(k − 𝜌1), … , 𝑓q(k − 𝜌q)]⊤.

Since ef (0) = 0, (17) becomes 𝜀f (k) = CΨ[ f1(k − 𝜌1), … , fq(k − 𝜌q)]⊤. Therefore, from 𝜀(k) = 𝜀f (k) + 𝜀w(k), we
obtain (14).

From Theorem 1, we can see that the effects of faults and uncertainties can be separated in (14). Therefore, we define
the zonotopic fault estimation filter for the descriptor system (1) in the following theorem.

Theorem 2. (Zonotopic fault estimation filter for descriptor systems)
Given the descriptor system (1) with w(k) ∈ ⟨0, Imw⟩ and v(k) ∈ ⟨0, Imv⟩,∀k ∈ ℕ, matrices T ∈ ℝn×n,N ∈ ℝn×p satisfy-
ing (3). Consider the state bounding zonotope xw(k − 1) ∈ ⟨c(k − 1),H(k − 1)⟩ ⊆ ⟨c(k − 1), H̄(k − 1)⟩ with H̄(k − 1) =
↓𝓁,W (H(k − 1)), the state bounding zonotope xw(k) ∈ ⟨c(k),H(k)⟩, ∀k ∈ ℕ is recursively defined by

c(k) = (TA − G(k − 1)C) c(k − 1) + TBu(k − 1) + G(k − 1)𝑦(k − 1) + N𝑦(k), (18a)

H(k) =
[
(TA − G(k − 1)C) H̄(k − 1),TDw,−G(k − 1)Dv,−NDv

]
. (18b)

If there exist matrices G(k − 1) ∈ ℝn×p satisfying (13) and M ∈ ℝq×p satisfying

M = (CΨ)† = Υ†, (19)

then the actuator faults is bounded by 𝑓 (k) = [𝑓1(k − 𝜌1), … , 𝑓q(k − 𝜌q)]⊤ ∈ ⟨c𝑓 (k),H𝑓 (k)⟩, where

c𝑓 (k) = M𝑦(k) − MCc(k), (20a)

H𝑓 (k) = [−MCH(k),−MDv]. (20b)

Proof. From the analysis of effects of occurred actuator faults and uncertainties in (14), we can build state bounding
zonotope and fault estimation zonotope in the following.

(State bounding zonotope) With a filter gain G(k − 1), from (10), we can derive

x̂(k) = (T A + G(k − 1)C) x̂(k − 1) + T Bu(k − 1) + G(k − 1)𝑦(k − 1) + N𝑦(k).

For xw(k−1) ∈ ⟨c(k−1), H̄(k−1)⟩, we set x̂(k−1) = c(k−1) and we know ew(k−1) = xw(k−1)−c(k−1) ∈ ⟨0, H̄(k−1)⟩.
From (12), with w(k) ∈ ⟨0, Imw⟩, v(k) ∈ ⟨0, Imv⟩, ∀k ∈ ℕ, we derive xw(k) = x̂(k) + ew(k) obtaining

xw(k) ∈ ⟨c(k),H(k)⟩ = ((TA − G(k − 1)C)⊙ ⟨c(k − 1), 0⟩)⊕ (TB ⊙ ⟨u(k − 1), 0⟩)⊕ (G(k − 1)⊙ ⟨𝑦(k − 1), 0⟩)
⊕ (N ⊙ ⟨𝑦(k), 0⟩)⊕ (

(TA − G(k − 1)C)⊙ ⟨0, H̄(k − 1)⟩)⊕ (
TDw ⊙ ⟨0, Imw⟩)

⊕
(
(−G(k − 1)Dv)⊙ ⟨0, Imv⟩)⊕ (

(−NDv)⊙ ⟨0, Imv⟩) .
By using the properties in (6), we obtain c(k) and H(k) in (18).

(Fault estimation zonotope) From xw(k) ∈ ⟨c(k),H(k)⟩ and x̂(k) = c(k), we know ew(k) ∈ ⟨0,H(k)⟩. By definition,
we also have the output estimation error 𝜀(k) = y(k) − Cc(k). On the other hand, by premultiplying M ∈ ℝq×p on
both sides of (14), we obtain

M𝜀(k) = MCΨ
[
𝑓1(k − 𝜌1), … , 𝑓q(k − 𝜌q)

]⊤ + M𝜀w(k). (21)

Denote 𝑓 (k) =
[
𝑓1(k − 𝜌1), … , 𝑓q(k − 𝜌q)

]⊤. Taking into account M satisfying (19), we know MCΨ = I. Therefore,
from (21), we obtain

𝑓 (k) = M𝜀(k) − M𝜀w(k)
= M𝜀(k) − M (Cew(k) + Dvv(k)) . (22)

Recall 𝜀(k) = y(k) − Cc(k), ew(k) ∈ ⟨0,H(k)⟩, and v(k) ∈ ⟨0, Imv⟩. From (22), we can derive

𝑓 (k) ∈ ⟨c𝑓 (k),H(k)⟩
= (M ⊙ ⟨𝑦(k) − Cc(k), 0⟩)⊕ (−MC ⊙ ⟨0,H(k)⟩)⊕ (

−MDv ⊙ ⟨0, Imv⟩) .
Again, by using the properties in (6), we obtain cf (k) and Hf (k) as in (20).



Remark 2. From the structure of the zonotopic fault estimation filter proposed in Theorem 2, it is clear that the esti-
mated fault 𝑓 (k) has delays for each element and the delays are determined by the fault detectability indices 𝜌i for
i = 1, … , q.

4.2 Optimal fault estimation filter gain
We now present the results of optimal fault estimation filter gain. For designing the filter gain for fault estimation, the
following criteria are taken into account:

• G(k),∀k ∈ ℕ, satisfies the algebraic condition (13);
• G(k), ∀k ∈ ℕ, minimizes the estimation error ew(k + 1), which reduces the size of the zonotope ⟨c(k + 1),H(k + 1)⟩.

Inspired by the zonotopic Kalman filter proposed in theorem 5 in the work of Combastel,24 the size of a zonotope can
be measured by the FW-radius (see Definition 3). From (18b), we can also obtain H(k + 1). The objective of the zonotope
minimization can be defined by J = tr(WP(k + 1)) with a weighting matrix W = W⊤ ≻ 0 and the covariation

P(k + 1) = H(k + 1)H(k + 1)⊤. (23)

Theorem 3. (Optimal fault estimation filter gain)
Given H(k + 1), a weighting matrix W ∈ ℝn×n with W = W⊤ ≻ 0, the fault detectability matrix Υ in (8) with rank(Υ) =
q. The optimal filter gain G∗(k) can be computed by the parameterized form

G∗(k) = ΦM + Ḡ∗(k)Ω, (24)

with
Φ = TAΨ, M = Υ†, Ω = 𝛼 (Im − ΥM) , (25)

where 𝛼 ∈ ℝ(p−q)×p is an arbitrary matrix guaranteeing that Ω has full-row rank and Ḡ(k) ∈ ℝn×(p−q). Besides, Ḡ(k) =
Ḡ∗(k) minimizes J = tr(WP(k + 1)) with P(k + 1) in (23), which is computed through the following procedure:

Ḡ∗(k) = L̃(k)S̃(k)−1, (26)

L̃(k) = (TA − ΦMC)P̄(k)C⊤Ω⊤ − ΦMVΩ⊤, (27)

S̃(k) = Ω
(

CP̄(k)C⊤ + V
)
Ω⊤, (28)

with P̄(k) = H̄(k)H̄(k)⊤ and V = DvD⊤
v .

Proof. From M = Υ† and rank(Υ) = q, we have MΥ = Iq. Since rank(Υ) = q, we can obtain a matrix Ω ∈ ℝ(p−q)×p

such that ΩΥ = 0.
Therefore, with G(k) defined in (24), we derive

(TA − G(k)C)Ψ =
(

TA −
(
ΦM + Ḡ(k)Ω

)
C
)
Ψ

= TAΨ − TAΨMCΨ − Ḡ(k)ΩCΨ
= TAΨ − TAΨMΥ − Ḡ(k)ΩΥ.

Since MΥ = Iq and ΩΥ = 0, the above equation leads to T AΨ − T AΨMΥ − Ḡ(k)ΩΥ = 0. Thus, (13) is satisfied
with G(k) parameterized as in (24).

Then, the problem is converted to find Ḡ(k) minimizing J = tr(WP(k + 1)). By definition, J is convex with respect
to Ḡ(k). Thus, Ḡ∗(k) is a value of Ḡ(k) such that 𝜕J

𝜕Ḡ(k)
= 0.

Set L̃(k) and S̃(k) as in (27) and (28). Evaluating 𝜕J
𝜕Ḡ(k)

= 0, we have

𝜕tr
𝜕Ḡ(k)

(
WḠ(k)S̃(k)Ḡ(k)⊤

)
− 2 𝜕tr

𝜕Ḡ(k)
(

WL̃(k)Ḡ(k)⊤
)
= 0. (29)

By means of the matrix calculus in (5), (29) can be simplified as

WS̃(k)Ḡ(k)⊤ + WS̃(k)⊤Ḡ(k)⊤ − 2WL̃(k)⊤ = 0.

Because S̃(k) is also a symmetric matrix, we thus obtain Ḡ(k) as in (26).



From the proof of Theorem 3, we can see the independence of Ḡ∗(k) with respect to the weighting matrix W. Thus, W
can be set as a free matrix, for instance, W = In. Besides, time-varying weighting matrix W(k) will be used for proving
boundedness of the proposed zonotopic fault estimation for descriptor systems in the next section.

Remark 3. For the proposed zonotopic fault estimation filter in Theorem 2, G that satisfies the condition (TA − GC)
Ψ = 0 is a stabilizing filter gain if there exist matrices W ∈ ℝn×n with W = W⊤ ≻ 0, and Y[

W (WTA − WΦMC − YΩC)⊤
WTA − WΦMC − YΩC W

]
≻ 0, (30)

then the solutions give G = ΦM − W−1YΩ. Note that the condition (30) can be found by the Lyapunov stability
condition and the parameterized filter gain as in (24).

With the zonotopic fault estimation filter defined in Theorem 2 and the optimal filter gain in Theorem 3, we summarize
the fault estimation algorithm in Algorithm 1.

4.3 Boundedness of zonotopic fault estimation
In this section, we prove the boundedness of zonotopic fault estimation filter by implementing Theorem 2 with the optimal
filter gain obtained using Theorem 3. First, we introduce an auxiliary result that will be used for the proof of boundedness.

Proposition 1. Given the descriptor system Ex(k + 1) = Ax(k) with a measurement output y(k) = Cx(k), matrices T
and N satisfying (3), and 𝛾 ∈ (0, 1). The filter x̂(k + 1) = TAx̂(k) + G(k)(𝑦(k) − Cx̂(k)) + N𝑦(k + 1) is 𝛾-stable (stable with
a decay rate 𝛾) if there exist matrices G(k) ∈ ℝn×p and W(k) ∈ ℝn×n with W(k) = W(k)⊤ ≻ 0, ∀k ≥ 0 such that[

𝛾W(k) (TA − G(k)C)⊤W(k + 1)⊤
W(k + 1)(TA − G(k)C) W(k + 1)

]
≻ 0. (31)

Proof. With matrices T and N satisfying (3), we reformulate the system dynamics to be x(k + 1) = TAx(k) + Ny(k + 1).
Define the state estimation error e(k) = x(k) − x̂(k). Therefore, we have the error dynamics

e(k + 1) = x(k + 1) − x̂(k + 1) = (TA − G(k)C)e(k).



With a sequence of matrices W(k) = W(k)⊤ ≻ 0, ∀k ≥ 0, we consider the Lyapunov candidate function as V(k) =
e(k)⊤W(k)e(k). Given 𝛾 ∈ (0, 1), we have

ΔV (k) = V (k + 1) − V (k) = e(k + 1)⊤W(k + 1)e(k + 1) − e(k)⊤W(k)e(k)
= e(k)⊤

(
(TA − G(k)C)⊤W(k + 1)(TA − G(k)C) − 𝛾W(k)

)
e(k).

For any e(k) ≠ 0, ΔV(k) < 0 implies 𝛾W(k) − (TA − G(k)C)⊤W(k + 1)(TA − G(k)C) ≻ 0. By applying the Schur
complement lemma with 𝛾W(k) ≻ 0, we thus obtain (31).

Since the zonotope reduction operator ↓𝓁,W(·) is used in the proposed zonotopic fault estimation filter, we also introduce
the following lemma to describe the boundedness of the use of ↓𝓁,W(·).

Lemma 1. (See the work of Combastel24)
Consider H ∈ ℝn×r as the generator matrix of a zonotope ⟨c,H⟩ ⊂ ℝn, a weighting matrix W ∈ ℝn×n, W = W⊤ ≻ 0 with
all its eigenvalues in

[
𝜆, 𝜆

]
⊂ ℝ. By means of the reduction operator H̄ = ↓𝓁,W (H) with n ≤ 𝓁 < r, ⟨c, H̄⟩ is a reduced

zonotope such that ⟨c,H⟩ ⊆ ⟨c, H̄⟩. Let 𝜇 =
(

𝜆(n+r−𝓁)
𝜆

− 1
)
(n + r − 𝓁) and 𝛽 = 1 + 𝜇

r
. Then, it holds

‖‖H̄‖‖2
F,W ≤ 𝛽 ‖H‖2

F,W . (32)

From the structure of the proposed zonotopic fault estimation filter in Theorem 2, due to that ⟨cf (k),Hf(k)⟩ is a linear
projection of ⟨c(k),H(k)⟩, ∀k ∈ ℕ, the filter dynamics is bounded by ⟨c(k),H(k)⟩ as defined in (18). Based on presented
results above, we now discuss the boundedness of zonotopic fault estimation for descriptor systems in the following
theorem.

Theorem 4. (Boundedness of zonotopic fault estimation)
Consider the zonotopic fault estimation filter ⟨cf (k),Hf (k)⟩ in (20) with ⟨c(k),H(k)⟩ in (18) and the optimal filter
gain G∗(k) in (24), W(k) = W(k)⊤ ≻ 0, ∀k ∈ ℕ, and 𝛾 ∈ (0, 1) satisfying (31). If there exists a bounded sequence 𝜓(k)
such that ‖TDw‖2

F,W(k+1) + ‖G(k)Dv‖2
F,W(k+1) + ‖NDv‖2

F,W(k+1) ≤ 𝜓(k), ∀k ∈ ℕ, (33)
and when k → ∞, �̄� is the upper bound of 𝜓(k), then the FW-radius of ⟨c(k),H(k)⟩ is bounded by‖H(k + 1)‖2

F,W(k+1) ≤ �̄� ‖H(k)‖2
F,W(k) + 𝜓(k), ∀k ∈ ℕ, (34)

with �̄� = 𝛾𝛽 < 1. Moreover, when k → ∞, the upper bound ‖H(∞)‖2
F,W(∞) is given by

‖H(∞)‖2
F,W(∞) ≤

�̄�

1 − �̄�
. (35)

Proof. Considering H(k + 1) and the optimal filter gain G∗(k), the FW-radius of ⟨c(k + 1),H(k + 1)⟩ is expressed as

‖H(k + 1)‖2
F,W(k+1) =

‖‖‖[(TA − G∗(k)C) H̄(k),TDw,−G∗(k)Dv,−NDv
]‖‖‖2

F,W(k+1)
.

Since the optimal filter gain G∗(k) is obtained by minimizing ‖H(k + 1)‖2
F,W(k+1) with independence of W(k + 1), we

thus have ‖H(k + 1)‖2
F,W(k+1) ≤

‖‖‖[(TA − G(k)C) H̄(k),TDw,−G(k)Dv,−NDv
]‖‖‖2

F,W(k+1)
,

for any G(k) instead of G∗(k) satisfying (31). Then, considering the boundedness in (33), from above inequality, we
obtain a sufficient condition ‖H(k + 1)‖2

F,W(k+1) ≤
‖‖(TA − G(k)C) H̄(k)‖‖2

F,W(k+1) + 𝜓(k). (36)

Based on Proposition 1, with W(k) = W(k)⊤ ≻ 0, ∀k ∈ ℕ, and 𝛾 ∈ (0, 1) satisfying (31), (TA − G(k)C) is 𝛾-stable.
By applying the Schur complement to (31), we obtain 𝛾W(k) − (TA − G(k)C)⊤W(k + 1)(TA − G(k)C) ≻ 0. Since
H̄(k) ≠ 0 and by the linearity of the operator tr(·), we have

tr
(

H̄(k)⊤(TA − G(k)C)⊤W(k + 1)(TA − G(k)C)H̄(k)
)
< 𝛾tr

(
H̄(k)⊤W(k)H̄(k)

)
.

By the FW-radius definition, we obtain ‖‖(TA − G(k)C) H̄(k)‖‖2
F,W(k+1) < 𝛾 ‖‖H̄(k)‖‖2

F,W(k). Therefore, with (36), we have

‖H(k + 1)‖2
F,W(k+1) ≤ 𝛾 ‖‖H̄(k)‖‖2

F,W(k) + 𝜓(k).



Based on the condition (32) in Lemma 1, we obtain‖H(k + 1)‖2
F,W(k+1) ≤ 𝛾𝛽 ‖H(k)‖2

F,W(k) + 𝜓(k).

Thus, with �̄� = 𝛾𝛽, we obtain (34). Considering 𝛾 ∈ (0, 1), �̄� ∈ (0, 1) can also hold.
Besides, when k → ∞, with the upper bound 𝜓(∞) = �̄� , (34) becomes‖H(∞)‖2

F,W(∞) ≤ �̄� ‖H(∞)‖2
F,W(∞) + �̄� ,

which implies (35).

According to Theorem 4, the boundedness of the state bounding zonotope ⟨c(k),H(k)⟩, ∀k ∈ ℕ, defined in (18) is pro-
vided by the boundedness condition. As a conclusion, ultimate boundedness of the proposed zonotopic fault estimation
is obtained.

5 SIMULATION RESULTS

In this section, we first use a numerical example to show some comparison results for testing the performance of the
proposed approach with the designed optimal filter gain. Then, the simulation of the machine infinite bus system used
in the works of Koenig17 and Wang et al18 provides an insight on potential applications of the proposed approach.

5.1 A numerical example
Consider a discrete-time descriptor system modeled by (1) with system matrices as follows:

E =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦ , A =
⎡⎢⎢⎢⎣

0.9 0.005 −0.095 0
0.005 0.995 0.0997 0
0.095 −0.0997 0.99 0

1 0 1 1

⎤⎥⎥⎥⎦ , B = F = [F1 F2] =
⎡⎢⎢⎢⎣

0.1 0
1 1

−0.1 1
−1 0

⎤⎥⎥⎥⎦ ,

C =

[ 0 1 0 0
0 0 1 0
0 0 0 1

]
, Dw =

⎡⎢⎢⎢⎣
0.3 0 0
0 0.3 0
0 0 0.3
0 0 0

⎤⎥⎥⎥⎦ , Dv =

[ 0.1 0 0
0 0.1 0
0 0 0.1

]
.

The initial state x(0) is set as x(0) = [0.5, 1, 0,−0.5]⊤ and the initial state zonotope is given by x(0) ∈ ⟨c(0) = x(0), 0.1I4⟩.
Besides, w(k) ∈ ⟨0, I3⟩ and v(k) ∈ ⟨0, I3⟩, ∀k ∈ ℕ. The input signal is set as u(k) =

[
2 sin(k), 3 sin(k)

]⊤. From the general
solution (4), we choose the matrix S as

S =
⎡⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1

⎤⎥⎥⎥⎦ ,
and we obtain two nonempty matrices T and N satisfying the condition (3) as follows:

T =
⎡⎢⎢⎢⎣

1 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 1

⎤⎥⎥⎥⎦ , N =
⎡⎢⎢⎢⎣

0 0 0
0.5 0 0
0 0.5 0
0 0 1

⎤⎥⎥⎥⎦ .
Since rank(F) = rank(CF) = 2, we have CTF1 ≠ 0 and CTF2 ≠ 0. The fault detectability indexes are 𝜌1 = 1 and 𝜌2 = 1

and the fault detectability matrix is Υ = CΨ =

[ 0.5 0.5
−0.05 0.5
−1 0

]
with Ψ = [T𝑓1 T𝑓2] =

⎡⎢⎢⎢⎣
0.1 0
0.5 0.5

−0.05 0.5
−1 0

⎤⎥⎥⎥⎦. Therefore, we obtain

the matrices to obtain the optimal filter gain G∗(k) as follows:

Φ =
⎡⎢⎢⎢⎣

0.0973 −0.045
0.2465 0.2737
−0.0449 0.2226
−0.95 0.5

⎤⎥⎥⎥⎦ , M =
[

0.2389 −0.2389 −0.8686
0.8925 1.1075 0.3909

]
, Ω = [0.8686 − 0.8686 0.4777] .



Therefore, the time-varying matrix Ḡ∗(k) can be obtained following (26)-(28) and we can find the optimal filter
gain G∗(k) in (24). Besides, as a comparison, according to Remark 3, by satisfying (30), we also obtain a stabilizing filter
gain G as

G =
⎡⎢⎢⎢⎣

0.3283 −0.4183 0.0878
0.4907 0.0566 −0.0040

−0.0279 0.4730 0.0073
0.3051 0.6949 1.0678

⎤⎥⎥⎥⎦ .
Consider the actuator faults are in the following scenarios:

𝑓1(k) =

{
0 k < 80
5 k ≥ 80

𝑓2(k) =

{
0 k < 100
6 sin(0.1k) k ≥ 100.

As a result, the simulation has been carried out for Ns = 200 sampling steps and the robust fault estimation results
are shown in Figure 1 with G∗(k) and G. Note that due to 𝜌1 = 1 and 𝜌2 = 1, there is one-step delay in the estima-
tion of the faults f1 and f2. In the figures, for allowing a better comparison, we plot the real faults delayed one sample,
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FIGURE 1 The actuator-fault estimation results with G∗(k) and G [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 The comparison result
with G∗(k) and G

MSE RMS(rs(Hf))

G∗(k) 0.0389 1.3049
G 0.0641 2.0470

Abbreviations: MSE, mean square error; RMS,
root mean square.

fi(k − 1) with i = 1, 2. Using the proposed zonotopic fault estimation filter, the punctual values of estimated faults are
obtained altogether with the worst-case bounds of estimated faults that are also found in the estimation intervals under
the assumption of unknown-but-bounded disturbances and measurement noise in given zonotopes.

The actual faults in red dashed lines are bounded by estimation intervals with G∗(k) and G. From Figure 1, it is obvious
that the bounds obtained with G are larger than the ones obtained with G∗(k). For the comparison of the performance
with G∗(k) and G, the mean square error (MSE) between the actual faults and estimation faults (centers of fault estimation
zonotopes) is computed by

MSE = 1
Ns

Ns∑
k=1

1
q
‖‖𝑓 (k) − c𝑓 (k)‖‖ ,

and the root mean squared (RMS) value of rs(Hf (k))) for k = 1, … ,Ns is computed, which is denoted by RMS(rs(Hf)).
The computation result is shown in Table 1. From the MSE results, the one obtained with G∗(k) is close to zero and
smaller than the other, which means that the estimation results with the optimal filter gain are more accurate than the
ones obtained with the stabilizing filter gain G. Since the estimation errors of faults are bounded in the zonotopes, the
obtained bounds with G are larger and the RMS result provides that the one with G is larger than the other.

5.2 The machine infinite bus system
Consider a machine infinite bus system used in the work of Koenig17 and its linear continuous-time system with
parameters described in the work of Wang et al18 as follows:

�̇�1 = 𝜔1,

�̇�2 = 𝜔2,

�̇�3 = 𝜔3,

�̇�4 = 1
m1

(p1 − Y12V1V2(𝛿1 − 𝛿2)) −
1

m1
(Y15V1V2(𝛿1 − 𝛿5) + c1𝜔1) ,

�̇�5 = 1
m2

(p2 − Y21V2V1(𝛿2 − 𝛿1)) −
1

m2
(Y25V2V5(𝛿2 − 𝛿5) + c2𝜔2) ,

�̇�6 = 1
m3

(p3 − Y34V∞𝛿3) −
1

m3
(Y35V3V5(𝛿3 − 𝛿5) + c3𝜔3) ,

0 = Pch − Y51V5V1(𝛿5 − 𝛿1) − Y52V5V2(𝛿5 − 𝛿2) − Y53V5V3(𝛿5 − 𝛿3) − Y54V5V∞𝛿5,

where 𝛿1, 𝛿2, 𝛿3, and 𝛿5 denote the phase angles of the generators;𝜔1, 𝜔2, and𝜔3 denote the speeds of the generators; p1, p2,
and p3 are the mechanical powers per unit that are set as p1 = 0.1, p2 = 0.1, and p3 = 0.1; and Pch is the unknown power
load. From the work of Wang et al,18 the other parameters are chosen as follows: the inertia m1 = 0.014, m2 = 0.026,
and m3 = 0.02; the damping c1 = 0.057, c2 = 0.15, and c3 = 0.11; the potential V1 = 1, V2 = 1, V3 = 1, V∞ = 1,
and V5 = 1; and the nominal admittance Y15 = 0.5, Y25 = 1.2, Y35 = 0.8, Y45 = 1, Y35 = 0.7, and Y12 = 1. Besides,
the uncertain part of the admittance is set in the state disturbances. Let us define

x = [𝛿1, 𝛿2, 𝛿3, 𝜔1, 𝜔2, 𝜔3, 𝛿5]⊤, u =
[
p1, p2, p3

]⊤
.



We use the Euler discretization method with the sampling time Δt = 0.05 seconds to obtain the discrete-time descriptor
model in the form of (1) with system matrices as follows:

E =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0.05 0 0 0
0 1 0 0 0.05 0 0
0 0 1 0 0 0.05 0

−5.3571 3.5714 0 0.7964 0 0 1.7857
1.9231 −4.2308 0 0 0.7115 0 2.3077

0 0 −3.75 0 0 0.725 2
0.025 0.06 0.04 0 0 0 −0.175

⎤⎥⎥⎥⎥⎥⎥⎦
,

B = F = [F1 F2 F3] =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

3.5714 0 0
0 1.9231 0
0 0 2.5
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎣
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎦ ,

Dw =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3

⎤⎥⎥⎥⎥⎥⎥⎦
,Dv =

⎡⎢⎢⎢⎣
0.025 0 0 0

0 0.025 0 0
0 0 0.025 0
0 0 0 0.025

⎤⎥⎥⎥⎦ .

Given the initial state x(0) = 0 and the initial state zonotope x(0) ∈ ⟨0, 0.01I7⟩, w(k) ∈ ⟨0, I4⟩, and v(k) ∈ ⟨0, I4⟩, ∀k ∈ ℕ.
The input signal is set as u(k) = [20, 15, 10]⊤, ∀k ∈ ℕ. From the general solution (4), we choose the matrix S as

S =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

and we obtain two nonempty matrices T and N satisfying (3) and the matrix T is also nonsingular as follows:

T =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0 0
0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
, N =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

Therefore, for the first actuator, we have CTF1 = 0 and C(TA)TF1 ≠ 0. Hence, the fault detectability index for f1 is
𝜌1 = 2. Similarly, we have 𝜌2 = 𝜌3 = 2. Therefore, we have the fault detectability matrix Υ as

Υ = CΨ =
⎡⎢⎢⎢⎣

0.0893 0 0
0 0.0481 0
0 0 0.0625
0 0 0

⎤⎥⎥⎥⎦ .
Then, we can obtain the matrices for the optimal filter gain G∗(k) as follows:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣

0.1158 0 0
0 0.0582 0
0 0 0.0766

1.7870 0.1717 0
0.1717 0.7702 0

0 0 1.0797
0.0022 0.0029 0.0025

⎤⎥⎥⎥⎥⎥⎥⎦
, M =

[ 11.2 0 0 0
0 20.8 0 0
0 0 16 0

]
, Ω = [0 0 0 1] .
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FIGURE 2 The actuator-fault estimation results of the machine infinite bus system [Colour figure can be viewed at wileyonlinelibrary.com]

In the simulation, consider the actuator fault f (k) in the following:

𝑓 (k) =

{
0 k ≤ 98[
15, 12 sin(0.1k), 9.5 cos(0.1k)

]⊤ k > 98.

The simulation has been carried out for Ns = 200 sampling time steps and the simulation results are shown in Figure 2.
Because of the fault detectability indices 𝜌1 = 𝜌2 = 𝜌3 = 2, the fault f (k) occurred at time k will be estimated in two
samples. For different time-varying actuator faults, all the estimated results provide the satisfactory results including the
punctual values and the worst-case bounds. By minimizing the size of the filter zonotope bounding all the uncertainties
and propagated estimation errors, the obtained optimal filter gain G∗(k) reduces the estimation errors. Furthermore,
during the propagations, the obtained fault estimation intervals (centers of fault estimation zonotopes and the worst-case
bounds) are bounded.

6 CONCLUSION

In this paper, we have proposed a zonotopic fault estimation filter for discrete-time descriptor systems subject to
unknown-but-bounded disturbances and measurement noise in given zonotopes. To achieve the robustness against sys-
tem uncertainties and identification of occurred actuator faults, the filter gain has been formulated in a parameterized
form, and under the zonotopic Kalman filter framework, the optimal filter gain can be computed. With this optimal filter
gain, the proposed approach guarantees that the size of the fault estimation bounds is the smallest that can be obtained
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with the considered bounds of disturbances and measurement noise. Then, boundedness of the zonotopic fault estima-
tion has been proved. Thus, the size of obtained fault estimation bounds is not growing in time. Finally, the proposed
approach has been tested in two simulations. In the first simulation, the comparison results have been shown with a sta-
bilizing filter gain. The obtained fault estimation result with the optimal filter gain has proved to be more accurate based
on the MSE results and plots. In the second simulation, the proposed approach has been tested with the machine infinite
bus system from which the results have shown its effectiveness.

Besides, the assumed rank condition from the R-observability of descriptor systems may lead to restrictiveness. How-
ever, this condition does not mean that all the states of descriptor systems are directly measured. As future research, a
more relaxed rank condition together with different fault estimation conditions will be considered and the proposed fault
estimation approach could also be linked with set-based fault isolation.

ACKNOWLEDGEMENTS

We would like to thank Dr Zhenhua Wang for useful discussions on his previous works and sharing the codes includ-
ing parameters of the second case study. This research was supported by the Spanish State Research Agency (AEI)
and the European Regional Development Fund (ERFD) through projects DEOCS (DPI2016-76493-C3-3-R) and SCAV
(DPI2017-88403-R), through the Formación de Personal Investigador (FPI) grant (BES-2014-068319), and by AGAUR of
Generalitat de Catalunya through the Advanced Control Systems (ACS) group grant (2017-SGR-482).

ORCID

Ye Wang http://orcid.org/0000-0003-1395-1676
Vicenç Puig http://orcid.org/0000-0002-6364-6429

REFERENCES
1. Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin, Germany: Springer; 2016.
2. Ding SX. Model-Based Fault Diagnosis Techniques. London, UK: Springer; 2013.
3. Varga A. Solving Fault Diagnosis Problems: Linear Synthesis Techniques. Berlin, Germany: Springer; 2017. Studies in System, Decision and

Control; vol. 84.
4. Gao Z, Ding SX. Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica.

2007;43(5):912-920.
5. Gao Z. Fault estimation and fault-tolerant control for discrete-time dynamic systems. IEEE Trans Ind Electron. 2015;62(6):3874-3884.
6. Lan J, Patton RJ. A new strategy for integration of fault estimation within fault-tolerant control. Automatica. 2016;69:48-59.
7. Zhang K, Jiang B, Shi P, Xu J. Fault estimation observer design for discrete-time systems in finite-frequency domain. Int J Robust Nonlinear

Control. 2015;25(9):1379-1398.
8. Wang Z, Rodrigues M, Theilliol D, Shen Y. Fault estimation filter design for discrete-time descriptor systems. IET Control Theory Appl.

2015;9(10):1587-1594.
9. Rotondo D, Witczak M, Puig V, Nejjari F, Pazera M. Robust unknown input observer for state and fault estimation in discrete-time

Takagi–Sugeno systems. Int J Syst Sci. 2016;47(14):3409-3424.
10. Dai L. Singular Control Systems. Berlin, Germany: Springer; 1989.
11. Wang Y, Puig V, Cembrano G. Non-linear economic model predictive control of water distribution networks. J Process Control.

2017;56:23-34.
12. Wang Y, Salvador JR, de la Pena DM, Puig V, Cembrano G. Periodic nonlinear economic model predictive control with changing horizon

for water distribution networks. IFAC-Pap. 2017;50(1):6588-6593.
13. Biegler LT, Campbell SL, Mehrmann V. Control and Optimization with Differential-Algebraic Constraints. Philadelphia, PA: Society for

Industrial and Applied Mathematics; 2012. Advances in Design and Control.
14. Riaza R. Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. Singapore: World Scientific Publishing; 2008.
15. Duan G-R. Analysis and Design of Descriptor Linear Systems. Vol. 23. New York, NY: Springer; 2010.
16. Stevens BL, Lewis FL, Johnson EN. Aircraft Control and Simulation Third Edition: Dynamics, Controls Design, and Autonomous Systems.

Hoboken, NJ. Wiley-Blackwell; 2016.
17. Koenig D. Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault

estimation. IEEE Trans Autom Control. 2005;50(2):212-217.
18. Wang Z, Shi P, Lim C-C. Robust fault estimation observer in the finite frequency domain for descriptor systems. Int J Control. 2017:1-30.
19. Shi F, Patton RJ. Fault estimation and active fault tolerant control for linear parameter varying descriptor systems. Int J Robust Nonlinear

Control. 2015;25(5):689-706.

http://orcid.org/0000-0003-1395-1676
http://orcid.org/0000-0003-1395-1676
http://orcid.org/0000-0002-6364-6429
http://orcid.org/0000-0002-6364-6429


20. Rodrigues M, Hamdi H, Theilliol D, Mechmeche C, BenHadj Braiek N. Actuator fault estimation based adaptive polytopic observer for a
class of LPV descriptor systems. Int J Robust Nonlinear Control. 2015;25(5):673-688.

21. López-Estrada FR, Ponsart JC, Astorga-Zaragoza CM, Camas-Anzueto JL, Theilliol D. Robust sensor fault estimation for descriptor-LPV
systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor. Int J Appl Math Comput Sci.
2015;25(2):233-244.

22. Wang Z, Rodrigues M, Theilliol D, Shen Y. Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor
systems. Int J Adapt Control Signal Process. 2015;29(2):242-258.

23. Koenig D, Marx B, Varrier S. Filtering and fault estimation of descriptor switched systems. Automatica. 2016;63:116-121.
24. Combastel C. Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence. Automat-

ica. 2015;55:265-273.
25. Wang Y, Puig V, Cembrano G. Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems.

Automatica. 2018;93:435-443.
26. Puig V. Fault diagnosis and fault tolerant control using set-membership approaches: application to real case studies. Int J Appl Math

Comput Sci. 2010;20(4):619-635.
27. Wang Y, Wang Z, Puig V, Cembrano G. Zonotopic fault estimation filter design for discrete-time descriptor systems. IFAC-Pap.

2017;20(4):5211-5216.
28. Keller J-Y. Fault isolation filter design for linear stochastic systems. Automatica. 1999;35(10):1701-1706.
29. Le VTH, Stoica C, Alamo T, Camacho EF, Dumur D. Zonotopes: From Guaranteed State-Estimation to Control. Hoboken, NJ: Wiley; 2013.

Automation - Control and Industrial Engineering Series.
30. Liu B, Si J. Fault isolation filter design for linear time-invariant systems. IEEE Trans Autom Control. 1997;42(5):704-707.

https://doi.org/10.1002/rnc.4298

	Robust fault estimation based on zonotopic Kalman filter for discrete-time descriptor systems
	Abstract
	INTRODUCTION
	PROBLEM STATEMENT
	PRELIMINARY RESULTS
	Matrix calculus
	Zonotopes
	Fault detectability indices and matrix

	MAIN RESULTS
	Zonotopic fault estimation filter
	Optimal fault estimation filter gain
	Boundedness of zonotopic fault estimation

	SIMULATION RESULTS
	A numerical example
	The machine infinite bus system

	CONCLUSION
	References




