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Zonotopic Set-Membership State Estimation for
Discrete-Time Descriptor LPV Systems

Ye Wang, Zhenhua Wang, Vicenç Puig and Gabriela Cembrano

Abstract—This technical note proposes a novel set-membership
state estimation approach based on zonotopes for discrete-time
descriptor linear parameter-varying (LPV) systems. The consis-
tency test between the system model and measured outputs is
implemented to construct a parameterized intersection zonotope
with respect to a correction matrix. With a defined zonotope
minimization criterion, we propose a novel offline optimization
problem to obtain the optimal correction matrix. In addition,
with the proposed approach, an adaptive bound of the radius of
the intersection zonotope is also provided. Finally, a case study
with a truck-trailer system is shown to illustrate the proposed
approach.

Index Terms—Set-membership approach, state estimation,
zonotopes, descriptor systems, discrete-time LPV models.

I. INTRODUCTION

Set-membership approaches, known as a class of determin-
istic methods assuming an unknown-but-bounded description
of uncertainties, have been widely investigated in the last
decade. A direct application of a set-membership approach
is state estimation [1], [2], where uncertainties originally
bounded in some given sets are propagated to system states
using a mathematical model with measurement information.
Besides, set-membership approaches have also been applied to
parameter estimation [3], [4], fault diagnosis [5], [6] as well
as fault-tolerant control [7] allowing a worst-case analysis.

In the literature, there are two categories of set-based
estimation approaches: the one based on the interval observer
and the other using a set-membership approach. The interval
observer approach (see, e.g. [8], [9]) relies on separately
generating upper and lower bounds of estimated states using
two observers. However, it is usually non-trivial to design an
interval observer since the design conditions are restrictive.
Unlike this approach, a set-membership state estimation ap-
proach (e.g. [1]) makes use of a predefined geometrical set
for uncertainty propagations. On the one hand, a zonotopic
set-membership approach is able to obtain accurate estimation
results taking into account that operations on zonotopes can
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effectively eliminate wrapping effects inherent to the use of
an iterative approach [10]. On the other hand, the computation
load of this approach is low, since the computation of linear
transformations (i.e. Minkowski sum) is efficient. As also
discussed in [11], the complexity of operations on zonotopes
can be significantly reduced by means of a suitable zonotope
order reduction technique. Besides, instead of using online
computations as in [2], an offline method could be used for
the design of parameters in this approach.

In a large amount of industrial processes, system behaviors
are described including not only system dynamics by differen-
tial/difference equations but also static relations by algebraic
equations due to energy or mass balances. Such systems
are called descriptor systems, also known as singular [12]
or differential-algebraic systems [13], which have played a
significant role in a variety of applications, such as water
distribution networks [14], aircraft systems [15] and chemical
systems [16]. In [17], the reachability analysis of nonlinear
descriptor systems has been investigated based on the set-
based approach to propagate a zonotopic reachable set. A
nonlinear descriptor model can be formulated as a polytopic
linear parameter-varying (LPV) model (see, e.g. [18], [19]).
However, few research work in the literature related to set-
membership state estimation approaches can be found for this
type of systems.

The main contribution of this note is to propose a zonotopic
set-membership state estimation approach for discrete-time
descriptor LPV systems affected by unknown-but-bounded
system disturbances and measurement noise. The consistency
test between the system model and measured outputs is
implemented by approximating the consistent state set in a
parameterized intersection zonotope. A novel zonotope min-
imization criterion is defined, which is used for an offline
optimization problem to obtain polytopic correction matrices.
With the proposed approach, an adaptive bound of the radius
of the intersection zonotope is provided. Finally, the proposed
approach is tested through a case study of the truck-trailer
system inspired by [19].

Notation: For z ∈ Rn, the 2-norm is denoted by ‖z‖ =√
z>z, the weighted 2-norm is denoted by ‖z‖P =

√
z>Pz,

where P ∈ Rn×n with P = P> � 0 is a weighting matrix,
and diag(z) denotes a diagonal matrix with the diagonal
elements determined by z. For zk ∈ Rn, ∀k ∈ N, the L∞
norm (peak norm) is denoted by ‖z‖∞ = sup

k
‖zk‖. We

use ? to represent a term that can be induced by symmetry.
For a matrix M , M is said to be positive definite if the
scalar z>Mz is positive for arbitrary non-zero column vector z
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of real numbers, which is denoted by M � 0 while M ≺ 0
denotes negative definiteness. M � 0 denotes positive semi-
definiteness and M � 0 denotes negative semi-definiteness.
Besides, rank(M) returns the rank of M . We use Ir to denote
an identity matrix of dimension r. Note that we may drop the
index when the dimension can be inferred in the context.

A r-order zonotope Z = 〈p,H〉 ∈ Rn (n ≤ r) with 2r

vertices is defined as

Z = 〈p,H〉 = {p+Hz, ‖z‖∞ ≤ 1} ,

with the center p ∈ Rn and a generator matrix H ∈ Rn×r.
Let us denote Br = [−1,+1]

r as a hypercube of the order r
and the Minkowski sum as ⊕. Therefore, the zonotope Z =
〈p,H〉 can be also formulated as Z = p⊕HBr. Besides, the
following properties hold

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉,
L� 〈p,H〉 = 〈Lp,LH〉,
〈p,H〉 ⊆ 〈p, ↓q,W (H)〉 ⊆ 〈p, rs(H)〉,

where � denotes the linear image product, L is a matrix
of appropriate dimensions, ↓q,W (H) denotes the reduction
operator with n ≤ q ≤ r proposed in [2], q is the maximum
column of the generator matrix after reduction, W is a
weighting matrix of appropriate dimension, and rs(H) denotes
the row sum of the matrix H . The set 〈p, rs(H)〉 is also called
the interval hull of Z . Besides, we use X × Y to denote the
Cartesian product of two sets X and Y .

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the class of the discrete-time descriptor LPV
systems described by

Exk+1 = A
(
θk
)
xk +B

(
θk
)
uk +D

(
θk
)
dk, (1a)

yk = Cxk + Fdk, (1b)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny denote the state,
input and output vectors, respectively. d ∈ Rnd denotes the
system uncertainty vector. C ∈ Rny×nx and F ∈ Rny×nd are
measurement matrices. Besides, E ∈ Rnx×nx is a singular
matrix corresponding to the definition of the descriptor system.
As in [20], A

(
θk
)
, B
(
θk
)

and D
(
θk
)

are matrices taking
the following polytopic form: A

(
θk
)

=
∑h
j=1 ρj (θk)Aj ,

B
(
θk
)

=
∑h
j=1 ρj (θk)Bj , D

(
θk
)

=
∑h
j=1 ρj (θk)Dj ,

where Aj ∈ Rnx×nx , Bj ∈ Rnx×nu , Dj ∈ Rnx×nd for
j = 1, . . . , h are known constant matrices. θk ∈ Rnθ is a
scheduling vector that can be measured online and ρj (θk),
for j = 1, . . . , h are weighting functions satisfying

ρj (θk) ≥ 0,

h∑
j=1

ρj (θk) = 1, ∀j = 1, . . . , h. (2)

In (1), the uncertainty vector d can also be divided as d ,[
w> v>

]> ∈ Rnd with nd = nw + nv , where w ∈ Rnw
and v ∈ Rnv are the vectors of system disturbances and mea-
surement noise. Besides, D

(
θk
)

=
[
D̄
(
θk
)

0
]
, F =

[
0 F̄

]
with D̄

(
θk
)
∈ Rnx×nw and F̄ ∈ Rny×nv .

Assumption 1. The uncertainty vector dk is unknown but
bounded in a known centered zonotope D as dk ∈ D =
〈0, Hd〉, ∀k ∈ N and the initial uncertain state x0 is also
bounded in the zonotope X0 = 〈p0, H0〉.

Remark 1. Since dk ∈ D, ∀k ∈ N, the worst-case dk
on the boundary of D = 〈0, Hd〉 is given by max

b∈Bnd
‖Hdb‖.

Meanwhile, by definition, the L∞ norm of dk is denoted
by ‖d‖∞ = sup

k
‖dk‖ with k ∈ N, which satisfies

‖d‖∞ = sup
k
‖dk‖ = max

b∈Bnd
‖Hdb‖ . (3)

Definition 1 (C-Observability [12], [13]). The descriptor
LPV system (1) is said to be (completely) observable or C-
observable if the initial condition x0 of the system can be
uniquely determined by uk and yk, ∀k ∈ N.

From Definition 1, refer to [13, Theorem 4.11] and [21],
the following assumption is used in this note.

Assumption 2. The descriptor LPV system (1) is assumed
to be C-observable. Then, matrices E, Aj and C satisfy

rank

[
zE −Aj

C

]
= nx, ∀j = 1, . . . , h, ∀z ∈ C, z finite and

rank

[
E
C

]
= nx.

Lemma 1 ([19]). Since rank

[
E
C

]
= nx holds from Assump-

tion 2, there exist two matrices T and N such that

TE +NC = Inx . (4)

Then, the general solutions of T and N are given by

T = Ψ†α1 + S
(
Inx+ny − ΨΨ †

)
α1, (5a)

N = Ψ†α2 + S
(
Inx+ny − ΨΨ †

)
α2, (5b)

with Ψ =

[
E
C

]
, α1 =

[
Inx
0

]
and α2 =

[
0
Iny

]
, where Ψ† is

the pseudo-inverse matrix of Ψ and S is an arbitrary matrix
of appropriate dimension.

According to the guaranteed state estimation approach
in [1], since the uncertain state xk−1 is bounded in the
zonotope Xk−1 = 〈pk−1, Hk−1〉 as a prior, the estimated
uncertain state xk is over-approximated by implementing three
steps including prediction, measurement and correction. We
first introduce some necessary sets as follows.

Definition 2. Given the descriptor LPV system (1) and As-
sumption 1 holds, the uncertain state set X̄k propagated
by (1a) is defined as

X̄k =

{
xk ∈ Rnx |

(
Exk −B

(
θk−1

)
uk−1

)
∈
(
A
(
θk−1

)
Xk−1 ⊕D

(
θk−1

)
D
)}

. (6)

Definition 3. Given the descriptor LPV system (1) and a
measured output yk, the measurement consistent state set at
time instant k is defined as

Xyk = {xk ∈ Rnx | (yk − Cxk) ∈ FD} . (7)
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Definition 4. Given the descriptor LPV system (1), the exact
consistent uncertain state set Xk, that encloses uncertain states
consistent with measured outputs, is defined as

Xk = X̄k ∩ Xyk . (8)

In general, the steps of the set-membership state estimation
approach are expressed as follows:

1) Prediction Step: Compute the uncertain state set X̄k at
time instant k using (1);

2) Measurement Step: Compute the measurement consis-
tent state set Xyk with the measured output yk;

3) Correction Step: Compute a zonotopic outer approxi-
mation X̂k of the consistent uncertain state set Xk as an
intersection between X̄k and Xyk .

In this note, the objective is to propose a set-membership
state estimation approach for the descriptor LPV system (1),
where all uncertain states are bounded by means of zonotopes.
Note that it is impossible to find an explicit characterization
of the exact consistent uncertain state set. By following the
iterative steps presented above, the state bounding zonotope
is defined as an outer-approximation of the exact consistent
uncertain state set.

III. MAIN RESULT

We now present the set-membership state estimation ap-
proach for discrete-time descriptor LPV systems. Based on
the system model (1), the prediction step can be implemented
using the Minkowski sum and the model information through
the forward set propagation. With the output data measured
from the real system, the set defined in (7) can be obtained in
the measurement step. Then, we compute the consistent state
set (8) by a suitable approximation allowing to implement the
consistency test in the correction step.

A. Parameterized Intersection Zonotope

The set Xk defined in (8) is a polytope obtained by an
intersection between the zonotope X̄k and the polytope Xyk .
To implement the steps of the set-membership state estimation
approach in an iterative way, we first construct a parameterized
intersection zonotope to over-approximate Xk in the following
theorem, which includes the three steps of the set-membership
state estimation.

Theorem 1. Consider the descriptor LPV system (1), xk−1 ∈
X̂k−1 = 〈p̂k−1, Ĥk−1〉, a measured output yk, a measure-
ment consistent state set Xyk and a parameter-varying cor-
rection matrix Λ (θk−1) ∈ Rnx×ny . Then, the consistent
uncertain state set Xk is over-approximated by the zono-
tope X̂k

(
Λ (θk−1)

)
:

X̄k ∩ Xyk ⊆ X̂k
(
Λ (θk−1)

)
=
〈
p̂k
(
Λ (θk−1)

)
, Ĥk

(
Λ (θk−1)

)〉
, (9)

with

p̂k
(
Λ (θk−1)

)
=
(
I − Λ (θk−1)C

)
TA
(
θk−1

)
p̂k−1

+
(
I − Λ (θk−1)C

)
TB
(
θk−1

)
uk−1

+
(
N − Λ (θk−1)CN + Λ (θk−1)

)
yk, (10a)

Ĥk

(
Λ (θk−1)

)
=
[(
I − Λ (θk−1)C

)
Rk Λ (θk−1)FHd

]
, (10b)

Rk =
[
TA
(
θk−1

)
Ĥk−1 TD

(
θk−1

)
Hd NFHd

]
.

(10c)

Proof. For any x̂k satisfying x̂k ∈ X̄k ∩ Xyk , it implies x̂k ∈
X̄k and x̂k ∈ Xyk . First, in the prediction step, from x̂k ∈ X̄k
and (1a), there exists an unitary vector z1 such that

Ex̂k = A
(
θk−1

)
p̂k−1 +B

(
θk−1

)
uk−1

+
[
A
(
θk−1

)
Ĥk−1 D

(
θk−1

)
Hd

]
z1. (11)

Therefore, in the measurement step, from x̂k ∈ Xyk
and (1b), there exists another unitary vector z2 such that

Cx̂k − yk = FHdz2. (12)

With a pair of T and N satisfying (4), (11) and (12) can
be combined to obtain

x̂k = TA
(
θk−1

)
p̂k−1 + TB

(
θk−1

)
uk−1 +Nyk

+
[
TA
(
θk−1

)
Ĥk−1 TD

(
θk−1

)
Hd NFHd

] [z1

z2

]
.

(13)

Set Rk in (10c) and s =
[
z>1 z>2

]>
. Finally, in the cor-

rection step, we introduce a parameter-varying correction ma-
trix Λ (θk−1) ∈ Rnx×ny and a correction term Λ (θk−1)CRks
such that substituting x̂k in (12) by (13), it becomes

CRks = (I − CN) yk − CTA
(
θk−1

)
p̂k−1

− CTB
(
θk−1

)
uk−1 + FHdz2.

Adding and subtracting this correction term Λ (θk−1)CRks
in (13), we have

x̂k = TA
(
θk−1

)
p̂k−1 + TB

(
θk−1

)
uk−1 +Nyk

+ Λ (θk−1)CRks+ (I − Λ (θk−1)C)Rks

= TA
(
θk−1

)
p̂k−1 + TB

(
θk−1

)
uk−1 +Nyk

+ Λ (θk−1) (I − CN) yk − Λ (θk−1)CTA
(
θk−1

)
p̂k−1

− Λ (θk−1)CTB
(
θk−1

)
uk−1 + (I − Λ (θk−1)C)Rks

+ Λ (θk−1)FHdz2

=
(
I − Λ (θk−1)C

)(
TA
(
θk−1

)
p̂k−1 + TB

(
θk−1

)
uk−1

)
+
(
N − Λ (θk−1)CN + Λ (θk−1)

)
yk

+
[
(I − Λ (θk−1)C)Rk Λ (θk−1)FHd

] [ s
z2

]
,

from which we obtain the zonotope X̂k
(
Λ (θk−1)

)
with the

center p̂k
(
Λ (θk−1)

)
and the generator matrix Ĥk

(
Λ (θk−1)

)
as in (10).

Remark 2. Along an iterative estimation procedure, the order
of X̂k

(
Λ (θk−1)

)
, ∀k ∈ N+ is growing because at each time

step, the term Λ (θk−1)FHd is added into Ĥk

(
Λ (θk−1)

)
,

∀k ∈ N+. From the application point of view, the order of the
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p̂k
(
Λ (θk−1)

)
=

h∑
i=1

h∑
j=1

ρi (θk−1) ρj (θk−1)
((
I − ΛiC

)
TAj p̂k−1 +

(
I − ΛiC

)
TBjuk−1

)
+

h∑
i=1

ρi (θk−1)
((
N − ΛiCN + Λi

)
yk
)
, (15a)

Ĥk

(
Λi (θk−1)

)
=

[
h∑

i=1

h∑
j=1

ρi (θk−1) ρj (θk−1)
((
I − ΛiC

)
TAjH̄k−1

) h∑
i=1

h∑
j=1

ρi (θk−1) ρj (θk−1)
((
I − ΛiC

)
TDjHd

)
h∑

i=1

ρi (θk−1)
((
I − ΛiC

)
NFHd

) h∑
i=1

ρi (θk−1) ΛiFHd

]
. (15b)

 αP ? ? ?
0 (1− α)βI ? ?
0 0 (1− α)(1− β)I ?

P (I − Λ (θk−1)C)TA(θk−1) P (I − Λ (θk−1)C)TD(θk−1) P (NF − Λ (θk−1)CNF + Λ (θk−1)F ) P

 � 0, (19)

intersection zonotope with time should be limited. To achieve
this, we use the reduction operator ↓q,W (·) to fix the maximum
number of columns of the intersection zonotope to preserve the
inclusion property:

〈p̂k−1, Ĥk−1〉 ⊆ 〈p̂k−1, H̄k−1〉

with H̄k−1 =↓q,W (Ĥk−1), where q is maximum column
of H̄k−1 and W denotes a weighting matrix of appropriate
dimension.

Considering the polytopic form of the system (1), we
introduce the polytopic representation of the parameterized
intersection zonotope in the following corollary.

Corollary 1. Consider the descriptor LPV system (1). If there
exists a parameter-varying correction matrix Λ (θk−1) in the
following polytopic form:

Λ (θk−1) =
h∑
i=1

ρi (θk−1) Λi, (14)

with Λi ∈ Rnx×ny , i = 1, . . . , h, then the intersection
zonotope X̂k

(
Λ (θk−1)

)
can be reformulated in (15).

Proof. Based on (2), A(θk−1), B(θk−1) and D(θk−1) can be
reformulated byA(θk−1)

B(θk−1)
D(θk−1)

 =
h∑
j=1

ρj (θk−1)

AjBj
Dj

 , j = 1, . . . , h, (16)

with ρj (θk−1) ≥ 0 and
∑h
j=1 ρj (θk−1) = 1. By combin-

ing (9) with (14) and (16), we obtain (15).

B. Optimal Correction Matrix

Since all the uncertain states are bounded in the inter-
section zonotope X̂k

(
Λ (θk−1)

)
, we would like to find a

suitable correction matrix Λ (θk−1) in such a way that the size
of X̂k

(
Λ (θk−1)

)
is limited. We first introduce two definitions

for measuring the size of a zonotope.

Definition 5. Given Z = 〈p,H〉 ⊆ Rn, the radius is defined
by

` = max
z∈Z
‖z − p‖2 = max

b∈Br
‖Hb‖2 . (17)

Definition 6. Given Z = 〈p,H〉 ⊆ Rn, the P -radius is defined
by

% = max
z∈Z
‖z − p‖2P = max

b∈Br
‖Hb‖2P , (18)

with P ∈ Rn×n and P = P> � 0.

Based on these definitions, we propose the condition to limit
the size of X̂k

(
Λ (θk−1)

)
in the following theorem.

Theorem 2. Consider the descriptor LPV system (1)
and X̂k

(
Λ (θk−1)

)
in (9). If there exists a matrix P ∈ Rnx×nx

with P = P> � 0, a parameter-varying correction ma-
trix Λ (θk−1) ∈ Rnx×ny , and a positive scalar γ > 0 such
that (19) and [

I ?
γP P

]
� 0, (20)

then the parameterized intersection zonotope X̂k
(
Λ (θk−1)

)
,

∀k ∈ N+ satisfies

%k ≤ α%k−1 + (1− α) `d, (21a)

`k ≤ γ2%k, (21b)

where α, β ∈ (0, 1) and

`d = max
b1∈Bnd

β ‖Hdb1‖2 + max
b2∈Bnd

(1− β) ‖Hdb2‖2 . (22)

Proof. From Definition 6, the P -radius of the intersection
zonotope X̂k

(
Λ (θk−1)

)
in (9) at time instant k can be

formulated as

%k = max
ẑ∈Bn+2nd

∥∥∥Ĥk

(
Λ (θk−1)

)
ẑ
∥∥∥2

P
,

where ẑ ∈ Bn+2nd is an unitary vector. According to (10b),
the vector ẑ can be partitioned to be ẑ =

[
z̄> b>1 b>2

]>
with z̄ ∈ Bn. By combining (21a) and (22), we obtain that

max
ẑ∈Bn+2nd

∥∥∥Ĥk

(
Λ (θk−1)

)
ẑ
∥∥∥2

P
≤ max
z̄∈Bn

α
∥∥∥Ĥk−1z̄

∥∥∥2

P

+ max
b1∈Bnd

(1− α)β ‖Hdb1‖2

+ max
b2∈Bnd

(1− α) (1− β) ‖Hdb2‖2 , (23)
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Ψi,j =

 αP ? ? ?
0 (1− α)βI ? ?
0 0 (1− α)(1− β)I ?

PTAj − YiCTAj PTDj − YiCTDj PNF − YiCNF + YiF P

 . (30)

Therefore, we obtain a sufficient condition of (23) as

ẑ>Ĥk

(
Λ (θk−1)

)>
PĤk

(
Λ (θk−1)

)
ẑ

− αz̄>Ĥ>k−1PĤk−1z̄ − (1− α)βb>1 H
>
d Hdb1

− (1− α) (1− β) b>2 H
>
d Hdb2 < 0, (24)

for ∀ẑ, ∀z̄, ∀b1 and ∀b2. Set ξ = Ĥk−1z̄, φ = Hdb1 and ϕ =
Hdb2. By substituting Ĥk

(
Λ (θk−1)

)
defined (10b) in (24), it

follows that ξφ
ϕ

> Ω11 ? ?
Ω21 Ω22 ?
Ω31 Ω32 Ω33


︸ ︷︷ ︸

Ω

ξφ
ϕ

 < 0, (25)

with

Ω11 = A
(
θk−1

)>
T>
(
I − Λ (θk−1)C

)>
P
(
I − Λ (θk−1)C

)
TA
(
θk−1

)
−αP,

Ω21 = D
(
θk−1

)>
T>
(
I − Λ (θk−1)C

)>
P
(
I − Λ (θk−1)C

)
TA
(
θk−1

)
,

Ω22 = D
(
θk−1

)>
T>
(
I − Λ (θk−1)C

)>
P
(
I − Λ (θk−1)C

)
TD
(
θk−1

)
−(1− α)βI,

Ω31 =
(
NF − Λ (θk−1)CNF + Λ (θk−1)F

)>
P
(
I − Λ (θk−1)C

)
TA
(
θk−1

)
,

Ω32 =
(
NF − Λ (θk−1)CNF + Λ (θk−1)F

)>
P
(
I − Λ (θk−1)C

)
TD
(
θk−1

)
,

Ω33 =
(
NF − Λ (θk−1)CNF + Λ (θk−1)F

)>
P
(
NF − Λ (θk−1)CNF + Λ (θk−1)F

)
−(1− α)(1− β)I.

By the definition of a positive definite matrix, (25) im-
plies Ω ≺ 0. By applying the Schur complement lemma [22]
to this matrix inequality, we obtain (19).

On the other hand, by Definition 5, the radius of the
intersection zonotope X̂k

(
Λ (θk−1)

)
in (9) at time instant k

can be formulated as `k = max
ẑ∈Bn+2nd

∥∥∥Ĥk

(
Λ (θk−1)

)
ẑ
∥∥∥2

.

From (21b), we derive

I − γ2P � 0. (26)

By applying the Schur complement lemma to (26), we thus
obtain (20).

Considering that A(θk−1) and Λ(θk−1) are defined in the
polytopic form, (19) leads to a double sum problem. The
following result is used for the reformulation of a double sum
problem.

Lemma 2 ([23], [24]). Consider the following double-sum
condition

Γ (ϑk, ϑk) =
r∑
i=1

r∑
j=1

µi (ϑk)µj (ϑk)Γi,j � 0. (27)

Then, the condition (27) is fulfilled provided that the following
conditions hold:

Γi,i � 0, i = 1, . . . , r, (28a)
2

r − 1
Γi,i + Γi,j + Γj,i � 0, , 1 ≤ i < j ≤ r. (28b)

Based on Lemma 2, we now reformulate (19) with multiple
vertices in the form of (27) in the following corollary.

Corollary 2. Consider the descriptor LPV system (1). If there
exist matrices P ∈ Rnx×nx with P = P> � 0 and Yi ∈
Rnx×ny for i = 1, . . . , h such that

Ψi,i � 0, i = 1, . . . , h, (29a)
2

h− 1
Ψi,i + Ψi,j + Ψj,i � 0, , 1 ≤ i < j ≤ h, (29b)

with Ψi,j as in (30), then (19) is satisfied.

Proof. For the polytopic representation of A(θk−1), D(θk−1)
and Λ (θk−1), (19) can be reformulated in a double-sum form
as (27). Thus, we obtain (29) by means of (28).

Based on the condition in Theorem 2, an adaptive bound,
that is the upper bound of the radius of the intersection
zonotope, can be obtained in the following theorem.

Theorem 3. The L∞ performance of the radius of the
intersection zonotope X̂k

(
Λ (θk−1)

)
in (9) at time instant k

is characterized by

`k ≤ γ2αk%0 + γ2 ‖d‖2∞ , (31)

with %0 = max
b0∈Bn0

‖H0b0‖2P .

Proof. From (3) and (22), we have `d = max
b∈Bnd

‖Hdb‖2 =

‖d‖2∞. From (21a), for some α ∈ (0, 1), we can derive

%k ≤ α%k−1 + (1− α) ‖d‖2∞ ,

≤ αk%0 + (1− α)
k−1∑
i=0

αi ‖d‖2∞ ,

≤ αk%0 + ‖d‖2∞ .

Therefore, from (21b), we obtain

`k ≤ γ2%k ≤ γ2
(
αk%0 + ‖d‖2∞

)
, (32)

which gives (31).

Remark 3. Note that Theorem 2 provides a procedure to
obtain the most adjusted zonotope that outer-bounds the
intersection of the measurement consistent state set X̄k and the
consistent uncertain state set Xyk . The radius `k (introduced
in Definition 5) is used to measure the size of the resulting
zonotope. According to Theorem 2, this radius satisfies (21b).
On the other hand, Theorem 3 introduces a time-varying bound
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
σP ? ? ? ?
0 D(θk−1)>T>TD(θk−1) ? ? ?
0 0 F>N>NF F>F ?

P (I − Λ (θk−1)C)TA(θk−1) P (I − Λ (θk−1)C)TD(θk−1) P (NF − Λ (θk−1)CNF ) PΛ (θk−1)F P

 � 0, (35)

for this radius considering the worst-case disturbances. As
shown in the proof of Theorem 3, the relation of this worst-
case bound with the one obtained in Theorem 2 is given by (32)
which leads to (31). This inequality establishes that the time-
varying radius `k is bounded by %0 (from the initial condition),
the worst-case disturbance, a given scalar α ∈ (0, 1) as well
as a scalar γ > 0. As the time k increases, the term αk is
going to be zero. Hence, for k ≥ kM (let us denote kM as an
arbitrary large integer), a worst-case bound for `k is obtained
considering the worst-case disturbance as `k ≤ γ2 ‖d‖2∞
for γ > 0.

Based on Remark 3, the optimal polytopic correction matri-
ces Λi for i = 1, . . . , h can be found by solving the following
optimization problem:

min
P,Yi

γ, (33)

subject to (20) and (29), which produces the least conservative
worst case bound of `k can be obtained.

Then, the optimal solutions of the optimization problem (33)
give Λ∗i = P ∗−1Y ∗i for i = 1, . . . , h.

Remark 4. The constraints in (29) are linear and hence
convex with given α, β ∈ (0, 1). To deal with term γP in (20),
the optimization problem (33) can be solved by a linear
programming solver with a line search to find the minimum γ.

Remark 5. The condition (21a) can be replaced by (9) in [25],
which can be formulated as

%k ≤ σ%k−1 + ε, (34)

with σ ∈ [0, 1) and ε is a scalar that can be determined
by system uncertainties. From dk =

[
w>k v>k

]> ∈ D,
∀k ∈ N, we consider that the set D can be rewritten by the
Cartesian product as D = W × V with wk ∈ W = 〈0, Hw〉
and vk ∈ V = 〈0, Hv〉, ∀k ∈ N, where Hw and Hv are
the segment matrices of appropriate dimensions. Therefore,
according to [25], ε can be estimated by

ε = max
b̄1∈Bnw

∥∥Hw b̄1
∥∥2

+ max
b̄2∈Bnv

∥∥Hv b̄2
∥∥2

+ max
b̄3∈Bnv

∥∥Hv b̄3
∥∥2
.

From (34), we follow the proof of Theorem 2 to obtain (35),
which can also be reformulated to be the polytopic form as
presented in Corollary 2.

Besides, when time tends to infinity, (34) can be bounded
by %∞ ≤ σ%∞ + ε leading to %∞ ≤ ε

1−σ . Based on [25,
Algorithm 2], to minimize the P -radius %∞ of the intersection
zonotope (9), we can solve an eigenvalue optimization problem
with a scalar τ > 0 as follows:

max
P,Yi

τ, (36)

subject to (1−σ)P
ε � τI and the polytopic form of (35).

Algorithm 1 Zonotopic Set-Membership State Estimation for
Descriptor LPV Systems

1: Given X0 and D;
2: Xk−1 ⇐= X0;
3: Solve the offline optimization problem (33) (or (36))

to obtain Λ∗i (or Λ̄∗i );
4: for k := 1 : end do
5: Obtain θk−1;
6: Measure yk;
7: Compute the intersection zonotope by (15) obtaining

X̂k

(
Λ (θk−1)

)
=
〈
p̂k
(
Λ (θk−1)

)
, Ĥk

(
Λ (θk−1)

)〉
;

8: Obtain the upper and lower bounds xi,k ∈
[
xi,k, xi,k

]
for i =

1, . . . , nx by
xi,k = p̂i,k

(
Λ (θk−1)

)
+ rs

(
Ĥk

(
Λ (θk−1)

))
i
,

xi,k = p̂i,k
(
Λ (θk−1)

)
− rs

(
Ĥk

(
Λ (θk−1)

))
i
,

where p̂i,k is the i-th element of p̂k and rs
(
Ĥk

(
Λ (θk−1)

))
i

returns the i-th diagonal element of rs
(
Ĥk

(
Λ (θk−1)

))
.

9: end for

Then, the optimal solutions of (36) give Λ̄∗i = P ∗−1Y ∗i
for i = 1, . . . , h.

Remark 6. The main difference between using criteria (21a)
and (34) is that although the resulting approaches compute
the intersection zonotope based on the same structure in
Corollary 1, the corresponding correction matrices Λ∗i and Λ̄∗i
for i = 1, . . . , h are obtained using different objectives. In the
case of the approach based on (21a) proposed in this paper,
the optimization problem (33) seeks to minimize the upper
bound of the time-varying radius (based on Definition 4) of
the intersection zonotope, while in the approach based on (34),
the optimization problem (36) minimizes the steady P -radius
of the intersection zonotope.

Finally, we summarize the proposed set-membership state
estimation approach for the discrete-time descriptor LPV sys-
tem (1) in Algorithm 1.

IV. CASE STUDY

A. The Truck-Trailer Model

From [19], the truck-trailer system is modeled by (1) in the
polytopic form as in Section II, where

E =

[
1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 0

]
, A1 =

[
1.025 0 0 0
−0.218 1 0 0

0 0 1 1
0 0.06 0 1

]
,

A2 =

[
1.05 0 0 0
−0.436 1 0 0

0 0 1 1
0 0.12 0 1

]
, B1 =

[−0.025
0
0
0

]
, B2 =

[−0.05
0
0
0

]
,

D1 =

[
0 0 0 0
0 0 0 0

−0.12 0 0 0
0 0 0 0

]
, D2 =

[
0 0 0 0
0 0 0 0

−0.24 0 0 0
0 0 0 0

]
,

and the sampling time is ∆t = 0.2s. The speed of backing
up θk varies in the range θk ∈ [−1.2,−0.6] as presented in
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Figure 1. The time-varying parameter θk .

Figure 1 and the weighting functions ρj (θk) for j = 1, 2 are
computed as ρ1 (θk) = θk+1.2

0.6 and ρ2 (θk) = θk+0.6
−0.6 . Besides,

the initial state is chosen as x0 =
[

0.1745 0.3491 3 −0.4189
]>

and the initial estimation is bounded in the zonotope X0 =
〈p0, H0〉 with p0 = x0 and H0 = diag

([
0.02 0.02 0.1 0.02

])
.

Besides, to reduce the computation time and limit the
growing complexity of the resulting zonotope, we set q =
20 in the zonotope reduction operator ↓q,W (H) and the
weighting matrix is chosen as W = P . dk ∈ D, ∀k ∈ N
with Hd = diag

([
0.03 0.004 0.004 0.004

])
.

From Lemma 1, since S is an arbitrary matrix in (5), we

take S =

[
1.01 5.92 8.87 2.23 0.34 4.48 5.57
0.72 3.78 5.99 1.31 8.80 3.47 8.89
9.05 9.52 6.90 1.72 5.22 7.57 8.40
3.12 7.42 3.91 9.39 8.08 3.60 2.44

]
to obtain

T =

[
1 2.7864 3.3204 2.2327
0 −2.0097 3.8036 1.3126
0 2.1462 2.9088 1.7248
0 −0.3293 0.5831 9.3860

]
, N =

[−2.7864 −3.3204 3.3204
3.0097 −3.8036 3.8036
−2.1462 −1.9088 2.9088
0.3293 −0.5831 1.5831

]
.

From (21a), the convergence rate of the P -radius %k is
described by α. By simulations, we tune α ∈ (0, 1) to find
a minimum γ. Moreover, we choose β = 0.5 considering the
worst-case uncertainties in two equivalent parts.

B. Results

The optimization problem (33) is solved using the YALMIP
toolbox [26] and the MOSEK solver [27]. All the simulations
are carried out in a PC with CPU of Intel (R) Core (TM)
i7-5500U 2.4GHz and 12GB memory. By means of a line
search, we obtain the minimum γ = 11.95 with α = 0.75 and
the optimal polytopic correction matrices Λ∗i , i = 1, 2,

Λ∗1 =

[
0.8359 −0.0031 0.1491
1.0755 −0.1189 0.0239
−0.0558 0.9437 0.0723
0.0496 0.0466 0.9378

]
,Λ∗2 =

[
0.7413 0.1768 0.0952
1.0728 −0.1191 0.0274
−0.0547 0.9386 0.0743
0.0464 0.0519 0.9371

]
.

As a comparison, we also solve the optimization prob-
lem (36) by a line search with σ ∈ [0, 1) using [25, Al-
gorithm 2]. Then, we obtain the maximum τ = 0.00024
with σ = 0.8 and the polytopic correction matrices Λ̄∗i
for i = 1, 2,

Λ̄∗1 =

[
1.8397 −2.3403 0.8747
0.9557 0.0102 0.0185
0.0098 0.9453 0.0222
0.0200 0.0223 0.9730

]
, Λ̄∗2 =

[
1.9712 −2.4276 0.8667
0.9646 −0.0022 0.0199
−0.0020 0.9627 0.0196
0.0206 0.0203 0.9740

]
.

By implementing Algorithm 1 for N = 300 sampling steps
with Λ∗i and Λ̄∗i separately, the comparison results of the
state estimation are shown in Figure 2 and Figure 3, where
real states are plotted by red stars as the validation. From
these two figures, based on the structure of the intersection

k

50 100 150 200 250 300

x
1

-1.5

-1

-0.5

0

0.5

1

1.5
actual state

with Λ̄
∗

i

with Λ
∗

i

Figure 2. The state estimation result of x1.

k

50 100 150 200 250 300

x
3
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-0.5

0

0.5

1

1.5

2

2.5

3 actual state

with Λ̄
∗

i

with Λ
∗

i

86 88 90
-0.75

-0.74

-0.73

-0.72

-0.71

Figure 3. The state estimation result of x3.

zonotope in Theorem 1, the proposed approach with Λ∗i
and the comparison approach with Λ̄∗i are able to estimate
uncertain states in dash lines and propagate the estimation
interval in solid lines (green ones for Λ∗i and blue ones for Λ̄∗i ).

In order to quantitatively compare the results with Λ∗i
and Λ̄∗i , we define the state estimation error between the
estimated states and real states as ek = xk − p̂k and the
mean square error (MSE) by MSE = 1

N

∑N
k=1

1
nx
‖ek‖2.

Since system uncertainties are propagated to the states during
iterations, we also measure rs(Ĥk) to compare the size of
the intersection zonotope with Λ∗i and Λ̄∗i bounding uncertain
states. Table I shows the comparison result of MSE, the
root mean square of rs(Ĥk) as well as the computation
time. For this case study, it is clear from this table that the
estimation error of the proposed approach is smaller as well
as the size of intersection zonotopes. Λ∗i and Λ̄∗i are obtained
from offline optimizations while the state estimation results
are from online numerical computation using Corollary 1
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Figure 4. The L∞ performance with Λ∗i .

Table I
THE COMPARISON RESULT BETWEEN Λ∗i AND Λ̄∗i .

Approach MSE rs(Ĥ) Computation Time [s]

Λ∗i 4.7362e-05 0.1332 0.0090
Λ̄∗i 5.2623e-04 0.1459 0.0099

(Theorem 1). As shown in Table I, the average computation
time per one iteration with Λ∗i and Λ̄∗i is less than 0.01s,
which is significantly shorter than the sampling time ∆t = 0.2
allowing the real-time implementation.

Besides, with the proposed approach, the time-varying ra-
dius of the intersection zonotope is expected to be lower than
the adaptive bound based on γ (as presented in Theorem 3),
which is called the L∞ performance. In Figure 4, with
the optimal solution γ, we can see that the radius of the
intersection zonotope at each time is always constrained.

V. CONCLUSION

In this note, we have presented a zonotopic set-membership
state estimation approach for discrete-time descriptor LPV
systems considering unknown-but-bounded uncertainties. We
have constructed the parameterized intersection zonotope to
bound the set of uncertain states that are consistent with the
descriptor LPV model and the measured outputs. In the pro-
posed approach, the optimal correction matrix can be obtained
by solving an offline optimization problem that minimizes a
time-varying radius. Besides, the obtained estimation result is
obtained in a deterministic zonotope, whose radius is bounded
using the L∞ performance index. In the truck-trailer case
study, we have compared the proposed approach with the one
based on an existing P -radius criterion. It can be concluded
that in this case study, the proposed approach is able to provide
more accurate state estimation results. Moreover, since only
offline optimization is involved, the proposed approach can be
easily implemented in real-time applications.
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