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Abstract— This paper proposes a distributed set-membership
approach based on zonotopes for interconnected systems with
coupled states and unknown-but-bounded uncertainties (both
state disturbances and measurement noise). The objective of
the distributed set-membership approach is to find a sequence
of distributed zonotopes to bound uncertain states of each
subsystem (called agent) instead of making use of a single
zonotope to bound all the uncertain states. In the proposed
approach, these distributed state bounding zonotopes are only
corrected by their own measurement outputs. To predict the
state at the next sampling time, each agent sends its own state-
bounding zonotope to its neighbors. For achieving robust state
estimation, we propose a novel optimization problem based on
the P -radius minimization criterion. Finally, the effectiveness of
the proposed approach is provided with a numerical example.

I. INTRODUCTION

As society develops, an increasing number of large-scale
systems, such as cyber-physical systems [1] and critical
infrastructures (i.e. water distribution networks [2] and smart
grids [3]), are becoming more automatized. Such kind of
systems have a large amount of states, inputs and outputs.
Considering their complexity and dimension, these large-
scale systems can be formulated as interconnected systems
with coupled states. In the frameworks of diagnosis and
optimal control of large-scale systems, a suitable distributed
state estimation approach plays a significant role in the
development of model-based fault diagnosis strategies [4]
and the design of controllers [5], [6]. Revising the literature,
different approaches have been investigated for distributed
state estimation problems, as e.g. the distributed moving
horizon approaches in [7], [8].

Set-membership approaches for robust state estimation
have been discussed over the last decade (see, e.g. [9], [10],
[11], [12], [13], [14]). The idea behind the set-membership
approach is to use customized geometrical sets to bound
uncertain states during iterations. The alternative geomet-
rical sets include intervals, ellipsoids, polytopes, zonotopes
among others. Due to their low computational complexity,
zonotopes, a type of symmetrical sets, are usually chosen;
see for instance [10]. However, most of existing approaches
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only consider the construction of single set for bounding
all the uncertain states in a centralized way. For large-
scale systems, since the system dimension is very high, it
would be very difficult to propagate a high-dimensional set
at each time step. Naturally, the set-membership approach
could be extended to work in a distributed way. We studied
a distributed set-membership approach with partial projection
in [15], where coupled states are assumed to be measured.

In the literature, a distributed set-membership observer
for interconnected multi-rate systems is proposed in [16],
where a state observer is constructed using zonotopes and
the observer gain is computed by means of the zonotopic
Kalman observer approach as discussed in [13]. In this paper,
we propose a different approach based on zonotopes [10].
We define a new structure of parameterized distributed state
bounding zonotopes, where the consistency between the
system model and the independent measurement outputs
is established. Furthermore, the parameter matrices for the
construction of these distributed zonotopes are determined
solving an optimization problem. Here, as an improvement of
our previous work [15], coupled states are taken into account.

The main contribution of this paper is to propose a
distributed set-membership approach for interconnected sys-
tems with coupled states. Unknown-but-bounded state distur-
bances and measurement noise are considered in the system.
Throughout the paper, we bound the uncertainty associated
with the state estimation by zonotopes. Firstly, we define
the parameterized distributed state bounding zonotope for
each interconnected system. For obtaining the robust state
estimation results, we then propose an optimization problem
to minimize the effect of uncertainties based on the P -radius
minimization criterion in order to find the parameter of the
distributed state bounding zonotope. Finally, some simulation
results with a numerical example are shown.

The remainder of this paper is organized as follows. In
Section III, the problem statement is addressed. In Sec-
tion IV, the main results including the structure of distributed
state bounding zonotopes and the distributed set-membership
state estimation is presented. In Section V, a numerical
example is provided to illustrate the proposed distributed set-
membership approach. Finally, conclusions are outlined in
Section VI.

Notation: Throughout this paper, we use Ir to denote an
identity matrix with dimension r. We denote the Minkowski
sum as ⊕. For a matrix A, we denote tr(A) and rank(A)
as the trace and the rank of A respectively, A−1 and AT as
the inverse and the transpose of A respectively, and A � 0
denotes positive definiteness. For two matrices A and B,



we denote diag(A,B) as the corresponding block diagonal
matrix. For a set of matrices Aj with j ∈ N , we denote

cat
j∈N
{Aj} = [Aj1 , Aj2 , . . . , AjN ] ,

where j1 < j2 < · · · < jN are the (ordered)
elements of N . Besides, we define the following
sets Sn :=

{
X ∈ Rn×n | X = XT

}
, Sn�0 :={

X ∈ Rn×n | X = XT , X � 0
}

and Sn�0 :={
X ∈ Rn×n | X = XT , X � 0

}
. For a vector z ∈ Rn, we

use ‖z‖1 and ‖z‖∞ to denote the 1-norm and the infinity
norm of z, respectively. Moreover, for a vector z, we use
diag(z) to denote a diagonal matrix in which the elements
in the diagonal are the components of z.

II. PRELIMINARIES

In this section, we introduce some necessary definitions
and properties related to zonotopes.

Definition 1 (Zonotope): Given a vector c ∈ Rn and a
matrix H ∈ Rn×r, a zonotope Z ⊂ Rn in n-dimensional
space is defined as

Z := 〈c,H〉 = {c+Hz, ‖z‖∞ ≤ 1} , (1)

where c and H are called the center and the segment matrix
of the zonotope Z .

With the Minkowski sum ⊕, the zonotope in (1) can also
be defined by Z = c⊕HBr, where Br = [−1,+1]

r ⊂ Rr
is an r-dimensional hypercube. Besides, the following linear
properties hold:

〈c1, H1〉 ⊕ 〈c2, H2〉 = 〈c1 + c2, [H1 H2]〉, (2a)
L〈c,H〉 = 〈Lc, LH〉, (2b)

where L is an arbitrary matrix of appropriate dimension.
In the following definition, a measure of the size of a

zonotope Z is introduced [17].
Definition 2 (P -radius of a zonotope): Given a zonotope

Z = 〈p,H〉 ⊂ Rn and a matrix P ∈ Sn�0, the P -radius of
Z is defined by

V (Z) := max
‖z‖∞≤1

‖Hz‖2P = max
‖z‖∞≤1

zTHTPHz. (3)

In the following result, in order to reduce the dimension
of a zonotope Z , an over-bounding parallelotope can be
obtained.

Lemma 1 ([11]): Given a zonotope Z = c ⊕ HBr,
where H ∈ Rn×r, rank(H) = n with n ≤ r. Consider
the singular value decomposition H = UΣV T , where Σ =
diag(σ) and σ = [σ1, . . . , σn]

T . The zonotope Z can be
over-bounded by the parallelotope Zp = 〈c, UD〉, that
is, Z ⊆ Zp = c⊕UDBn, where D is a diagonal matrix with
the diagonal components Dii = ‖σiVi‖1, for i = 1, . . . , n
and Vi is the i-th column of the matrix V .

III. PROBLEM STATEMENT

Consider the class of discrete-time systems that can be
decomposed into l interconnected subsystems (called agents)

with coupled dynamics. Each agent is modeled in discrete-
time as follows:

xi(k + 1) =
∑
j∈Ni

Aijxj(k) +Biui(k) + wi(k), (4a)

yi(k) = Cixi(k) + vi(k), (4b)

where xi ∈ Rni , ui ∈ Rmi and yi ∈ Rpi denote the state,
the input and the output vectors, wi ∈ Rmwi and vi ∈ Rmvi

denote the state disturbance and the measurement noise
vectors of the i-th agent with i = 1, . . . , l, respectively.
Aii ∈ Rni×ni , Bi ∈ Rni×mi and Ci ∈ Rpi×ni . Besides, Ni
is defined to be the set that includes all the agents related to
the agent i (i also included).

In this paper, wi(k) and vi(k), ∀k ∈ N are unknown at
each time step. To design an iterative approach, the following
assumptions are made.

Assumption 1: The state disturbance and measurement
noise vectors wi(k) and vi(k) are unknown but bounded by
the centered zonotopes:

wi(k) ∈ 〈0, Dwi
〉, vi(k) ∈ 〈0, Dvi〉, ∀k ∈ N, (5)

and for i = 1, . . . , l, where Dwi
∈ Rmwi

×mwi and Dvi ∈
Rmvi

×mvi .
Assumption 2: The initial state xi(0) is assumed to be

bounded by the zonotope xi(0) ∈ Xi(0) := 〈ci(0), Hi(0)〉
for i = 1, . . . , l.

In this work, the goal is to obtain robust state estimations
of uncertain states in presence of unknown state disturbances
and measurement noise by finding a sequence of distributed
state zonotopes Xi(k) to independently bound the uncertain
states xi(k) for i = 1, . . . , l, ∀k ∈ N. These distributed state
zonotopes provide robust state estimation results.

IV. MAIN RESULT

In this section, we present a distributed set-membership
approach for robust state estimation. A parameterized dis-
tributed state bounding zonotope is established for each
agent considering coupled states. To determine the parame-
ters (correction matrices) of the distributed state bounding
zonotopes for robust state estimation, we propose a novel op-
timization problem based on P -radius minimization. Finally,
the distributed set-membership state estimation algorithm is
presented.

A. Distributed State Bounding Zonotope

Instead of finding a single state bounding zonotope, we
introduce the structure of the parameterized distributed state
bounding zonotope Xi(k) for i = 1, . . . , l and ∀k ∈ N. In this
case, the coupled states are considered. Each zonotope Xi(k)
is built to be consistent with the individual measurement
output yi(k) of each agent. Considering that the initial
states xi(0) are assumed to be bounded by state zonotopes,
the parameterized distributed state bounding zonotopes are
recursively defined in the following proposition.

Proposition 1 (Distributed state bounding zonotope):
Given the dynamics of the distributed systems in (4),
suppose that Assumption 1 and 2 hold, and that



ci(k) = (I − ΛiCi)
( ∑
j∈Ni

Aijcj(k − 1) +Biui(k − 1)
)

+ Λiyi(k), (7a)

Hi(k) =
[
(I − ΛiCi) cat

j∈Ni

{AijHj(k − 1)} , (I − ΛiCi)Dwi
, ΛiDvi

]
. (7b)

xi(k − 1) ∈ Xi(k − 1) = 〈ci(k − 1), Hi(k − 1)〉,
i = 1, . . . , l. Then, the following inclusion holds for every
correction matrix Λi ∈ Rni×pi :

xi(k) ∈ Xi(k) = 〈ci(k), Hi(k)〉, i = 1, . . . , l, (6)

where ci(k) and Hi(k) are defined in (7).
Proof: Since xi(k−1) ∈ 〈ci(k−1), Hi(k−1)〉 for i =

1, . . . , l, by Definition 1, there exists a vector θi(k − 1)
with ‖θi(k − 1)‖∞ ≤ 1, i = 1, . . . , l such that

xi(k − 1) = ci(k − 1) +Hi(k − 1)θi(k − 1), i = 1, . . . , l.

From the dynamics in (4), in the prediction step, we have
that

xi(k) =
∑
j∈Ni

Aijxj(k − 1) +Biui(k − 1) + wi(k − 1)

=
∑
j∈Ni

Aij (cj(k − 1) +Hj(k − 1)θj(k − 1))

+Biui(k − 1) + wi(k − 1). (8)

From Assumption 1, there exists a vector $i(k− 1) with
‖$i(k − 1)‖∞ ≤ 1 for i = 1, . . . , l such that wi(k − 1) =
Dwi

$i(k − 1). Thus, from (8), we derive

xi(k) =
∑
j∈Ni

Aij (cj(k − 1) +Hj(k − 1)θj(k − 1))

+Biui(k − 1) +Dwi
$i(k − 1).

Set

ĉi(k) =
∑
j∈Ni

Aijcj(k − 1) +Biui(k − 1),

Ri(k) =

[
cat
j∈Ni

{AijHj(k − 1)} , Dwi

]
,

ηi(k − 1) =

[
cat
j∈Ni

{
θj(k − 1)T

}
, $i(k − 1)T

]T
,

where ‖ηi(k − 1)‖∞ ≤ 1. Then, we have

xi(k) = ĉi(k) +Ri(k)ηi(k − 1). (9)

From Assumption 1, there exists a vector σi(k) with
‖σi(k)‖∞ ≤ 1 for i = 1, . . . , l such that vi(k) = Dviσi(k).
From the output equation (4), we have

yi(k)− Cixi(k)−Dviσi(k) = 0. (10)

Thus, by replacing xi(k) in (10) with the expression in (9),
we obtain

yi(k)− Ciĉi(k)− CiRi(k)ηi(k − 1)−Dviσi(k) = 0.

Pre-multiplying by Λi and the terms of the above equation
yields

Λiyi(k)− ΛiCiĉi(k)− ΛiCiRi(k)ηi(k − 1)

− ΛiDviσi(k) = 0. (11)

Finally, in the correction step, we add (11) to the right
side of (9) obtaining

xi(k) = ĉi(k) +Ri(k)ηi(k − 1) + Λiyi(k)

− ΛiCiĉi(k)− ΛiCiRi(k)ηi(k − 1)− ΛiDviσi(k).

By setting ci(k) and Hi(k) as in (7), the above equation
becomes

xi(k) = ci(k) +Hi(k)

[
ηi(k − 1)
−σi(k)

]
.

Since ‖ηi(k − 1)‖∞ ≤ 1 and ‖σi(k)‖∞ ≤ 1, we conclude
that xi(k) ∈ 〈ci(k), Hi(k)〉.

From (6) and (7), we can see that in order to find the
distributed state bounding zonotope Xi(k) in an iterative way
along the time step k ∈ N, the correction matrices Λi for
i = 1, . . . , l are required. In the following, we will investigate
the way to compute Λi for i = 1, . . . , l.

B. Computing Correction Matrices

For state estimation, the objective is to minimize the
state estimation errors. Since all estimation errors and un-
certainties are propagated and bounded in the distributed
zonotope Xi(k), we would like to find Λi for i = 1, . . . , l
to minimize the size of these distributed zonotopes. In
this work, we use the P -radius to measure the size of a
zonotope (see Definition 2). In order to guarantee the global
stability, we first rewrite the interconnected subsystems (4)
as follows.

Denote x =
[
xT1 , . . . , x

T
l

]T ⊂ Rn with n =
∑l
i=1 ni,

u =
[
uT1 , . . . , u

T
l

]T ⊂ Rm with m =
∑l
i=1mi,

y =
[
yT1 , . . . , y

T
l

]T ⊂ Rp with p =
∑l
i=1 pi, w =[

wT1 , . . . , w
T
l

]T ⊂ Rmw with mw =
∑l
i=1mwi

and v =[
vT1 , . . . , v

T
l

]T ⊂ Rmv with mv =
∑l
i=1mvi . The general

system including l agents defined in (4) can be formulated
as

x(k + 1) = Ax(k) +Bu(k) + w(k), (12a)
y(k) = Cx(k) + v(k), (12b)

with

A =

A11 · · · A1l

...
. . .

...
Al1 · · · All

 ,
670



B = diag (B1, . . . , Bl) , C = diag (C1, . . . , Cl) ,

where w(k) ∈ 〈0, Dw〉 and v(k) ∈ 〈0, Dv〉, ∀k ∈ N, with
Dw = diag (Dw1

, . . . , Dwl
) and Dv = diag (Dv1 , . . . , Dvl).

Proposition 2 (Centralized state bounding zonotope):
Given the the dynamics of the system (12) and suppose that
x(k − 1) ∈ X (k − 1) = 〈c(k − 1), H(k − 1)〉, for every
correction matrix Λ ∈ Rn×p, the following inclusion holds:

x(k) ∈ X (k) = 〈c(k), H(k)〉, (13)

where

c(k) = (I − ΛC) (Ac(k − 1) +Bu(k − 1)) + Λy(k),

H(k) =
[
(I − ΛC)AH(k − 1), (I − ΛC)Dw, ΛDv

]
.

Proof: Similar to the proof of Proposition (1), the proof
is straightforward and omitted here.

Based on the general state bounding zonotope, we present
the conditions of the P -radius minimization criterion in the
following theorem.

Theorem 1: Given X (k) = 〈c(k), H(k)〉 in (13), ∀k ∈
N+, two scalars γ ∈ (0, 1) and ε > 0. If there exist matrices
P ∈ Sn�0, Y ∈ Rn×p, diagonal matrices Γ ∈ Smw

�0 and
Υ ∈ Smv

�0 such that

tr(Γ ) + tr(Υ ) < ε, (14a)
γP ? ? ?

(P − Y C)A P ? ?
0 DT

w(P − Y C)T Γ ?
0 DT

v Y
T 0 Υ

 � 0, (14b)

then it is guaranteed that

V (X (k)) ≤ γV (X (k − 1)) + ε, ∀k ∈ N+, (15)

which leads to V (X (∞)) ≤ ε
1−γ when k → +∞.

Proof: From (15), with P ∈ Sn�0 and Λ ∈ Rn×p, for
every H(k−1) and γ ∈ (0, 1), we have that (15) is equivalent
to

max
‖φ‖∞≤1

‖H(k)φ‖2P − max
‖θ‖∞≤1

γ‖H(k − 1)θ‖2W − ε ≤ 0.

(16)

Since max
θ
‖H(k − 1)θ‖2P ≥ ‖H(k − 1)θ‖2P for any

‖θ‖∞ ≤ 1, we obtain the following sufficient condition
of (16)

max
‖φ‖∞≤1

‖H(k)φ‖2P − γ‖H(k − 1)θ‖2W − ε ≤ 0. (17)

Let us denote φ =
[
θT , $T , σT

]T
and Y = RΛ, then[

(P − Y C)A, (P − Y C)Dw, Y Dv

]
= R. (18)

With this notation, we have

H(k)φ = P−1R
[
(H(k − 1)θ)T , $T , σT

]T
.

Therefore, we rewrite (17) asH(k − 1)θ
$
σ

T RTP−1R
H(k − 1)θ

$
σ


− γ(H(k − 1)θ)TPH(k − 1)θ − ε < 0, (19)

for any ‖φ‖∞ ≤ 1. If Γ ∈ Smw

�0 and Υ ∈ Smv

�0 are diagonal
matrices, then we have

tr(Γ )−$TΓ$ ≥ 0, ∀ ‖$‖∞ ≤ 1, (20a)

tr(Υ )− σTΥσ ≥ 0, ∀ ‖σ‖∞ ≤ 1. (20b)

By adding (20) to (19), we can obtain a sufficient conditionH(k − 1)θ
$
σ

T RTP−1R
H(k − 1)θ

$
σ


− γ(H(k − 1)θ)TPH(k − 1)θ − ε
+ tr(Γ )−$TΓ$ + tr(Υ )− σTΥσ < 0.

If (14a) is satisfied, then we obtainH(k − 1)θ
$
σ

T RTP−1R−
γP ? ?

0 Γ ?
0 0 Υ

H(k − 1)θ
$
σ

 < 0.

From the above inequality, we have a sufficient condition

RTP−1R−

γP ? ?
0 Γ ?
0 0 Υ

 ≺ 0,

and by changing the sign and applying the Schur comple-
ment, we obtain

γP ? ? ?
0 Γ ? ?
0 0 Υ ?

(P − Y C)A (P − Y C)Dw Y Dv P

 � 0.

Finally, we obtain (14b) through a linear coordinate trans-

formation by the matrix T =

[
I 0 0 0
0 0 I 0
0 0 0 I
0 I 0 0

]
applied to the above

inequality.
From the expression of the system (12), it includes l agents

in (4). Based on the definition of A, we propose the structure
of matrices P and Y to be block diagonal matrices in order
to find a group of Λi for i = 1, . . . , l. Let us define the
following structures [18]

P = diag(P1, . . . , Pl), Pi ∈ Sni
�0, i = 1, . . . , l, (21a)

Y = diag(Y1, . . . , Yl), Yi ∈ Rni×pi , i = 1, . . . , l. (21b)

Moreover, V (X (∞)) ≤ ε
1−γ leads to

(x(∞)− c(∞))
T
P (x(∞)− c(∞)) ≤ ε

1− γ
, (22)

which is an ellipsoid. To minimize the size of this ellipsoid
in (22), we can maximize a norm of P , as e.g. we choose to
maximize tr(P ). Therefore, the correction matrices Λi ∈
Rni×pi for i = 1, . . . , l can be obtained by solving the
following optimization problem:

maximize
P,L,Γ,Υ

tr(P ), (23)

subject to (14).
From the optimal solutions of (23), Λ = P−1Y gives

Λ = diag(Λ1, . . . ,Λl) with Λi ∈ Rni×pi for i = 1, . . . , l.



C. Distributed Set-membership Algorithm

We now summarize the distributed set-membership state
estimation approach in the following algorithm.

Distributed set-membership state estimation algorithm.
Offline procedure: Solve the optimization problem (23)

with the structured P and Y in (21) to obtain Λi ∈ Rni×pi

for i = 1, . . . , l.
Online procedure:
• Each agent i sends the state bounding zonotope 〈ci(k−

1), Hi(k−1)〉 to its neighbors for i = 1, . . . , l and ∀k ∈
N+;

• Receive the information 〈ci(k − 1), Hi(k − 1)〉, ∀j ∈
Ni from neighbors and obtain the measurement yi(k)
and 〈ci(k − 1), Hi(k − 1)〉. The distributed zono-
tope 〈ci(k), Hi(k)〉 of the agent i is updated by (6)
with Λi at time k.

• To reduce the order of the zonotope, the over-
bounding parallelotope of 〈ci(k), Hi(k)〉 can be ob-
tained using Lemma 1. Denote the over-bounding para-
llelotope 〈ci(k), Hp

i (k)〉 satisfying 〈ci(k), Hi(k)〉 ⊆
〈ci(k), Hp

i (k)〉.

V. NUMERICAL EXAMPLE

Given the system including two interconnected subsystems
in (4) (l = 2) with system matrices:

A11 =

 0.6848 −0.0749 0.1290
0.6671 0.9666 −0.5852
−0.2789 −0.1119 1.0251

 ,
A12 =

−0.2488 −0.0242
−0.9545 −0.8138
0.3474 0.3067

 ,
A21 =

[
−0.2180 −0.0909 0.2027
1.1606 0.3804 −0.9879

]
,

A22 =

[
0.8466 0.1632
−1.6068 −0.5130

]
,

B1 =

0.8 0
0 0.58

0.6 0.8

 , B2 =

[
0.8
−0.75

]
,

C1 =

[
1 1 0
0 0 1

]
, C2 =

[
1 0
0 1

]
,

and wi(k) ∈ 〈0, Dwi
〉, vi(k) ∈ 〈0, Dvi〉 for i = 1, 2 and

∀k ∈ N, where

Dw1 =

0.1 0 0
0 0.15 0
0 0 0.25

 , Dw2 =

[
0.1 0
0 0.15

]
,

Dv1 =

[
0.05 0

0 0.05

]
, Dv2 =

[
0.1 0
0 0.1

]
,

and the initial state is chosen as x1(0) = [0.25, 1.5,−0.5]
T ∈

〈c1(0), H1(0)〉 and x2(0) = [0.8, 0]
T ∈ 〈c2(0), H2(0)〉,

where c1(0) = x1(0), c2(0) = x2(0) and

H1(0) =

0.01 0 0
0 0.01 0
0 0 0.01

 , H2(0) =

[
0.01 0

0 0.01

]
.

The simulations with this numerical example have been
carried out in MATLAB and the optimization problems
have been solved using the YALMIP [19] with the MOSEK
solver [20]. By setting γ = 0.8 and P and Y in block diag-
onal forms (21), we obtain the optimal correction matrices
for the two agents:

Λ1 =

0.2433 0.1841
0.7567 −0.1841
0.0375 1.1077

 ,Λ2 =

[
1.4788 0.0093
0.5687 1.0129

]
.

Besides, for a comparison, we also compute the central-
ized correction matrix Λc with full-dimensional P and Y
obtaining

Λc =


0.3273 0.0877 0.1625 0.0479
0.6728 −0.0877 −0.1625 −0.0479
0.0920 1.0439 0.0414 −0.0247
0.1916 0.1993 0.6911 −0.1313
0.2677 0.1113 −0.0047 0.7835

 .
Following the proposed set-membership state estimation

algorithm and the the implied centralized algorithm, robust
state estimation results are shown in Fig. 1 and Fig. 2. From
these plots, we can see that both approaches are able to
provide state estimations with generated bounds, and the
bounds of the distributed approach are a little larger than
the centralized ones. Besides, the optimal values of the
optimization problem (23), the mean square error of robust
state estimations and a measure of bounds are computed
and shown in Table I. With the unstructured P , the optimal
objective tr(P ) in the centralized approach is a slightly better
than the distributed one. As a result, the state estimation
error and generated bounds in the centralized approach is
a slightly smaller than the distributed ones. However, the
distributed approach uses less information and is able to get
similar results as the centralized approach.

TABLE I
COMPARISON BETWEEN THE DISTRIBUTED AND CENTRALIZED

APPROACHES

tr(P ) MSE RMS(
∑100

k=0(H(k)))

Distributed approach 799.4855 0.0061 0.6174
Centralized approach 799.5274 0.0037 0.6066

VI. CONCLUSION

In this paper, we have proposed a distributed set-
membership approach based on zonotopes for interconnected
systems with coupled states. The interconnected systems
are affected by unknown-but-bounded state disturbances and
measurement noise. We define a group of parameterized
distributed state bounding zonotopes to over-bound uncertain
states. For obtaining robust state estimation results, the
parameters, that is the correction matrices, are designed by
solving the proposed optimization problem based on the P -
radius minimization. The proposed approach is tested by
a numerical example and compared with the centralized
approach.
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Fig. 1. The state estimation result of Agent 1.

k

10 20 30 40 50 60 70 80 90 100

x
4
(k
)

-3

-2

-1

0

1

2

3

4
Uncertain state x(k)

c2(k)-distributed

c(k)-centralized

Bounds-distributed

Bounds-centralized

(a) x4

k

10 20 30 40 50 60 70 80 90 100
x
5
(k
)

-5

0

5

(b) x5

Fig. 2. The state estimation result of Agent 2.
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