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Abstract—A hierarchical control strategy is proposed to solve
the optimal drainage problem in sewer systems by combining
an optimization technique known as minimum scaled consensus
control (MSCC) with the deep deterministic policy gradient
(DDPG) algorithm. The MSCC strategy operates at the global
control level, and is used to determine the flows of the hydraulic
structures of the drainage system, such that the water is
optimally distributed, i.e., wastewater flows are controlled to
minimize saturation of water levels and/or flooding events, filling
each of the drainage system components (e.g., pipes, tanks,
wastewater treatment plants) proportionally to their capacity.
On the other hand, the DDPG uses a model-free approach at the
local control level, setting the drainage flows by operating valves
and gates, without any knowledge of the inherent dynamics, so
that it can be used to handle the nonlinearities of the system.
Finally, a case study is presented to show the effectiveness of
the proposed strategy.

Index Terms—Minimum Scaled Consensus, Deep Determin-
istic Policy Gradients, Flow Control, Drainage Networks

I. INTRODUCTION

NOWDAYS, flooding events are happening in most
drainage infrastructures located in places that are af-

fected by climate change, which causes negative effects both
because of sanitary reasons and the deterioration other impor-
tant infrastructures suffer. The reason behind these calamities
comes mainly from the increase in rain intensities that have
been occurring in the last decade due to climate change. One
of the most appealing solutions to prevent flooding events is
the usage of storm tanks, sensors, and flow control structures
in order to efficiently distribute runoff flows among the
components of the drainage system. Although several urban
drainage systems (UDSs) count with these elements, most of
the control tasks are conducted manually by operators.

As a result, a special interest has been posed in both the
design and implementation of control systems to automate
the UDS operation task [1], [2], [3]. Some of the already
proposed strategies to operate UDSs in order to minimize
flooding events include PID control [4], model predictive
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control (MPC) [2], optimal control, population-games-based
control (PGBC) [5], among others. Nevertheless, most of the
existing control strategies for large-scale UDSs are based on
linear models or heuristics and do not explicitly consider the
nonlinearities of the system and the phenomena characterized
by them. Nonlinear control strategies that take into consider-
ation these phenomena have been studied [1], [6] but do not
suitably scale for large-scale UDSs due to their complexity.

On the other hand, there are precedents of the usage
of machine learning for the real-time control of water-
systems [7]. These approximations make use of artificial
neural networks (ANNs) to obtain control actions and cope
with the nonlinear behaviour, but are too dated to include the
latest breakthroughs that have appeared in the field in regards
to function approximation tasks [8] in order to improve
their performance, thus not being competitive with respect
to other control techniques. Even more, efforts have been
put towards using machine learning techniques to forecast
pluvial flooding [9] or waste-water indicators [10], but, to
the best of our knowledge, have not been tightly integrated
in the automatic control strategies so that they can improve
with the additional information.

On this note, this paper focuses on the control problem
of reducing flooding events in UDSs systems by leveraging
recent advances in machine learning. For such end, the
deep deterministic policy gradients (DDPG) [11] technique
is studied.

The DDPG technique shows promising results in several
complex tasks for systems whose dynamics cannot be easily
represented by traditional models, and computational effi-
ciency once the training procedure is carried out. Neverthe-
less, it demands a high computational burden to train the
underlying neural networks (NNs). For this reason, it is not
practical to use it directly to control large-scale systems such
as the ones arising in the UDSs context. However, this need
can be fulfilled by solving a linear programming problem
that delivers the references to local DDPG controllers. Thus,
both strategies can complement each other to be scalable
and appropriate for the UDS control problem, taking into
consideration its nonlinearities and its large-scale nature.

The main contributions of this paper are the design of a
hierarchical control strategy that enables a better use of the
existing system infrastructure and the novel usage of deep
reinforcement learning, specifically of DDPG, in a water-
systems setup.



For the hierarchical scheme, the structure is composed of
two levels as shown in Figure 1. First, there is the global
control level that determines the minimum feasible volumes
at each UDS component, in order to avoid flooding events.
Second, there is the local control level that adjusts the flows
of the system by manipulating gates according to the results
of the upper control level.

At the global level, an optimization problem is proposed to
find the minimum scaled consensus state (MSCS) [12]. The
proposed controller guarantees convergence to the MSCS for
the compartmental representation of the UDS. The controller
provides the reference for local DDPG controllers that are
in charge of operating gates to set the desired minimum
volumes at certain drainage structures. The DDPG algorithm
is trained using a linear model of the UDS, which is also
used to determine the flow values that lead to the MSCS.

The remainder of this paper is organized as follows. In
Section II, the control problem is described in detail as well
as the model used to test the proposed hierarchical control
strategy. Then, in Section III, the global level controller,
which estimates the MSCS for the optimal allocation of
water, and the DDPG local regulator, used to achieve such
allocation, are described. Next, in Section IV, a case study
is presented in order to assess the entire proposed strategy.
In Section V, results of the proposed approach are compared
to those obtained by using PID controllers instead of DDPG
agents at the local control level, showing both the utility of
the hierarchical control structure and the flexibility of the
DDPG controllers for the studied setup. Finally, in Section
VI, some concluding remarks are given alongside with future
research perspectives.

II. PRELIMINARIES

A. Problem Formulation
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Fig. 1. Hierarchical control scheme for drainage systems adapted from [2].
A global controller retrieves information from rain and level sensors and
sets the flow references for the local control level.

In this work, a hierarchical control scheme (see Figure 1)
is proposed to dynamically adjust the flows of the UDSs,
through the manipulation of valves and gates, in order to
minimize flooding events. The proposed strategy is used
to efficiently evacuate external inflows or disturbances di,
such that flows are set according to a global control law
that minimizes peak volumes in every storage or conveyance
structure of the system.

A global control law is designed to fill the elements that
conform the drainage infrastructure according to their max-
imum capacity x̄i, based on the conservation laws inherent

to the dynamics of the system. Thus, a linear compartmental
model is used for the global control level to determine the
references for local DDPG controllers [11]. These controllers
require information from the simulation environment, which
is provided by the linear compartmental model, in order to
determine the setting of valves and gates that relates to a flow
reference f̂i,j .

The compartmental representation is used to model dy-
namical systems in which a resource is kept and transferred
among storage units called compartments. The transference
of the resource is here called a flow. Thus, a system may have
external and/or internal flows. Every flow fi,j that goes from
the i-th compartment to the j-th compartment is considered
internal. External inflows are denoted by f0,i and external
outflows are denoted by fi,0.

Taking into consideration that the relationships between
the volume stored in the compartments x ∈ Rn, and the
flows fi,j , fi,0 ∈ R+ are considered linear, the compart-
mental system is represented by a triplet (G,D,ΩO), where
G = (V, E ,Ω) is a weighted digraph, denominated the com-
partmental graph, with edges (i, j) ∈ E that represent internal
flows fi,j , nodes i ∈ V that represent compartments, and
weights ωij ∈ Ω denominated here as discharge coefficients
of the system1. Additionally, D = {di(τ) , f0,i(τ) : (0, i) ∈
V} contains the external inflows, or disturbances, at time
τ ∈ R+, and O = {(i, 0) : (i, 0) ∈ V} is the set of edges that
represent external outflows with ΩO = {ωi,0 ∈ R+ : (i, 0) ∈
O} the set that contains their associated discharge coefficients
such that fi,0(τ) = ωi,0xi(τ). Thus, the model for the global
control level is composed of linear state equations for each
compartment in the system as follows:

(1)
ẋi(τ) = di(τ) +

∑
j∈Ui

ωi,jxj(τ)−
∑
j∈Di

ωi,jxi(τ)

− ωi,0xi(τ), ∀i ∈ V,

with Ui = {j ∈ V : (j, i) ∈ E}, Di = {j ∈ V : (i, j) ∈ E}
the sets of upstream and downstream neighbors of i respec-
tively. Note that (1) can be written equivalently in the state-
space representation

ẋ(τ) = Ax(τ) + d(τ), (2)

where A = A>Ω−diag(AΩ1n+ ω̃), with 1n a column vector
of ones, ω̃ = [ω1,0, ω2,0, ..., ωn,0]

>, and AΩ is the adjacency
matrix of the compartmental graph.

Finally, it is worth noting that, in the scheme proposed
in Figure 1 the global controller receives information from
level sensors, instead of volume amounts. However, this is
not an issue for the proposed formulation given that for
all the components of the drainage system a relationship
between volume and level can be proposed as described in
[13]. Furthermore, despite the fact that in the global control
level the system dynamics are treated in the continuous-time
space, the local regulators are studied and implemented using
a discrete-time scheme. The main reason behind this fact is

1The ratio between flow and volume is commonly known as discharge
coefficient in the context of linear models for water systems [13].



that the global control level delivers the references to the local
controllers at the beginning of the scenario and has minimal
further interaction with the latter. Also, from a practical
standpoint, the discrete implementation of the reinforcement
learning controllers has proven to be both straightforward and
highly effective for environments with continuous dynamics
[14].

B. Reinforcement Learning

The reinforcement learning (RL) problem is defined on
a framework for which an agent tries to maximize a reward
function delivered by some environment by cleverly selecting
actions from a pool of possible interactions called a policy.
Each action ut, when performed over the environment at time
t ∈ N, causes a change of state xt and, under such transition,
the named reward r(xt, ut) is delivered to the agent. This
relationship between agent and environment is usually mod-
eled by a Markov decision process for which the transition
dynamics between states are generally characterized to be
probabilistic and memory-less. In order to cope with this
stochastic nature, most RL algorithms try to maximize the
action-value function

Qπ(x, u) = Eπ

[ ∞∑
k=0

γkr(xt+k, ut+k)|xt = x, ut = u

]
,

(3)
with γ ∈ (0, 1) a discount factor that weighs higher most
recent rewards. This function specifies the expected reward
to be received in the future given that the environment is
in state x and the agent acts with u sampled from a policy
π. It can be shown that this Q-function follows the Bellman
equation (4) that characterizes it in a recursive fashion. In (4),
p(xt+1, rt+1|xt, ut) represents the transition dynamics of the
environment and pπ(ut+1|xt+1) the probability of choosing
ut+1 as the next action under policy π given that the state
is xt+1. If these dynamics were known, for a given policy
the associated Q-function could be solved directly with the
Bellman equation and a better policy could be proposed
instead. By repeating the procedure, an optimal policy could
be found.

Nevertheless, those dynamics are often assumed to be
unknown for the RL algorithms and in order to evaluate the
Q-function, interaction with the environment becomes the
de-facto strategy. A drawback with the usage of the Bellman
equation, and in general with the traditional RL algorithms,
is that they are defined over discrete state and action spaces,
which poses a problem for scalability to continuous action
and state spaces. In order to overcome this dimensionality
problem, two approaches are taken:
• Value-function approximation: The Q-function is rep-

resented by a functional form Q(x, u) ≈ Q(x, u|ηQ)
parameterized by ηQ ∈ Rn. The best parameter is found
by minimizing a loss measure that indicates how far are
the approximator’s predictions from the sampled values
of the value function.

• Policy-Gradient methods: The policy π is expressed in
an explicit manner πθπ (x) = f(x|θπ), parameterized by

θπ , instead of obtaining it directly from the Q-function.
To improve the policy, θπ is adjusted so that a per-
formance measure J(πθπ ) increases. Such performance
measure is here considered to be

J(πθπ ) = Eπ

[ ∞∑
k=0

γkr(xk, uk)|x0 = x

]
, (5)

and the way of adjusting the parameter is to use gradient
ascent over (5), i.e.,

θπt+1 = θπt + α∇J(πθπ ), (6)

where α ∈ R+ is the step length of each parame-
ter update. When used in conjunction with a value-
function approximator, the policy approximator receives
the name of actor and the value-function one receives
the name of critic.

In the following section, the description of an optimization
problem is given for the global control level, and also details
of the DDPG algorithm, are exposed.

III. HIERARCHICAL CONTROL

A. Global control level: Optimal Flow Distribution

Assume that it is required that the system achieves a final
value x∗ = z1n, where z ∈ R, i.e., it is required that
the system reaches output consensus [15]. To do so, it is
necessary that the system has an equilibrium point in x∗.
For the studied compartmental systems, which are positive
and affine [16] due to the nature of the dynamics presented
in (2), if the disturbances are constant and positive at every
time t, i.e., d(t) = d ∈ Rn+, then Theorem 1 holds.

Theorem 1 (Positive Systems Stability [17]). Consider a
linear positive affine system characterized by (2), where A is
a Metzler matrix and d > 0. If A is Hurwitz, then

1) The system has an unique equilibrium point x∗ ∈ Rn,
which is the solution of Ax∗ + d = 0.

2) The equilibrium point x∗ is positive.
3) All the trajectories converge asymptotically to x∗.

From the conservation law (1), it is guaranteed that A is
a Metzler matrix [18] given that∑

i∈V, i 6=j

ωji + ωi,0 =
∑

i∈V, i 6=j

ωij .

However, it is necessary to establish Assumption 1 to
guarantee that A is Hurwitz.

Assumption 1. The compartmental system described by (2)
is positive, affine, and output-connected, i.e., there exists a
directed path from every compartment i ∈ V to a compart-
ment j with ωj,0 > 0.

Then, given that the conditions for stability have been
established, there exists an equilibrium point x∗ that is the
solution of

Ax∗ + d = 0. (7)



Qπ(xt, ut) =
∑

xt+1,r(xt,ut)

p(xt+1, r(xt, ut)|xt, ut)

r (xt, ut) + γ
∑
ut+1

pπ(ut+1|xt+1)Qπ(xt+1, ut+1)

 (4)

Now, since x∗ = z1n, condition (7) is equivalent to

∑
j∈V, i 6=j

ωji −

ωi,0 +
∑

j∈V, i 6=j

ωij

+
di
z

= 0, ∀ i ∈ V.

(8)
Additionally, the flows are physically restricted by minimum
and maximum values

ω−ij ≤ ωij ≤ ω
+
ij , ∀ i, j ∈ V, i 6= j (9)

ω̃− ≤ ω̃ ≤ ω̃+, (10)

where ω−ij , ω
+
ij ∈ R, ω̃−, ω̃+ ∈ R|O|+ .

Definition 1 (Scaled Consensus [12]). A network in which
the state equation of each node i ∈ V depends only on the
local state xi(τ) and the states xj(τ) of the upstream neigh-
bors j ∈ Ui, achieves scaled consensus if the proportions
between the state variables, i.e., xi/xj ∀ i, j ∈ V , reach spec-
ified constants in the asymptote. Formally, a network whose
dynamics are described by (2) achieves scaled consensus to
[κ1, ..., κn]

>, with κi > 0 ∀ i ∈ V , if

lim
t→∞

(κ1x1(τ)− κjxj(τ)) = 0, j = 2, ..., n, (11)

for all the initial conditions x(0).

Theorem 2. The compartmental system, with dynam-
ics defined by (2), achieves scaled consensus to xf =
x∗/max{x∗} = [κ1, ..., κn]> if∑
j∈V, i 6=j

κiωj,i +
di
z

=
∑

j∈V, i 6=j

κiωi,j + κiωi,0, ∀ i ∈ V.

(12)

Proof. Notice that (12) is equivalent to (8), thus, x∗ ∈ Rn++

is an equilibrium point for all the initial conditions x(0) of
(2), since Theorem 1 holds. Moreover, since κi = x∗i /z and
(12) hold, condition (11) holds, thus, the system achieves
scaled consensus to xf .

Now, considering Definition 1, Theorem 2 holds for a
system described by (1), and thus an optimization problem
can be proposed to determine the value of the weights
ωi,j , which implies that the system reaches a desired scaled
consensus state xf such that the the maximum peak volume
z = max{x∗} is minimized. This problem is defined as the
MSCS problem as follows:

min
z,Ω,ω̄

z (13)

subject to (9), (10), and (12).

Once the MSCS is determined by solving (13), its value
becomes the reference for the DDPG local controllers, which
determines the setting of gates and/or valves, such that
desired volumes are fixed in every reservoir of the UDS.

B. Local control level: Deep Deterministic Policy Gradients

The Deep Deterministic Policy Gradient (DDPG) [11]
algorithm is used as the local flow regulator. This RL
algorithm makes use of three components: a critic, an actor,
and a replay-memory. These three components are constantly
intertwined in order to find an optimal policy, and the asso-
ciated action-value function, so that the agent can maximize
the expected received reward from the environment. For
such end, a pair of optimization problems are stated; one to
update the critic parameters, and one to do so for the actor
ones. The progressive update of such functional parameters
until an optimum is obtained constitutes the training (or
learning) stage of the DDPG algorithm. In order to sample
information from the environment and progressively solve
the optimization problems, DDPG uses policies of the form

π(xt) = µ(xt|θµ) +Nt,

where µ(x|θµ) is a deterministic policy, parameterized by
a vector θµ, and Nt is noise sampled from an Ornstein-
Uhlenbeck process. The addition of noise around the de-
terministic policy allows for the exploration of, otherwise,
unvisited states so that more information is obtained to better
estimate the Q-function.

With this in mind, the associated optimization problem for
the critic consists in the minimization of the loss function
given by

L(ηQ) = E[(Q(xt, ut|ηQ)− yt))2], (14)

where

yt = r(xt, ut) + γQ(xt+1, µ(xt+1|θµ)|ηQ). (15)

This loss function specifies the sample error of the current
Q-function, by using (4). On the other side, in order to find
better policies that maximize (5), the functional parameters
of the actor are updated with (6), taking the performance
gradient as

∇θµJ(µθµ) = E[∇uQ(x, u|ηQ)∇θµµ(x|θµ)]. (16)

In addition, DDPG uses a replay-memory with which past
experience is sampled in order to update both the value-
function and policy approximators. As such, the parameter
updates are not only taking into account the last sampled
information but also past information stored in the afore-
mentioned memory. This is done in order to break the
temporal correlation between successive updates, which has
been found to deter the improvement of performance for each
policy update.

Finally, it is important to say that in DDPG, both actor and
critic are constructed as neural networks due to the capacity
of abstraction they can achieve for complex functions such
as those related with non-linear dynamic systems.



IV. CASE STUDY

An open-channel pool setup [1], hereafter denominated
the five-reservoir system, is next described. As presented in
Figure 2, the system is composed of five sub-catchments
that are affected by a precipitation event, the precipitation
becomes runoff (marked in red), and then, it is transported
through a system of five reservoirs in series (the values of
the runoff flows that affect each reservoir are presented in
Table I).

In order to control the flows of the system, linear gates
are used [13]. By adjusting the setting of gates, the volumes
stored at each reservoir are controlled in order to change the
respective associated flows, as shown in Figure 2. Neverthe-
less, the last gate, i.e., the gate that controls the outflow from
the fifth reservoir remains fixed (i.e., ω5,0 = 0.0276).
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Fig. 2. Five open channels in series. The volume at each channel is
controlled by using a gate. Each reservoir receives runoff water coming
from the environment (red flows). The compartmental graph of the system
is presented at the bottom.

TABLE I
PARAMETERS OF THE FIVE-RESERVOIRS SYSTEM

Max. Volume[
m3

] Discharge Coefficient
[1/s]

Disturbance
[`/s]

0.7 0.0838 5
3.23 0.0570 30
32.34 0.0064 20
75.41 0.0038 10
7.07 0.0276 20

To avoid flooding events, first, the MSCC algorithm is
used to determine the minimum feasible volumes that can be
achieved by manipulating the flows of the system. Once those
volumes are determined, four DDPG controllers are used to
determine the setting of gates in order to manipulate the flows
of the system. The specific setting computed by the algorithm
for each one of the gates is assumed to be between 0, closed,
and 1, open. Thus, the actual control actions affecting the
flow dynamics of the system. at a time t, are computed as
follows:

uactuali,t = uDDPGi,t kixi,t, i ∈ {1, 2, 3, 4}. (17)

With the DDPG algorithm achieving the references, the
efficient distribution of flows is guaranteed since the MSCS
is reached.

A. DDPG configuration

The DDPG agents controlled the settings of the first four
gates shown in Figure 2. Following the architecture described
in [11], fully-connected neural networks with two hidden
layers are used for the actor and the critic. The number of

neurons used are 500 for the first hidden layer and 325 for
the second one. Additionally, all the neurons used rectifier
linear units [19] with the exception of the ones composing
the output layer of the actor, which used a sigmoid activation
function in order to bound the actions between 0 and 1.
The state delivered to each of the DDPG agents, as the
observation, contained all the current volumes and flows of
the compartmental system.

With the named configuration, each one of those DDPG
agents has as goal the maximization of the expected value of
a reward function of the form

ri(xi,t, ui,t) = −
(
xi,t − x̂i

x̄i

)2

, i ∈ {1, 2, 3, 4}, (18)

where xi,t is the current volume, x̂i is the reference volume
and x̄i the maximum volume for the i-th reservoir. With
this, the agents only care for locally achieving their control
objectives.

V. SIMULATION RESULTS

For the case study, the MSCS is given by
x∗ = [0.3048, 1.4064, 14.0819, 32.8359, 3.0785]>. By
normalizing the values with respect to the maximum
capacities of each reservoir, scaled consensus in terms of
volume values is indeed output consensus in terms of the
normalized volume values, i.e., x∗i /x̄i = z = 43.54%, for
all i ∈ {1, 2, 3, 4, 5}.

Thus, the estimated MSCS became the reference for the
local regulators (i.e., x̂ = x∗). By feeding the references to
the agents, after training, the results shown in Figure 3 are
obtained. The figure shows the results of the four DDPG
agents modifying the gate settings so that the named ref-
erences are reached. It is interesting to notice that, despite
the fifth gate setting remained fixed, it is possible to achieve
output consensus by solving the MSCS problem.

The dynamics and control actions having PID controllers
as the local regulators are also shown in Figure 3. The PIDs
are configured to regulate the error related to each reservoir
to zero and a feedforward term is calculated, knowing the
full-system dynamics, so that the steady-state could be more
easily attained for each reference.

In order to explicitly quantify how well the strategies
perform in achieving the whole reference set, a cumulative
squared error (CSE) is established. It takes into account each
of the associated reservoir error values as follows:

CSE(xt) =

t∑
k=0

5∑
i=1

(
xi,k − x̂i

x̄i

)2(
x̄i∑
i x̄i

)
. (19)

The used performance measure is a weighted sum, with
which either more or less importance is given to each individ-
ual error depending on how much the maximum volume of
the associated reservoir constitutes of the maximum allowed
volume for the UDS. This allows to judge the performance of
the whole set of local individual controllers for their global
impact on the solution. Thus, higher attention is paid to
the regulation of the more critical reservoirs, i.e., the ones
capable of storing greater amounts of water.
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Fig. 3. DDPG local regulation: a) shows the relative volumes, with respect to associated maximum, of each one of the five reservoirs described for the
case study. The dashed line, represents the desired references. Additionaly, b) shows each gate setting behaviour under the control of the respective agent.
In c), a performance measure, as defined in (19), measures how far have the set of controlled reservoir volumes been from reaching the reference volumes.

As shown by the performance measure, both the DDPG
and the PID controllers successfully achieve the MSCS
in the UDS with similar performance, but the first does
so without any explicit knowledge of the environment in
comparison to the full information of the system dynamics
used to make the PIDs work. This makes the extension of
the usage of DDPG to nonlinear water distribution systems
straightforward, situation which is not always attainable with
the implementation of PIDs.

VI. CONCLUDING REMARKS AND FUTURE WORK

A hierarchical control strategy composed of a minimum
scaled consensus control (MSCC) strategy and deep de-
terministic policy gradients (DDPG) controllers, as global
and local level controllers respectively, has been proposed.
Such approach is tested in a linear open-channel pool case
study, showing the effectiveness of the proposal for the
urban drainage system (UDS) control problem. The local
DDPG regulators achieve near-optimal performance for the
references established by the MSCC without any explicit
knowledge of the environment. Furthermore, the work here
presented introduces a novel usage of the deep reinforcement
learning procedure, as in the context of control of water dis-
tribution structures with multiple inputs and multiple outputs
has not yet been found in the explored literature.

As future work, the implementation of the hierarchical
control structure acting over scenarios involving non-linear
dynamics is a natural extension. Additional randomization in
the environment with which the DDPG agents interact during
training could also prove beneficial making them more robust
to disturbances and environment changes during the testing
phase.
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